An overview of major research areas in Wire cut EDM on different materials

M. CHAITANYA REDDY*,1, K. VENKATA RAO1

Corresponding author ¹Vignan Foundation for Science Technology and Research, Department of Mechanical Engineering, Vadlamudi, Guntur, Andhra Pradesh – 522213, India, malla.chaitanyareddy@gmail.com, kvenkatrama@gmail.com

DOI: 10.13111/2066-8201.2020.12.4.4

Received: 23 June 2020/ Accepted: 30 October 2020/ Published: December 2020 Copyright © 2020. Published by INCAS. This is an "open access" article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: WEDM (Wire electrical discharge machining) is a precision machining method for cutting electrically conductive materials. It is an unconventional machining process that produces precision parts that match the dimensional tolerances of our designs within the range of ± 0.0001 mm. As the residual stress results in premature failure of parts, the WEDM is preferred for hard to machine materials such as Inconel, Nickel, and other Super alloys. In the present paper, earlier and recent work was reviewed, segregated and evaluated on the effect of wire material, diameter, dielectric fluid, wire wear, pulse on and off times and machining characteristics such as kerf size, machining efficiency, material surface characteristics, etc. This paper also focused on hybrid and ultrasonic-assisted WEDM used for machining of different materials. This paper discussed the major research studies in WEDM.

Key Words: WEDM, different materials, process parameters, electrode wire, material surface, machining characteristics, hybrid WEDM, pulse, kerf, dielectric fluid, ultrasonic assisted WEDM, discharging systems, dry WEDM

1. INTRODUCTION

Machining process plays a major job in manufacturing industries where quality and cost are taken as a benchmark [1]. WEDM is most influential machining processes overall unconventional machining processes for difficult-to-machine materials (like tungsten carbide, graphite, molybdenum, tool steel, titanium, zirconium, copper, aluminum, waspaloy, Inconel, hastelloy, conductive ceramics, polycrystalline diamond compacts, metal matrix composites etc.), which are widely used in manufacturing industries like aeronautics, nuclear reactors, automobiles etc., [2] & [3]. In WEDM, process material removal will take place using generated heat by electrodes made of electrically conductive metals. The machining process takes place without contact between the wire tool and the workpiece, and hence, cutting is done without residual stress, as the workpiece cannot undergo a cutting pressure. This type of advantages makes WEDM an exemplary method for machining of precision parts as well as machining of complex and hard workpieces with complicated profiles and shapes which are difficult to machine materials with conventional machines [4] & [5]. WEDM is a potential thermo-electrical machining technique and this is a contactless machining process, i.e. the wire electrode does not come into contact with the workpiece electrode. This technique was

invented for better precision purpose during machining. Material was eroded by a series of controlled sparks between two electrodes. Both electrodes are connected to the DC pulse power supply and immersed in the dielectric fluid; the fluid behaves like an electrical conductor, which acts like electrical insulator until the ionization time. The spark discharges occur at the small gap between the electrodes with the frequency of thousands of sparks per second. At each spark moment, with a period of about 10⁻⁴–10⁻⁶s, deionization and ionization of the liquid medium is caused. The vicinity of the cutting area heats up to 10,000–20,000°C and the dielectric medium around this region evaporates, especially when the pressure increases. In addition, little quantity of workpiece and wire materials liquefies and evaporates, which produces minor craters on the workpiece area. When the spark is stopped and the starting moment begins, the pressure drop leads to the condensation of the metal globules, which have been discharged by the flowing dielectric medium.

Figure 1: WEDM schematic diagram

A veneer of melted and re-solidified material referred as recast layer can be observed on the surface of the workpiece after processing. The major factors affecting WEDM performance are discharge power, pulse frequency and duration, wire speed and tensions/voltage, dielectric fluid type and fluid slip rate [6] & [7].

2. LITERATURE REVIEW

Literature reviews were categorized based on process parameters, electrode wire, material surface, machining efficiency, hybrid WEDM, pulse, kerf, dielectric fluid, ultrasonic assisted WEDM, discharging systems, dry WEDM and Thermal.

Process parameters: There are four major parameters, which affect the WEDM process.

1. Electrical	2. Electrode	3. Dielectric	4. Workpiece
>Peak Current	>Wire Material	>Flow rate of dielectric	>Material
>Gap Voltage	>Wire Size	>Conductivity of dielectric	>Height
>Servo Feed	>Wire Tension		
>Spark gap set voltage	>Wire Feed rate		
>Pulse on Time			
>Pulse off Time			

Table 1. Major parameters considered in WEDM

Selection of the correct parameters for WEDM to get better performance is an important task. **Peak current**: Maximum supplied current for each regular pulse from the generator/power supply.

Gap voltage: A proper gap is necessary to generate sparks between the workpiece and the wire electrode. Therefore, WEDM discharge gap is about 0.005 to 1.0mm.

Servo feed: The servo feed system provide balanced operation even at machine running conditions. (P off time > P on time).

Pulse on time: Metal removal rate is correlative to the amount of power supplied during the pulse on time. The longer the pulse, the more the material will be removed.

Pulse off time: One cycle will finished when required pulse off time maintained prior to starting of the coming cycle. Pulse off time influences the stability and accelerates the cut.

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings/ Discovered
Year	material(s)	Equipment's		
Krishnan and	Heat treated	Taguchi's robust design,	Optimization	Selected multiple performance
Karuna /2006	tool steel	MRSN, ANOVA, SEM	of multi	characteristics can be improved by the
[8]			responses	process.
Mahapatra and	D2 tool	Perthometer, Microscope	Process	The tested algorithm used for finding
Amar /2007 [9]	steel	L27 orthogonal array,	parameters	parameters optimization along with
		MINITAB, GA	optimization	different weighting factors of various
<u>a</u>	X4	T 111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		objectives.
Gauri and	Y -titanium	Laguchi's design, MRSN,	Optimization	Based on MRSN and PCA approaches,
Chakradorty		Principal component	of multi-	the predicted overall quality is almost
/2009 [10]	anoy	analysis (PCA), ANOVA	response	equivalent.
Couri ou l		MDCN Corrected and	Ontinuination	No worth a diama a diama anno a diama a a a a 11
Gauri and	-	MRSN, Gley Telational	of multi	no method can give superior overan
		analysis, ANOVA,	of multi-	duality than the results derived using
/2010[11]		VIKOR, L27 Tagucili	response	method
			parameters	memou.
Vong of	Tungston	DSM DDNN SA Taguahi	Process	Einest reproducibility conclusions of the
$\frac{1}{2} \frac{1}{2} \frac{1}$	Tuligstell	L 18 SEM ANOVA	parameters	experiment
al./2012 [12]		LIO, SEWI, ANOVA	optimization	experiment.
Raivalakshmi	Inconel 825	Taguchi I 36 orthogonal	Optimization	Suggested method is suitable and ideal
and Ramaiah	meener 625	array Grey relation	of multi	for the process parameters optimization
/2013 [13]		analysis ANOVA	process	when employed characteristics such as
/2015 [15]			process	Ra MRR and spark gap
Babu and	A17075/SiC	RSM L27 Orthogonal	Optimal	Manufacturers can choose the optimal
Krishna /2014	p MMC	array, GA, ANOVA, SEM	process	WEDM conditions based on the
[14]	P		parameters	machined design component quality
			selection	indicators.
Vivek et	Inconel 718	RSM, CCD, ANOVA,	Parameters	From developed models with
al./2015 [15]			modeling and	experimental results, the prediction
			optimization	errors are less than $\pm 5\%$.
Zhang et	Tungsten	ANN, LWPA, BPNN,	Parameter	The suggested approach has obtained
al./2016 [16]	tool YG15	CCD	optimization	non-dominated results.
			integrated with	
			ANN-LWPA	
Abbasi et	HSLA steel	Factorial design of	Parameters	By decreasing the wire speed, power
al./2017 [17]		experiments, SEM,	effect on	and on time pulse, the surface finish can
		ANOVA	surface	improve.
			roughness	
Venkata et	High speed	ANN, Supporting vector	Parameters	Developed models predict optimum
al./2017 [18]	steel	machines	prediction and	power and discharge current for
			optimization	required Ra for any plate regardless its
			-	thickness.
Shihab /2018	Friction stir	Box-Behnken design, Ra	Process	The selected parameters significantly
[19]	welded	tester, ANOVA	parameters	affect the Ra, MRR and kerf width.
	alloy		optimization	

