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Abstract: In the present paper, the meaning of the structural stability is presented and examples are 
given of airplanes, UAVs and space vehicles models whose theoretical model is not structurally stable. 
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1. INTRODUCTION 
According to [1] there is no set rules, and an understanding of the “right” way to model real 
word phenomena. One learns it by practising. The model can be reached by familiarizing 
oneself with a variety of examples. A model is a mental representation of a process. 

Usually, a mathematical model is a mental construction and takes the form of a set of 
equations describing a number of variables. We distinguish between continuous models, in 
which the variables vary continuously in space and time and discrete models whose variables 
varies discontinuously. 

Applied mathematicians have a procedure, almost a philosophy, that they apply when 
building models, for a process of interest that they want to describe or, more importantly, 
explain. Observations of the process lead, sometimes after a great deal of effort, to a 
hypothetical mechanism that can explain the phenomenon. 

The purpose of a model is then to formulate a description of the mechanism in quantitative 
terms. The analysis of the resulting model leads to results that can be tested against 
observations. Ideally, the model also leads to predictions, which if verified, lend authenticity 
to the model. 

It is important to realize that all models are idealizations and limited in their applicability. 
In fact, one usually aims to simplify. The idea is that if a model is correct, then it can be 
subsequently complicated, but the analysis its is facilitated by by the fact that a more simplified 
version has been treated first. 

Simplifications appear in the case of the differential systems that describe the movement 
of existing airplanes, UAVs and space vehicles, and even during the development period of 
new prototypes [2], [3], [4], [5], and [6]. Because of the undesirable consequences due to 
simplifications, as well as the cost of new prototypes, it is useful to have a theoretical tool that 
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establishes the necessary condition that has to be satisfied by the simplified system of 
differential equation.  

The tools could be the structural stability in S. Smale sense [7], [8] and bifurcation in 
sense of [9]. 

This paper presents structural stability and bifurcation and gives examples of airplane, 
UAV and spacecraft models whose theoretical model is not structurally stable or does not 
exhibit bifurcation. 

2. STRUCTURAL STABILITY 
According to [9], [10] the continuous-time dynamical system 

𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥,𝛼𝛼)       𝑥𝑥 ∈ 𝑈𝑈 ⊂ 𝑅𝑅𝑛𝑛  𝛼𝛼 ∈ 𝑉𝑉 ⊂ 𝑅𝑅𝑚𝑚 (1) 

is topologically equivalent in U⊂𝑅𝑅𝑛𝑛 to the dynamical system 

𝑦̇𝑦 = 𝑓𝑓(𝑦𝑦,𝛽𝛽)       𝑦𝑦 ∈ 𝑈𝑈 ⊂ 𝑅𝑅𝑛𝑛  𝛽𝛽 ∈ 𝑉𝑉′ ⊂ 𝑅𝑅𝑚𝑚 (2) 

if there is 
-a homeomorphism of the parameter space 𝑝𝑝:𝑉𝑉 → 𝑉𝑉′; 
-a parameter-dependent homeomorphism of the phase-space ℎ𝛼𝛼:𝑈𝑈 → 𝑈𝑈 
such that for all 𝛼𝛼 ∈ 𝑉𝑉,   ℎ𝛼𝛼 maps orbits of the first system onto orbits of the second system 
preserving the direction of time, i.e. 

ℎ𝛼𝛼[𝑥𝑥(𝑡𝑡;𝛼𝛼, 𝑥𝑥0)] = 𝑦𝑦[𝑡𝑡; 𝑝𝑝(𝛼𝛼),ℎ𝛼𝛼(𝑥𝑥0)]     for any 𝑥𝑥0 ∈ 𝑈𝑈  and any 𝑡𝑡 (3) 

where 𝑥𝑥(𝑡𝑡;𝛼𝛼, 𝑥𝑥0) is the solution of system (1) corresponding to the parameter 𝛼𝛼 and to the 
initial condition 𝑥𝑥0 and 𝑦𝑦[𝑡𝑡;𝑝𝑝(𝛼𝛼),ℎ𝛼𝛼(𝑥𝑥0)] is the solution of system (2) corresponding to the 
parameter 𝑝𝑝(𝛼𝛼) and initial condition ℎ𝛼𝛼(𝑥𝑥0). 

Let be a system 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) defined in a region 𝑈𝑈 ⊂ 𝑅𝑅𝑛𝑛  by the 𝐶𝐶1 vector field 𝑓𝑓:𝑈𝑈 → 𝑅𝑅𝑛𝑛 . 
Consider a region 𝑈𝑈0 ⊂ 𝑈𝑈 and assume that the scalar product < 𝑓𝑓(𝑥𝑥), 𝑥𝑥 > is strictly negative 
for each 𝑥𝑥 ∈ 𝜕𝜕𝑈𝑈0 ⊂ 𝑈𝑈. 

According to [8] the system 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) is structurally stable in 𝑈𝑈0 ⊂ 𝑈𝑈 if there exist a 
neighborhood 𝑊𝑊 of vector field 𝑓𝑓 such that for any 𝐶𝐶1 vector field 𝑔𝑔:𝑈𝑈 → 𝑅𝑅𝑛𝑛   𝑔𝑔 ∈ 𝑊𝑊 the 
system 𝑦̇𝑦 = 𝑔𝑔(𝑦𝑦) is topologically equivalent in 𝑈𝑈0 to the system 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥).  

In [8] pg. 312-318 theorems and examples concerning structural stability and structural 
instability are given. 

Remark that if the system 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) is structurally stable in 𝑈𝑈0 ⊂ 𝑈𝑈 and 𝑔𝑔 ∈ 𝑊𝑊 then there 
exists a bijection between the steady states (equilibriums) of the system 𝑥̇𝑥 = 𝑓𝑓(𝑥𝑥) and 
equilibriums of the system 𝑦̇𝑦 = 𝑔𝑔(𝑦𝑦) located in 𝑈𝑈0. 

3. THE SYSTEM DESCRIBING THE DECUPLED LONGITUDINAL 
FLIGHT IN CASE OF ALFLEX SPACE SHUTTLE IS NOT 

STRUCTURALLY STABLE 
Automatic-Landing Flight-Experiment (ALFLEX) is a model plane, developed by NASDAQ, 
Japan. This vehicle is a reduced-scale model of the H-II Orbiting Plane, an unmanned reusable 
orbiting spacecraft. 

It has been built to study the flight of the spacecraft during its final approach and landing 
phases. 
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This flight is made possible due to complicated automatic-flight control systems, designed 
to perform quick responses to commands. 

As the mass of this vehicle is concentrated in its fuselage, the phenomenon of inertial 
coupling may occur, i.e., a gyroscopic effect, causing small perturbations or small changes of 
the control surface angles that may lead to dramatic changes in roll rate 

 

 
Fig. 1 ALFLEX (Figure 5.1 Landing experiment [1]) 
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The general system of differential equations which describes the motion around the center of 
gravity of a rigid aircraft, with respect to an xyz body–axis system, where xz is the plane of 
symmetry, according to [2], [3] is: 

𝑉̇𝑉
𝑉𝑉

× 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝛽̇𝛽 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝛼̇𝛼 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= 𝑟𝑟 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑞𝑞 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
𝑋𝑋

𝑚𝑚 × 𝑉𝑉
 

𝑉̇𝑉
𝑉𝑉

× 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛽̇𝛽 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑝𝑝 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
𝑌𝑌

𝑚𝑚 × 𝑉𝑉
 

𝑉̇𝑉
𝑉𝑉

× 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝛽̇𝛽 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝛼̇𝛼 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

= −𝑝𝑝 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑞𝑞 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
𝑍𝑍