Table 2. Review on electrical parameters

Somvir et al./2018 [20]	Udimet- L605 alloy	Taguchi design, XRD, M5P tree approaches, SEM	Performance evaluation	Machining performance was evaluated by using different techniques.
Pramanik et al./2019 [21]	Al 6061 alloy	RSM, surface texture measuring, Minitab, ANOVA, SEM	Parameters effect on MRR and Ra	Maximum MRR and minimum Ra achieved by varying the process parameters.
Sahoo et al./2019 [22]	HCHCr D3 grade	MOORA, ANOVA	Multi objective optimization	MRR, Ra and Kerf width values more with long pulse on time and servo voltage and less with short pulse off time.
Ezeddini et al./2019 [23]	Recycled Ti-17	RSM, ANOVA, SEM	Parameters optimization	Small kerf width from higher servo voltage, greater MRR from high speeds.

Electrode wire (vibration, Wire lag, Wire breakage, Wire feeding and Wire tension): The WEDM process depends on an amalgamation of properties of the electrode wire.

For high precision machining and high-speed cutting, any of the wire electrodes must have properties like more electrical conductivity, melting point, straightness, tensile strength and elongation along with geometrical properties of the wire like coating layer structure, shape, and diameter.

The diameters of wires ranging from 0.02-0.36mm are readily available on the market for WEDM [24].

Coated wires	Diffusion-annealed	Steel wires	Special wires
	coated wires		
>Single-layer	>Alpha phase	>Molybdenum	>Abrasive -assisted
>Double-layer	>Beta phase	>Tungsten	>Hot dip galvanized
>Multi-layer	>Gamma phase	>Moly Carb	>Porous electrode
	>Epsilon phase	>Steel core	
	Coated wires >Single-layer >Double-layer >Multi-layer	Coated wiresDiffusion-annealed coated wires>Single-layer>Alpha phase>Double-layer>Beta phase>Multi-layer>Gamma phase>Epsilon phase	Coated wiresDiffusion-annealed coated wiresSteel wires>Single-layer>Alpha phase>Molybdenum>Double-layer>Beta phase>Tungsten>Multi-layer>Gamma phase>Moly Carb>Epsilon phase>Steel core

Table 3. Types of wire materials used in WEDM [36]

The wire factors that affect the process of WEDM are mentioned below.

Wire vibration: Vibration wire during machining is one of the main drawback, which affects the products surface finishing and accuracy. Wire moves between Upper & Lower guides (vertically) and may vibrate in parallel and perpendicular directions with the wire moving direction as exhibited in figure 1.

Reducing the wire vibration is a very important factor to get greater efficient machining and better shape accuracy [25] & [26].

Wire lag: Most of the researches have studied vibration in the wire; less research has been carried on the wire lag phenomenon, which is also an important factor for precision machining. Such a study requires an investigation of the deflection or deformation of the wire in detail [27].

Wire breakage: Everybody knows that the WEDM machine is running around the clock even without an instructor. If the wire breaks while doing machining for any cause, it is not possible to rearrange the wire at the exact place. Therefore, the accuracy and efficiency of the machining process may decrease.

In fact, breakage of wire has a great influence on the machining productivity, but skilled technician can avoid breakage of wire and keep their machine running effectively and efficiently with expert skills about the WEDM process [28] & [29].

Wire feed: During the machining process, the wire is fed into the machining area by wire supply reel, after being discharged from the machining area, the wire is unused. However, in some special cases the wire electrode can be used repeatedly based on requirements.

Wire tension: To solve the above trouble the wire will be tensioned at each ends. This may cause a short circuit, which in turn can have an influence on the quality of cutting surface and

machining accuracy of a workpiece. For this reason, it is imperative to locate some advantageous strategies to resolve the un-even wire tension problem to improve the cutting balance and precision of the workpiece [30], [31] & [32].

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings / Discovered
Year	material(s)	Equipment's		
Puri & Bhattachary/ 2003 [33]	Die steel plate	Taguchi design, Ra instrument, contour measuring instrument	Inaccuracy in workpiece due to wire lag phenomenon	For getting geometrical accuracy, the trim and rough-cut values set as more as possible up to getting the better surface finish.
Okada et al./2010 [34]	SKD 11	Digital high-speed camera, acrylic tank, oscilloscope	Wire vibration and spark distribution	Spark distribution becomes uniform when pulse interval time are long, servo voltage is high, and wire running speed is low.
Okada et al./2015 [35]	SKD 11	CFD, nozzle jet flushing with high flow rate	Deflection and breakage of wire	Deflection of wire becomes greater due to jet flushing and the debris deposited easily in the kerf length, causes wire breakage.
Prasad and Krishna /2015 [36]	AISI-D3	RSM, Harmony search algorithm, CCD, ANOVA	Modeling and optimization of WWR and kerf	From the proposed methodology, either the minimization of the wear ratio of the wires or the minimization of the strip width could be achieved.
Conde et al./2016 [37]	AISI D2 steel	MATLAB, 1&3 concatenated circular interpolation	Wire-lag influence in WEDM	Workpiece effected with concavity is a function of machined radius, the concavity increases, the accuracy is less while the radius decreases.
Pramanik et al./2016 [38]	Metal matrix composite (Al-based SiC)	SEM, EDX	Wire electrode degradation during machining of MMC	The cutting side of the wire face involves in removal of material, the left and right faces smoothen the kerf wall, and the back face minimizes the chance of wire fail.
Zhidong et al./2017 [39]	Solar-grade polycrystall ine silicon	Two-direction projection of light on wire deflection detection and control system	Detection of wire deflection	The self-made signal control system, can help and control the uniformity of wire deflection, thereby contributing to the improvement of cutting stability and ensuring shape cutting precision.
Ciwen et al./2018 [40]	Cr12	Reciprocated ultra- long wire WEDM, tensile dual reels	A study on feeding of wire	The quality of the surface in the frequent change of direction of the wire has been significantly reduced.
Shather and Mohammed /2018 [41]	AISI 1012 steel	ANOVA, ANN	Parameters effect on MRR, Ra and wire wear ratio	Coated wireBrass wireMRR-16.1MRR-7.4Ra-1.34Ra-1.44WWR-1.8WWR-0.9
Ramamurthy and lingam/ 2019 [42]	Ti-6Al-4V	Brass wire, zinc diffused coated wire, ANOVA, Histogram	Machinability analysis	Regular brass wire gives greater MRR and zinc diffused coated wire gives low surface roughness.
Bisaria and Shandilya /2019 [43]	Nickel- titanium alloy	Optical microscope	Corner error	The corner error was mostly/largely affected due to wire in tension by the effect of wire vibration and deflection in cutting the angular profiles.

Table 4.	Review	on	wire	electrode	parameters
	100,10,00	on	wne	cicculouc	purumeters

Material surface:

Surface integrity: Condition of a workpiece surface after modification by a machining process known as surface integrity. The surface integrity of a product or workpiece changes the material properties [44].

Surface finish: It is the nature of a workpiece surfaces depending on three aspects like lay, waviness and roughness of the surface. Each machining process makes some texture on surface [45].

Surface analysis: A surface analysis method is a technique for discovering the chemical structure of thin and an extremely shallow area called the surface number atomic layer of the solid matter [46].

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings / Discovered
Year	material(s)	Equipment's		
Kapil and	Brass	Elcam software,	Surface	The suggested work said that the
Neelesh /2014		Smart CNC	integrity in	WEDM is better for fine gear
[47]		machine, SEM,	miniature spur	manufacturing.
		Micro hardness	gears	
Xu et al.2015	Ti-6Al-4V	Laser confocal	Analyze the	Friction coefficient of the workpiece
[48]		microscopy, JR3A	properties of	surface is twice lower than the previous
		dielectric fluid	workpiece	non-colored one.
Pramanik and	MMCs (with	SEM, other	Kerf	Kerf formed, surface having defects and
Littlefair /2016	varying	analysis techniques	formation, Ra	material removal rate is low due to high
[49]	particle size)		and MRR	reinforced particles.
Azam et	30CrMnSiA	Hardness testing,	Recast layer	Pulse-on time is the greatest controlling
al./2016 [50]	(HSLA steel)	Spark emission,	formation	parameter to overcome asymmetry in
		SEM, EDS,	analysis	the machining process.
		ANOVA	~ .	
Bisaria &	NiTi alloy	Differential	Cutting rate	Machined surface having many voids,
Shandilya/		scanning	average and	craters, bulges of debris, recast layer
2017 [51]		calorimetry, SEM,	Ra	and micro cracks with compounds
<u> </u>		EDS, XRD	<i>a a</i>	formation.
Sujeet and	SS 304	Meso bevel gear,	Surface	WED machined meso gears do not
Neelesh /2017		Meso helical gear	quality	require post-processing treatments.
[52]	T: CA1 4M	Transform	WEDM	Markining of contained to all in hotton
$\frac{1}{2018}$	11-0AI-4 V	rexturing process	wEDM toxtured tool	machining of textured tools is better
al./2018 [55]	grade 5		influence	tools
Mussada at	Dia staal	Sport omission	Surface	Workniege gurfage herdnage is slowly
$\frac{1}{2018}$	Die steel	spark emission	bardonability	reduced to beneath surface from the
al./2018 [34]		specificscopy, SEW	nardenability	recast layer
Privadarchini	AISI P20	Ontical	Machinability	Compared to parent metal the sub
et al $/2019$	tool steel	microscope SEM	and Surface	cooled metal has smaller deposits and
[55]		Micro-hardness	morphology	spherical globules
[55]		tester, ANOVA	morphology	spiterieur grobules.
Roy and	Nitinol-60	ANOVA RSM	Surface	Surface cracks and the recast layer
Mandal /2019	shape	SEM. Monte- Carlo	integrity	thickness was increased with the
[56]	memory	analysis.	8,	increase in flow rate: these defects are
L- *J	alloy	·····		eliminated by setting the optimal values.
Adam Khan et	Titanium	DOE software.	Surface	From the output, it can be noticed low
al./2019 [57]	based human	ANOVA. SEM.	quality	surface roughness and coarse structure
	implant	EDS	1	from high voltage and low voltages.
	materials			respectively.

Table 5. Review on workpiece electrode

Machining characteristics: In WEDM, the parameters considered are: the component geometry, workpiece materials, dielectric liquids, machining characteristics, setting of machining and related parameters. Make mild adjustments in the parameters will have an effect on the overall performance of a machining characteristics such as asymmetry, MRR and Ra features [58] & [59].

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings / Discovered
Year	material(s)	Equipment's		
Ozdemir and	GGG40	Regression analysis,	Machinability	Results show that the input machining
Ozek /2006	nodular	Optical micrograph,	investigation	parameters have a major effect on the
[60]	cast iron			efficiency of machining nodular cast iron.

Table 6. Review on machining performance

		Mitutoyo surftest 211		
Han et al./ 2007 [61]	Cr12	SEM, X-ray determination	Machining parameters influence on Ra in finish cut	From the experimentation, it can be noticed that high peak value with a short pulse duration can generate better surface roughness, which a long pulse cannot do.
Saha et al./ 2008 [62]	Composite	BPNN, SEM, ANOVA, ANN, MINITAB, EDX	Surface roughness and Cutting speed	Peak capacity and current increases lead to roughness of the workpiece.
Patil et al./ 2010 [63]	Al/SiCp composites	RSM, Buckingham's π theorem, SEM, ANOVA	Finding of MRR by dimensional analysis	The MRR decreased to almost 12% with a 10% increase in ceramic reinforcements.
Kamal et al./ 2011 [64]	Carbide material	Graph approach, Digraph, Matrix	Performance evaluation	The proposed method assists in judging the impact of different influence elements and their sub-elements on die performance.
Somashekhar et al./2012 [65]	Aluminum	Simulated annealing, SURFPAK software	Machining parameters optimization	Machining process of μ-WEDM can conspicuously improve while attaining optimum process parameters.
Ravindranadh et al./2015 [66]	Hot- pressed boron carbide	Taguchi L16 orthogonal array, Signal/Noise ratio, ANOVA, SEM	Experimental study	Because of high discharge energy, pulse on time and peak current leads to the creation of debris, craters, and micro- cracks on the workpiece surface.
Kamal /2015 [67]	WC-5.3% Co composite	MINITTAB 15, ANOVA, signal-to- noise	Multi-pass cutting operation study	Multi-pass cutting process of materials, to achieve appreciative machining performance.
Samanta et al./2016 [68]	Die steel	Volume removal rate, Specific energy consumption, Regression analysis	Different control strategies influence by job height varying	This study is very useful in finding the proper control strategy during machining of varying job heights and understanding the WEDM gap characteristics.
Shakeri et al./2016 [69]	Cementatio n alloy steel 1.7131	ANN, BPNN, Regression model	MRR and Ra	A neural network has a better accuracy with a more robust than using the regression model.
Anjali et al./2017 [70]	Inconel- 718 and Ti64Al4V	Taguchi design and ANOVA	Optimize the process energy consumption	Almost 67% of the energy saved.
Vikram et al./2017 [71]	AISI D2 steel	Taguchi technique, RSM, ANOVA, Signal-to-noise ratio	Parameters experimental investigation	The major significant parameters that change the machining process are the pulse on and off times and the servo voltage.
Conde et al./2018 [72]	AISI D2 tool steel	ANN, ELRNN, SA	Predict the accuracy of components	The proposed system is very efficient where the deformation of wire is high.
Smirnov et al./2018 [73]	3Y-TZP/Ta ceramic- metal composites	SEM, SPS, XRD, Universal testing machine	Machining characteristics, electrical properties and bending study	The results reveal that the machined workpieces have a better accuracy also without change in mechanical strength.
Mouralova et al./2018 [74]	X210Cr12 alloy steel	SEM, 3D noncontact profilometer, 3D opto-digital microscope, EDX	Cutting direction influence on the occurrence of cracks in semi product	Avoid the components production that will only have a small limited lifetime.