𝑚𝑚 × 𝑉𝑉
 

𝐼𝐼𝑥𝑥 × 𝑝̇𝑝 − 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑟̇𝑟 = �𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧� × 𝑞𝑞 × 𝑟𝑟 + 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑝𝑝 × 𝑞𝑞 + 𝐿𝐿 
𝐼𝐼𝑦𝑦 × 𝑞̇𝑞 = (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥) × 𝑝𝑝 × 𝑟𝑟 − 𝐼𝐼𝑥𝑥𝑥𝑥 × (𝑝𝑝2 − 𝑟𝑟2) + 𝑀𝑀 

 𝐼𝐼𝑧𝑧 × 𝑟̇𝑟 − 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑝̇𝑝 = �𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦�× 𝑝𝑝 × 𝑞𝑞 − 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑞𝑞 × 𝑟𝑟 + 𝑁𝑁 
Φ̇ = 𝑝𝑝 + 𝑞𝑞 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝜃̇𝜃 = 𝑞𝑞 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑟𝑟 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(4) 

State parameters of this system are: forward velocity V, angle of attack 𝛼𝛼, sideslip angle 
𝛽𝛽, roll rate 𝑝𝑝, pitch rate q, yaw rate r, Euler roll angle 𝜙𝜙, and Euler pitch angle 𝜃𝜃. The constants 
𝐼𝐼𝑥𝑥, 𝐼𝐼𝑦𝑦, 𝐼𝐼𝑧𝑧 are moments of inertia about the x-, y-, and z-axis, respectively; 𝐼𝐼𝑥𝑥𝑥𝑥  product of inertia, 
𝑔𝑔 gravitational acceleration; and 𝑚𝑚 mass of the vehicle. 

The external forces and moments X, Y, Z, L, M, N are, in general, functions of the state 
parameters and the control parameters:  𝛿𝛿𝑎𝑎 aileron angle; 𝛿𝛿𝑒𝑒 elevator angle; and 𝛿𝛿𝑟𝑟   rudder 
angle (the body flap and the speed break are available as additional controls but, for simplicity, 
they are set to 0 in the analysis to follow). 

In particular, the following expressions for the external forces and moments are 
considered for ALFLEX. 

𝑋𝑋 = −𝑚𝑚 × 𝑔𝑔 × (𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃0) + 𝑘𝑘 × 𝑉𝑉2 × [𝐶𝐶𝑥𝑥𝑥𝑥(𝛼𝛼 − 𝛼𝛼0) + 𝐶𝐶𝑥𝑥𝛿𝛿𝑒𝑒 × (𝛿𝛿𝑒𝑒 − 𝛿𝛿𝑒𝑒0)] 
𝑌𝑌 = 𝑚𝑚 × 𝑔𝑔 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑘𝑘 × 𝑉𝑉2(𝐶𝐶𝑦𝑦𝑦𝑦 × 𝛽𝛽 + 𝐶𝐶𝑦𝑦𝑦𝑦 × 𝑟𝑟 + 𝐶𝐶𝑦𝑦𝛿𝛿𝑟𝑟 × 𝛿𝛿𝑟𝑟) 

𝑍𝑍 =  𝑚𝑚 × 𝑔𝑔(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ×  𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0) + 𝑘𝑘 × 𝑉𝑉2 × [𝐶𝐶𝑧𝑧𝑧𝑧(𝛼𝛼 − 𝛼𝛼0) + 𝐶𝐶𝑧𝑧𝛿𝛿𝑒𝑒 × (𝛿𝛿𝑒𝑒 − 𝛿𝛿𝑒𝑒0)] 
𝐿𝐿 = 𝑏𝑏 × 𝑘𝑘 × 𝑉𝑉2 × (𝐶𝐶𝑙𝑙𝑙𝑙 × 𝛽𝛽 + 𝐶𝐶𝑙𝑙𝑙𝑙 × 𝑝𝑝 + 𝐶𝐶𝑙𝑙𝑙𝑙 × 𝑟𝑟 + 𝐶𝐶𝑙𝑙𝛿𝛿𝑎𝑎 × 𝛿𝛿𝑎𝑎 + 𝐶𝐶𝑙𝑙𝛿𝛿𝑟𝑟 × 𝛿𝛿𝑟𝑟) 
𝑀𝑀 = 𝑐𝑐 × 𝑘𝑘 × 𝑉𝑉2 × [𝐶𝐶𝑚𝑚𝑚𝑚 × (𝛼𝛼 − 𝛼𝛼0) + 𝐶𝐶𝑚𝑚𝑚𝑚 × 𝑞𝑞 + 𝐶𝐶𝑚𝑚𝛿𝛿𝑒𝑒 × (𝛿𝛿𝑒𝑒 − 𝛿𝛿0)] 