Kumar et al./2018 [75]	Aluminum metal matrix composite	Acoustic emission	Machining performance monitoring	Amplitude and energy during machining of the MMC show passing of the cutting wire through various phases of the workpiece.
Pramanik et al./2019 [76]	Titanium alloy	Taguchi DoE, ANOVA, CMM	Dimensional accuracy	Dimensional accuracy mainly depends on flushing pressure and wire tension.
Ishfaq and Ahmed /2019 [77]	Mild steel and Stainless steel	Taguchi DoE, CMM, ANOVA, SEM	Cut quality issues and MRR	Mild steel layer thickness plays a major role in identifying the MRR.

Hybrid WEDM: Hybrid WEDM is also known as abrasive WEDM process that has an embedded wire with electrically non-conducting abrasives. Removal of material is similar to that of the general WEDM process, but the abrasive action improves electrical erosion rate through the removal of recast/molten workpiece material. Almost no recast-layered products were produced from this processing. The main problem of abrasives is the graphitization because of which the performance highly decreases [78].

Table	7.	Review	on	hybrid	machining
1 auto	<i>'</i> •	ICC VIC W	on	nyonu	machining

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings / Discovered
Year	material(s)	Equipment's		
Xiaoyu and	Silicon ingot	3D microscope,	Comparison of	Hybrid machining efficiency is 160%
Shujuan/ 2018	_	SEM, EDX, contact	WEDM, hybrid	higher than the WEDM efficiency and
[79]		angle, EDS	and abrasive	6% greater than the abrasive wire
			wire saw's	saw.
Sanjay et al./	HCHCr D2	Portable X-ray	Effect of hybrid	Compared to vibration conditions, the
2018 [80]	tool steel	residual stress,	WEDM	residual stresses are low in without
		Ultrasonic	conditions	vibration conditions.
		generator, ANOVA		

Pulse: In WEDM, electrical power needed to result in spark and removal of metal in workpiece principally happens due to the electrical power of the spark known as a pulse. Pulses are four classes: arc, open circuit, short circuit and normal discharge [81].

Table 8. Review on pulses

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings / Discovered
Year	material(s)	Equipment's		
Kai et al./2018	1.4571	High speed	Automated	Breakdown fields only occur when
[82]	stainless	WEDM, USB-	analysis of pulse	excessive gas formed due to
	steel	Oscilloscope,	types	passivation.
Qiu et al./2019	P type	Proportional-	Discharge	Proposed continuous discharge
[83]	monocrystall	integral-derivative	probability	probability power source gives stable
	ine silicon			and automatic semiconductor
				processing

Kerf: Kerf is an effective width of cut in the WEDM processes. Kerfs of the machined slots are mainly dependent on regulate parameters, such as the electrode feed rate, input capacitance, open voltage, air injection pressure, between the two pulses time, pulse current ignition, wire speed and tensions. Increasing in Kerf width by increasing in pulse on time and decreasing in pulse off time caused by higher discharge power [84] & [85].

Author(s)/ Year	Workpiece material(s)	Technique(s)/ Equipment's	Objective(s)	Findings/ Discovered
Suhas et al./ 2017 [86]	p-type polycrystalli ne silicon ingot	Response surface methodology, ANOVA, SEM	Slicing rate maximize and minimizing the loss of kerf	A higher practical 150µm of wafer thickness can got at 1.05 mm/min of great slicing rate and with 121µm of minimal kerf loss.

Table 9. Review on width of cut (Kerf)

Okamoto et al./2018 [87] Monocrystal line silicon	Multi-WEDM slicing of ingot with circular section	Kerf width control	The sliced wafer almost uniform thickness can be obtained by properly controlling the feed rate of the workpiece depending on the cutting width.
---	--	-----------------------	--

Dielectric fluid: In most of the WEDM processes, a dielectric fluid submerges the workpiece. The dielectric liquid major features are to ensure the deionization of small space between the electrodes, to move out the removed metal particles at some point of erosion from the working region and to maintain the working area temperatures.

Deionized water has low conductivity. Researchers changed the regular dielectric fluid with steam water mist, pure water with sodium pyrophosphate powder and Nano powder mixed EDM oil etc., [88] & [89].

Author(s)/ Year	Workpiece material(s)	Technique(s)/ Equipment's	Objective(s)	Findings/ Discovered
Liu et al./ 2017 [90]	Cr12	Pulse discharge probability, Field- programmable gate array, SEM, EDS, XRD	Lifespan detection of dielectric fluid	Reduction in the chip removal efficiency of the dielectric fluid is the central cause of the inter-electrode discharge state deterioration, finally causing decreases in cutting efficiency and pulse discharge probability.
Ebisu et al./ 2018 [91]	-	CFD, Lagrangian method, ANSYS	Jet flushing influence on accuracy of corner shapes	While corner machining due to pressure, dielectric flow around the wire by jet flushing changes cutting direction to the corner.

Table 10. Review on dielectric liquid

Ultrasonic assisted WEDM:

1. WEDM assisted with ultrasonic vibration given to wire electrode ultrasonically activates the wire with a frequency and vibration amplitude through ultrasonic activator during machining process [92] & [93].

2. WEDM assisted with ultrasonic vibration given to workpiece as shown in figure 5; ultrasonically activated the workpiece with a frequency and vibration amplitude through ultrasonic activator during the machining process [94] & [95].

3. WEDM assisted with ultrasonic vibration to dielectric medium ultrasonically activates the fluid takes place. Because of the erosive motion of some particles and debris in dielectric fluid will remove with the influence of an ultrasonic zone [96].

Author(s)/ Year	Workpiece material(s)	Technique(s)/ Equipment's	Objective(s)	Findings/ Discovered
Unune and Harlal /2017 [95]	Inconel 718	High-speed diamond cutter, vibration device, FESEM, Digital Microscope	Improve machining rate	Increase in machining rate Improves the overall performance of the process with vibration assistance conditions.
Wang et al./ 2018 [96]	TiNi-01 shape memory alloy	Ultrasonic vibration, Magnetic field, Taguchi technique, Acoustic emission	Mechanism of complex assisted WEDM system	Assisted WEDM can improve the pulse discharge states, surface quality and machining efficiency simultaneously, reducing Ra.

Table 11. Review on ultrasonic assisted machining

Discharging systems: More than 75 decades ago, the Russian scientists Natalya Lazarenko and Boris investigated the impact of electrical discharges on the removal of metal from the workpiece. However, the removal mechanism and the gap discharge characteristics were not clearly understood because of the randomness of the discharge position and the complexity of the WEDM process [97].

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings/ Discovered
Year	material(s)	Equipment's		
Yan et al./ 2016 [98]	SKD 11 tool steel	Mechatronic system approach, Pulse train analysis	Part straightness	The suggested mechatronic system can further stabilize the wire, due to the fact that the rectification of the part in the WEDM process improves by 61% after a rough cut.
Liu et al./2017 [99]	Cr12 die steel	Discharge probability detection	Process efficiency increasing of HSWEDM	Suggested servo system can improve performance and accuracy of servo control and reduce the workpiece surface burning under large cutting energy.

Table 12. Review on discharging systems

Dry WEDM: As electrolytic power flows through dielectric water, it creates corrosion in WEDM process.

To eliminate the corrosion and geometrical errors, liquid dielectric is replaced by gaseous medium, known as dry WEDM [100] & [101].

Author(s)/	Workpiece	Technique(s)/	Objective(s)	Findings/ Discovered
Year	material(s)	Equipment's	-	-
Khatri et al./	Ti-6Al-4 V	Rapid prototyping	Concentric flow dielectric	From the experiments it results,
2017 [102]		machine,	dry WEDM agitated with	that overall performance is
		Ultrasonic horn	ultrasonically	better compared to conventional

Table 13. Review on WEDM with gaseous medium as a dielectric medium

3. SUMMARY OF LITERATURE SURVEY

one

Figure 2: WEDM Research Inclination

Figure 2 shows the summary of the literature survey. Most authors concentrated on influence of the parameters in the process, modeling of machining characteristics and evaluation of product quality and machining efficiency.

For better surface finishing, precision machining, close tolerances and economic machining of complexed parts, the WEDM will be used.

Figure 3: Exponential Growth of WEDEM

Because of the above reasons from figure 3: the WEDM has become commonplace in most of the industries. The techniques used to optimize machining conditions to get good surface roughness are the following: design of experiment, hybrid, fuzzy logic, gray rational analysis, artificial intelligence etc. Presently, WEDM is widely used for machining of precision parts with accuracy; high productivity, surface finish and tolerances are required. The understanding of the WEDM process parameters and their relation on the performance parameters are still limited and yet to be studied.

4. RESEARCH GAPS AND FUTURE SCOPES

- 1. Experimentally study on newly developed Materials by changing the process parameters, optimization of parameters and using different wires for cutting material to address the performance parameters for effective use of precision WEDM machining.
- 2. Wire lag effect by changing the parameters and Thermal distribution effects, Concavity and Tolerance analysis of machined parts while cutting the material by using different wires.
- 3. Analysis on Dry WEDM by using different gases, changing the gas supply nozzle position and correlate the effect of different gases on different wires while cutting.
- 4. Work on assisted WEDM like Ultrasonic vibration given to workpiece, wire or dielectric fluid and combined with Magnetic field, Auxiliary electrode, Coated materials etc.,
- 5. Study on Hybrid WEDM by using abrasives coated wire as electrode to investigate surface characteristics, MRR, thermal distribution of abrasives on workpiece, wire rupture etc.,
- 6. Adopting the Mechatronic system approach like discharge pulse probability, adaptive control systems etc., to get better cutting speed with good accuracy.
- 7. Use different dielectric fluids like mix-deionized water with any liquid, powder, any subsequent fluid and changing the supply system like workpiece dipped in to dielectric or nozzle supply while cutting different materials to find better one.
- 8. Changing the electrode wire with different diameters, different materials with coated also and varying its tension, varying length of the wire guides while cutting to find suitable one.

- 9. Adopting artificial intelligence into WEDM to make better machining than at present.
- 10. The applications of new techniques for Modeling and Optimization of WEDM like TLBO, AHP, TOPSIS, BWM, COCOSO etc., may get right decision of process parameters.

5. CONCLUSIONS

WEDM is an unconventional machining method that is generally used to cut variety of shapes with good accuracy. Low cutting speed is a drawback of the technique compared to the other cutting techniques. However, the primary goal of the WEDM method is to obtain accuracy with efficiency in cutting. Hence, several researchers have made different studies to enhance the performances in WEDM technique. It was observed that the wire condition has more significance on the performance of machining. This performance concerns an accuracy of the cutting. Good wire condition need to be maintained by monitoring machining parameters such as peak current, pulse on time, open circuit voltage, wire feed rate, dielectric flow rate etc. Hence, it is required to investigate the effect of the process parameters on machining characteristics in order to select the optimum process parameters for high performance in machining.

The most important goal of this article is to spotlight predominant research observations on WEDM. Precursory lookup research targeted on procedure modeling, dielectric fluid, setting the best process parameters, workpiece/tool electrode materials etc. The modern evaluation review stated that WEDM modeling procedure was regarded as key goal.

REFERENCES

- K. Kumar and S. Agarwal, Multi-objective parametric optimization on machining with wire electric discharge machining, *Int. J. Adv. Manuf. Technol.*, vol. 62, no. 5–8, pp. 617–633, 2012.
- [2] K. Rajmohan and A. S. Kumar, Experimental investigation and prediction of optimum process parameters of micro-wire-cut EDM of 2205 DSS, *Int. J. Adv. Manuf. Technol.*, vol. 93, no. 1–4, pp. 187–201, 2017.
- [3] Y. Huang, W. Ming, J. Guo, Z. Zhang, G. Liu, M. Li, and G. Zhang, Optimization of cutting conditions of YG15 on rough and finish cutting in WEDM based on statistical analyses, *Int. J. Adv. Manuf. Technol.*, vol. 69, no. 5–8, pp. 993–1008, 2013.
- [4] R. T. Yang, C. J. Tzeng, Y. K. Yang, and M. H. Hsieh, Optimization of wire electrical discharge machining process parameters for cutting tungsten, *Int. J. Adv. Manuf. Technol.*, vol. 60, no. 1–4, pp. 135–147, 2012.
- [5] P. H. Yu, Y. X. Lin, H. K. Lee, C. C. Mai and B. H. Yan, Improvement of wire electrical discharge machining efficiency in machining polycrystalline silicon with auxiliary-pulse voltage supply, *Int. J. Adv. Manuf. Technol.*, vol. 57, no. 9–12, pp. 991–1001, 2011.
- [6] K. Mouralova, J. Kovar, L. Klakurkova, T. Prokes, and M. Horynova, Comparison of morphology and topography of surfaces of WEDM machined structural materials, *Meas. J. Int. Meas. Confed.*, vol. 104, pp. 12–20, 2017.
- [7] S. Habib, Optimization of machining parameters and wire vibration in wire electrical discharge machining process, *Mech. Adv. Mater. Mod. Process.*, vol. **3**, no. 1, p. 3, 2017.
- [8] R. Ramakrishnan and L. Karunamoorthy, Multi response optimization of wire EDM operations using robust design of experiments, *Int. J. Adv. Manuf. Technol.*, vol. 29, no. 1–2, pp. 105–112, 2006.
- [9] S. S. Mahapatra and A. Patnaik, Optimization of wire electrical discharge machining (WEDM) process parameters using Taguchi method, *Int. J. Adv. Manuf. Technol.*, vol. 34, no. 9–10, pp. 911–925, 2007.
- [10] S. K. Gauri and S. Chakraborty, Multi-response optimisation of WEDM process using principal component analysis, *Int. J. Adv. Manuf. Technol.*, vol. 41, no. 7–8, pp. 741–748, 2009.
- [11] S. K. Gauri and S. Chakraborty, A study on the performance of some multi-response optimisation methods for WEDM processes, *Int. J. Adv. Manuf. Technol.*, vol. 49, no. 1–4, pp. 155–166, 2010.
- [12] P. Fonda, K. Katahira, Y. Kobayashi, and K. Yamazaki, WEDM condition parameter optimization for PCD microtool geometry fabrication process and quality improvement, *Int. J. Adv. Manuf. Technol.*, vol. 63, no. 9–12, pp. 1011–1019, 2012.
- [13] G. Rajyalakshmi and P. Venkata Ramaiah, Multiple process parameter optimization of wire electrical

discharge machining on Inconel 825 using Taguchi grey relational analysis, *Int. J. Adv. Manuf. Technol.*, vol. **69**, no. 5–8, pp. 1249–1262, 2013.

- [14] T. B. Rao and A. G. Krishna, Selection of optimal process parameters in WEDM while machining AI7075/SiCp metal matrix composites, *Int. J. Adv. Manuf. Technol.*, vol. 73, no. 1–4, pp. 299–314, 2014.
- [15] V. Aggarwal, S. S. Khangura, and R. K. Garg, Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology, *Int. J. Adv. Manuf. Technol.*, vol. 79, no. 1–4, pp. 31–47, 2015.
- [16] W. Ming, J. Hou, Z. Zhang, H. Huang, Z. Xu, G. Zhang, and Y. Huang, Integrated ANN-LWPA for cutting parameter optimization in WEDM, *Int. J. Adv. Manuf. Technol.*, vol. 84, no. 5–8, pp. 1277–1294, 2016.
- [17] J. A. Abbasi, M. Jahanzaib, M. Azam, S. Hussain, A. Wasim, and M. Abbas, Effects of wire-Cut EDM process parameters on surface roughness of HSLA steel, *Int. J. Adv. Manuf. Technol.*, vol. 91, no. 5–8, pp. 1867– 1878, 2017.
- [18] S. Sivanaga Malleswara Rao, K. Venkata Rao, K. Hemachandra Reddy, and C. V. S. Parameswara Rao, Prediction and optimization of process parameters in wire cut electric discharge machining for High-speed steel (HSS), *Int. J. Comput. Appl.*, vol. **39**, no. 3, pp. 140–147, 2017.
- [19] H. Bisaria and P. Shandilya, Experimental investigation on wire electric discharge machining (WEDM) of Nimonic C-263 superalloy, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2018.1532589, pp. 1–10, 2018.
- [20] A. Dey and K. M. Pandey, Selection of optimal processing condition during WEDM of compocasted AA6061
 / cenosphere AMCs based on grey-based hybrid approach, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2018.1453154, pp. 1–10, 2018.
- [21] S. K. Shihab, Optimization of WEDM Process Parameters for Machining of Friction-Stir-Welded 5754 Aluminum Alloy Using Box – Behnken Design of RSM, *Arab. J. Sci. Eng.*, 2018.
- [22] S. S. Nain, D. Garg, and S. Kumar, Performance evaluation of the WEDM process of aeronautics super alloy, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2018.1476761, pp. 1–16, 2018.
- [23] D. Pramanik, A. S. Kuar, and D. Bose, Effects of Wire EDM Machining Variables on Material Removal Rate and Surface Roughness of Al 6061 Alloy. Springer Singapore, 2019.
- [24] S. K. Sahoo, S. S. Naik, and J. Rana, Experimental Analysis of Wire EDM Process Parameters for Micromachining of High Carbon High Chromium Steel by Using MOORA Technique. Springer International Publishing, 2019.
- [25] S. Ezeddini, M. Boujelbene, E. Bayraktar, and S. Ben Salem, Recycled Ti-17 Based Composite Design; Optimization Process Parameters in Wire Cut Electrical Discharge Machining (WEDM), vol. 5, 2019.
- [26] I. Maher, A. A. D. Sarhan, and M. Hamdi, Review of improvements in wire electrode properties for longer working time and utilization in wire EDM machining, *Int. J. Adv. Manuf. Technol.*, vol. 76, no. 1–4, pp. 329–351, 2015.
- [27] S. Habib and A. Okada, Study on the movement of wire electrode during fine wire electrical discharge machining process, J. Mater. Process. Technol., vol. 227, pp. 147–152, 2016.
- [28] S. Habib and A. Okada, Experimental investigation on wire vibration during fine wire electrical discharge machining process, Int. J. Adv. Manuf. Technol., vol. 84, no. 9–12, pp. 2265–2276, 2016.
- [29] A. B. Puri and B. Bhattacharyya, An analysis and optimisation of the geometrical inaccuracy due to wire lag phenomenon in WEDM, *Int. J. Mach. Tools Manuf.*, vol. 43, no. 2, pp. 151–159, 2003.
- [30] A. Kumar, V. Kumar, and J. Kumar, Parametric Effect on Wire Breakage Frequency and Surface Topography in WEDM of Pure Titanium, J. Mech. Eng. Technol., vol. 1, no. 2, pp. 51–56, 2013.
- [31] P. Shandilya, P. K. Jain, and N. K. Jain, On wire breakage and microstructure in WEDC of SiCp/6061 aluminum metal matrix composites, *Int. J. Adv. Manuf. Technol.*, vol. 61, no. 9–12, pp. 1199–1207, 2012.
- [32] W. Shi, Z. Liu, M. Qiu, Z. Tian, and H. Yan, Simulation and experimental study of wire tension in high-speed wire electrical discharge machining, *J. Mater. Process. Technol.*, vol. **229**, pp. 722–728, 2016.
- [33] S. Wentai, L. Zhidong, Q. Mingbong, and T. Zongjun, Wire tension in high-speed wire electrical discharge machining, *Int. J. Adv. Manuf. Technol.*, vol. 82, no. 1–4, pp. 379–389, 2016.
- [34] L. Lingling, L. Zhidong, L. Xiefeng, and L. Mingming, Non-even wire tension in high-speed wire electricaldischarge machining, *Int. J. Adv. Manuf. Technol.*, vol. 78, no. 1–4, pp. 503–510, 2015.
- [35] A. B. Puri and B. Bhattacharyya, Modelling and analysis of the wire-tool vibration in wire-cut EDM, J. Mater. Process. Technol., vol. 141, no. 3, pp. 295–301, 2003.
- [36] A. Okada, Y. Uno, M. Nakazawa, and T. Yamauchi, Evaluations of spark distribution and wire vibration in wire EDM by high-speed observation, *CIRP Ann. - Manuf. Technol.*, vol. 59, no. 1, pp. 231–234, 2010.
- [37] A. Okada, T. Konishi, Y. Okamoto, and H. Kurihara, Wire breakage and deflection caused by nozzle jet flushing in wire EDM, *CIRP Ann. - Manuf. Technol.*, vol. 64, no. 1, pp. 233–236, 2015.
- [38] D. V. S. S. S. V Prasad and A. G. Krishna, Empirical modeling and optimization of kerf and wire wear ratio

in wire electrical discharge machining, Int. J. Adv. Manuf. Technol., vol. 77, no. 1-4, pp. 427-441, 2015.

- [39] A. Conde, J. A. Sanchez, S. Plaza, and J. M. Ramos, On the Influence of Wire-lag on the WEDM of Lowradius Free-form Geometries, *Proceedia CIRP*, vol. 42, no. Isem Xviii, pp. 274–279, 2016.
- [40] A. Pramanik and A. K. Basak, Degradation of wire electrode during electrical discharge machining of metal matrix composites, *Wear*, vol. 346–347, pp. 124–131, 2016.
- [41] W. Qin, L. Zhidong, S. Lida, Y. Weidong, and Z. Bin, Test research on wire deflection detection of a diamond wire saw, Int. J. Adv. Manuf. Technol., vol. 91, no. 1–4, pp. 1347–1354, 2017.
- [42] H. Ciwen, Z. Jinsheng, and L. Jianyong, Ultra-long wire reciprocated-WEDM with dual tensile reels winded, *Procedia CIRP*, vol. 68, no. April, pp. 115–119, 2018.
- [43] S. K. Shather and T. Mohammed, Investigate WEDM Process Parameters on Wire Wear Ratio, Material Removal Rate and Surface Roughness of Steel 1012 AISI Investigate WEDM Process Parameters on, vol. 36, no. March, pp. 256–261, 2018.
- [44] A. Ramamurthy and T. Muthuramalingam, *Analysis of Machinability on WEDM Processed Titanium Alloy with Coated Electrodes*, Springer Singapore, 2019.
- [45] H. Bisaria and P. Shandilya, Processing of curved profiles on Ni-rich nickel titanium shape memory alloy by WEDM, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2019.1594264, pp. 1–9, 2019.
- [46] A. Mandal, A. R. Dixit, S. Chattopadhyaya, A. Paramanik, S. Hloch, and G. Królczyk, Improvement of surface integrity of Nimonic C 263 super alloy produced by WEDM through various post-processing techniques, *Int. J. Adv. Manuf. Technol.*, vol. 93, no. 1–4, pp. 433–443, 2017.
- [47] C. Kuo, H. Kao, and H. Wang, Novel design and characterisation of surface modification in wire electrical discharge machining using assisting electrodes, J. Mater. Process. Technol., vol. 244, pp. 136–149, 2017.
- [48] K. Mouralova, J. Kovar, L. Klakurkova, P. Blazik, M. Kalivoda, and P. Kousal, Analysis of surface and subsurface layers after WEDM for Ti-6Al-4V with heat treatment, *Meas. J. Int. Meas. Confed.*, vol. 116, no. April 2017, pp. 556–564, 2018.
- [49] K. Gupta and N. K. Jain, On surface integrity of miniature spur gears manufactured by wire electrical discharge machining, Int. J. Adv. Manuf. Technol., vol. 72, no. 9–12, pp. 1735–1745, 2014.
- [50] J. Xu, L. Zhang, H. Yu, Z. J. Yu, and J. Lou, Antifriction performance of Ti-6Al-4V alloy-colored surface by using WEDM-HS press, *Int. J. Adv. Manuf. Technol.*, vol. 77, no. 1–4, pp. 729–734, 2015.
- [51] A. Pramanik and G. Littlefair, Wire EDM Mechanism of MMCs with the Variation of Reinforced Particle Size, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2015.1117621, pp. 1–32, 2016.
- [52] M. Azam, M. Jahanzaib, J. A. Abbasi, M. Abbas, A. Wasim, and S. Hussain, Parametric analysis of recast layer formation in wire-cut EDM of HSLA steel, *Int. J. Adv. Manuf. Technol.*, vol. 87, pp. 713–722, 2016.
- [53] H. Bisaria and P. Shandilya, Experimental studies on electrical discharge wire cutting of ni-rich niti shape memory alloy Experimental studies on electrical discharge wire cutting of Ni-rich NiTi shape memory alloy, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2017.1388518, pp. 1–35, 2017.
- [54] S. K. Chaubey and N. K. Jain, Investigations on surface quality of WEDM- manufactured meso bevel and helical gears, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2017.1415440, pp. 1–10, 2017.
- [55] N. Manikandan, D. Arulkirubakaran, D. Palanisamy, and R. Raju, Influence of wire-EDM textured conventional tungsten carbide inserts in machining of aerospace materials (Ti – 6Al – 4V alloy), *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2018.1544712, pp. 1–9, 2018.
- [56] E. K. Mussada, C. C. Hua, and A. K. Prasada, Surface hardenability studies of the die steel machined by WEDM, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2018.1476695, pp. 1–6, 2018.
- [57] M. Priyadarshini, C. K. Biswas, and A. Behera, Machining of sub-cooled low carbon tool steel by, *Mater. Manuf. Process.*, no. DOI: 10.1080/10426914.2019.1662035, pp. 1–10, 2019.
- [58] B. K. Roy and A. Mandal, Surface integrity analysis of Nitinol-60 shape memory alloy in WEDM, *Mater. Manuf. Process.*, vol. 34, no. 10, pp. 1091–1102, 2019.
- [59] Khan M Adam, Siva kumar and B. Muralidharan, Processing of titanium-based human implant material using wire EDM, *Mater. Manuf. Process.*, vol. 34, no. 6, pp. 695–700, 2019.
- [60] D. Satishkumar, M. Kanthababu, V. Vajjiravelu, R. Anburaj, N. T. Sundarrajan, and H. Arul, Investigation of wire electrical discharge machining characteristics of Al6063/SiCp composites, *Int. J. Adv. Manuf. Technol.*, vol. 56, no. 9–12, pp. 975–986, 2011.
- [61] K. Jangra, S. Grover, F. T. S. Chan, and A. Aggarwal, Digraph and matrix method to evaluate the machinability of tungsten carbide composite with wire EDM, *Int. J. Adv. Manuf. Technol.*, vol. 56, no. 9–12, pp. 959– 974, 2011.
- [62] N. Özdemir and C. Özek, An investigation on machinability of nodular cast iron by WEDM, Int. J. Adv. Manuf. Technol., vol. 28, no. 9, pp. 869–872, 2006.
- [63] F. Han, J. Jiang, and D. Yu, Influence of machining parameters on surface roughness in finish cut of WEDM, Int. J. Adv. Manuf. Technol., vol. 34, no. 5–6, pp. 538–546, 2007.

- [64] P. Saha, A. Singha, S. K. Pal, and P. Saha, Soft computing models based prediction of cutting speed and surface roughness in wire electro-discharge machining of tungsten carbide cobalt composite, *Int. J. Adv. Manuf. Technol.*, vol. **39**, no. 1–2, pp. 74–84, 2008.
- [65] N. G. Patil and P. K. Brahmankar, Determination of material removal rate in wire electro-discharge machining of metal matrix composites using dimensional analysis, *Int. J. Adv. Manuf. Technol.*, vol. 51, no. 5–8, pp. 599–610, 2010.
- [66] K. Jangra, S. Grover, and A. Aggarwal, Digraph and matrix method for the performance evaluation of carbide compacting die manufactured by wire EDM, *Int. J. Adv. Manuf. Technol.*, vol. 54, no. 5–8, pp. 579–591, 2011.
- [67] K. P. Somashekhar, J. Mathew, and N. Ramachandran, A feasibility approach by simulated annealing on optimization of micro-wire electric discharge machining parameters, *Int. J. Adv. Manuf. Technol.*, vol. 61, no. 9–12, pp. 1209–1213, 2012.
- [68] R. Bobbili, V. Madhu, and A. K. Gogia, An experimental investigation of wire electrical discharge machining of hot-pressed boron carbide, *Def. Technol.*, vol. 11, no. 4, pp. 344–349, 2015.
- [69] K. K. Jangra, An experimental study for multi-pass cutting operation in wire electrical discharge machining of WC-5.3% Co composite, Int. J. Adv. Manuf. Technol., vol. 76, no. 5–8, pp. 971–982, 2015.
- [70] A. Samanta, M. Sekh, and S. Sarkar, Influence of different control strategies in wire electrical discharge machining of varying height job, *Int. J. Adv. Manuf. Technol.*, 2016.
- [71] S. Shakeri, A. Ghassemi, M. Hassani, and A. Hajian, Investigation of material removal rate and surface roughness in wire electrical discharge machining process for cementation alloy steel using artificial neural network, *Int. J. Adv. Manuf. Technol.*, vol. 82, no. 1–4, pp. 549–557, 2016.
- [72] J. R. Gamage, A. K. M. DeSilva, D. Chantzis, and M. Antar, Sustainable machining: Process energy optimisation of wire electrodischarge machining of Inconel and titanium superalloys, *J. Clean. Prod.*, vol. 164, pp. 642–651, 2017.
- [73] V. Singh, R. Bhandari, and V. K. Yadav, An experimental investigation on machining parameters of AISI D2 steel using WEDM, Int. J. Adv. Manuf. Technol., vol. 93, no. 1–4, pp. 203–214, 2017.
- [74] A. Conde, A. Arriandiaga, J. A. Sanchez, E. Portillo, S. Plaza, and I. Cabanes, High-accuracy wire electrical discharge machining using artificial neural networks and optimization techniques, *Robot. Comput. Integr. Manuf.*, vol. 49, no. April 2017, pp. 24–38, 2018.
- [75] A. Smirnov, P. Peretyagin, and J. F. Bartolomé, Wire electrical discharge machining of 3Y-TZP/Ta ceramicmetal composites, J. Alloys Compd., vol. 739, pp. 62–68, 2018.
- [76] K. Mouralova, L. Klakurkova, R. Matousek, T. Prokes, R. Hrdy, and V. Kana, Influence of the cut direction through the semi-finished product on the occurrence of cracks for X210Cr12 steel using WEDM, *Arch. Civ. Mech. Eng.*, vol. 18, no. 4, pp. 1318–1331, 2018.
- [77] S. S. Kumar, M. Uthayakumar, S. T. Kumaran, P. Parameswaran, T. K. Haneef, C. K. Mukhopadhyay, and B. P. C. Rao, Performance Monitoring of WEDM Using Online Acoustic Emission Technique, *Silicon*, 2018.
- [78] A. Pramanik, M. N. Islam, A. K. Basak, Y. Dong, G. Littlefair, C. Prakash, M. N. Islam, A. K. Basak, Y. Dong, G. Littlefair, and C. Prakash, Optimizing dimensional accuracy of titanium alloy features produced by wire electrical discharge machining, *Mater. Manuf. Process.*, vol. 34, no. 10, pp. 1083–1090, 2019.
- [79] K. Ishfaq and N. Ahmed, WEDM of layered composite : analyzing material removal and cut quality issues, *Mater. Manuf. Process.*, vol. 34, no. 10, pp. 1073–1082, 2019.
- [80] S. P. Rajagopal, V. Ganesh, A. V Lanjewar, and M. R. Sankar, Past and Current Status of Hybrid Electric Discharge Machining (H-EDM) Processes, *Int. J. Adv. Mater. Manuf. Characterisation*, vol. 3, no. 1, pp. 111–118, 2013.
- [81] X. Wu and S. Li, Experimental investigations of a hybrid machining combining wire electrical discharge machining (WEDM) and fixed abrasive wire saw, *Int. J. Adv. Manuf. Technol.*, vol. 95, pp. 2613–2623, 2018.
- [82] S. Kumar and S. G. R. S. Walia, Effect of hybrid wire EDM conditions on generation of residual stresses in machining of HCHCr D2 tool steel under ultrasonic vibration, *Int. J. Interact. Des. Manuf.*, 2018.
- [83] S. W. Edm and K. Oßwald, Automated Analysis of Pulse Types in High Automated Analysis of Pulse Types in High Speed Wire EDM, *Proceedia CIRP*, vol. 68, no. January, pp. 796–801, 2018.
- [84] L. Liu, M. Qiu, C. Shao, M. Zhang, and J. Zhao, Research on wire-cut electrical discharge machining constant discharge probability pulse power source for silicon crystals, pp. 1815–1824, 2019.
- [85] K. D. Mohapatra and S. K. Sahoo, A multi objective optimization of gear cutting in WEDM of Inconel 718 using TOPSIS method, *Decis. Sci. Lett.*, vol. 7, pp. 157–170, 2018.
- [86] K. T. Hoang and S. H. Yang, Kerf analysis and control in dry micro-wire electrical discharge machining, Int. J. Adv. Manuf. Technol., vol. 78, no. 9–12, pp. 1803–1812, 2015.
- [87] K. Joshi, A. Ananya, U. Bhandarkar, and S. S. Joshi, Ultra thin silicon wafer slicing using wire-EDM for solar

cell application, Mater. Des., vol. 124, pp. 158–170, 2017.

- [88] Y. Okamoto, T. Ikeda, H. Kurihara, A. Okada, and M. Kido, Control of Kerf Width in Multi-wire EDM Slicing of Semiconductors with Circular Section, *Proceedia CIRP*, vol. 68, no. April, pp. 100–103, 2018.
- [89] J. Wang, T. Wang, H. Wu, and F. Qiu, Experimental study on high-speed WEDM finishing in steam water mist, Int. J. Adv. Manuf. Technol., vol. 91, no. 9–12, pp. 3285–3297, 2017.
- [90] Z. Yueqin, L. Zhidong, P. Hongwei, and Q. Mingbo, Dielectric fluid lifespan detection based on pulse discharge probability in wire electrical discharge machining, *Int. J. Adv. Manuf. Technol.*, vol. 92, no. 1–4, pp. 1481–1491, 2017.
- [91] T. Ebisu, A. Kawata, Y. Okamoto, A. Okada, and H. Kurihara, Influence of jet flushing on corner shape accuracy in wire EDM, *Procedia CIRP*, vol. 68, no. April 2017, pp. 104–108, 2018.
- [92] N. Viorel-Mihai, Effect of wire electrode's ultrasonic vibration on erosive capacity to W-EDM machines, Int. J. Adv. Manuf. Technol., vol. 88, no. 1–4, pp. 425–441, 2017.
- [93] A. Mohammadi, A. F. Tehrani, and A. Abdullah, Investigation on the effects of ultrasonic vibration on material removal rate and surface roughness in wire electrical discharge turning, *Int. J. Adv. Manuf. Technol.*, vol. 70, no. 5–8, pp. 1235–1246, 2014.
- [94] V. M. Nani, The ultrasound effect on technological parameters for increase in performances of W-EDM machines, Int. J. Adv. Manuf. Technol., vol. 88, no. 1–4, pp. 519–528, 2017.
- [95] D. R. Unune and H. S. Mali, Experimental investigation on low-frequency vibration assisted micro-WEDM of Inconel 718, *Eng. Sci. Technol. an Int. J.*, vol. 20, no. 1, pp. 222–231, 2017.
- [96] Y. Wang, Q. Wang, Z. Ding, D. He, W. Xiong, S. Chen, and Z. Li, Study on the machanism and key techniques of ultrasonic vibration and magnetic field complex assisted WEDM-LS thick shape memory alloy workpiece, J. Mater. Process. Tech., vol. https://do, 2018.
- [97] C. Li, J. Bai, J. Ding, and Y. Fan, Gap current voltage characteristics of energy-saving pulse power generator for wire EDM, *Int. J. Adv. Manuf. Technol.*, vol. 77, no. 5–8, pp. 1525–1531, 2015.
- [98] M. T. Yan, P. W. Wang, and J. C. Lai, Improvement of part straightness accuracy in rough cutting of wire EDM through a mechatronic system design, *Int. J. Adv. Manuf. Technol.*, vol. 84, no. 9–12, pp. 2623–2635, 2016.
- [99] X. He, Z. Liu, H. Pan, M. Qiu, and Y. Zhang, Increasing process efficiency of HSWEDM based on discharge probability detection, *Int. J. Adv. Manuf. Technol.*, vol. 93, no. 9–12, pp. 3647–3654, 2017.
- [100] B. C. Khatri and P. P. Rathod, Investigations on the performance of concentric flow dry wire electric discharge machining (WEDM) for thin sheets of titanium alloy, *Int. J. Adv. Manuf. Technol.*, vol. 92, no. 5–8, pp. 1945–1954, 2017.
- [101] B. Azhiri, R. Teimouri, M. Ghasemi Baboly, and Z. Leseman, Application of Taguchi, ANFIS and grey relational analysis for studying, modeling and optimization of wire EDM process while using gaseous media, *Int. J. Adv. Manuf. Technol.*, vol. 71, no. 1–4, pp. 279–295, 2014.
- [102] B. C. Khatri, P. P. Rathod, J. B. Valaki, C. D. Sankhavara, B. C. Khatri, P. P. Rathod, J. B. Valaki, and C. D. Sankhavara, Insights into process innovation through ultrasonically agitated concentric flow dielectric streams for dry wire electric discharge machining, *Mater. Manuf. Process.*, DOI: 10.1080/10426914.2017.1415442, pp. 1–7, 2017.