𝑁𝑁 = 𝑏𝑏 × 𝑘𝑘 × 𝑉𝑉2 × (𝐶𝐶𝑛𝑛𝑛𝑛 × 𝛽𝛽 + 𝐶𝐶𝑛𝑛𝑛𝑛 × 𝑝𝑝 + 𝐶𝐶𝑛𝑛𝑛𝑛 × 𝑟𝑟 + 𝐶𝐶𝑛𝑛𝛿𝛿𝑎𝑎 × 𝛿𝛿𝑎𝑎 + 𝐶𝐶𝑛𝑛𝛿𝛿𝑟𝑟 × 𝛿𝛿𝑟𝑟) 

(5) 

A simplified version of the motion in case of the ALFLEX reentry vehicle has been 
presented in Goto and Matsumoto [11] and Goto and Kawakita [12]. 

This version was obtained from the general system presented in [2], [3], assuming that 
the forward velocity 𝑉𝑉 is constant 𝑉𝑉 = 𝑉𝑉0 and 𝛼𝛼 the angles of attack and sideslip 𝛽𝛽, 
respectively, are small. 

Due to these assumptions, the first three equations of general system were simplified, so 
that the following system was obtained: 
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𝑉̇𝑉=0 

𝛽̇𝛽 = 𝑝𝑝 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
𝑌𝑌

𝑚𝑚 × 𝑉𝑉
 

𝛼̇𝛼 = −𝑝𝑝 × 𝛽𝛽 + 𝑞𝑞 +
𝑍𝑍

𝑚𝑚 × 𝑉𝑉
 

𝐼𝐼𝑥𝑥 × 𝑝̇𝑝 − 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑟̇𝑟 = �𝐼𝐼𝑦𝑦 − 𝐼𝐼𝑧𝑧� × 𝑞𝑞 × 𝑟𝑟 + 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑝𝑝 × 𝑞𝑞 + 𝐿𝐿 
𝐼𝐼𝑦𝑦 × 𝑞̇𝑞 = (𝐼𝐼𝑧𝑧 − 𝐼𝐼𝑥𝑥) × 𝑝𝑝 × 𝑟𝑟 − 𝐼𝐼𝑥𝑥𝑥𝑥 × (𝑝𝑝2 − 𝑟𝑟2) + 𝑀𝑀 

𝐼𝐼𝑧𝑧 × 𝑟̇𝑟 − 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑝̇𝑝 = �𝐼𝐼𝑥𝑥 − 𝐼𝐼𝑦𝑦�× 𝑝𝑝 × 𝑞𝑞 − 𝐼𝐼𝑥𝑥𝑥𝑥 × 𝑞𝑞 × 𝑟𝑟 +𝑁𝑁 
Φ̇ = 𝑝𝑝 + 𝑞𝑞 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝑟𝑟 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 

𝜃̇𝜃 = 𝑞𝑞 × 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑟𝑟 × 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

(6) 

This system of differential equations has been used to determine the set of steady states 
corresponding to ALFLEX, to undertake a stability analysis along the existing paths of steady 
states by Goto and Matsumoto in [11] (2000); and Goto and Kawakita in [5] (2004). 

According to Goto [4] (2004), the simplified system (6) can be useful for getting an idea 
about the behavior of the system, although quantitatively, the general system (4) should be 
taken into consideration. In the same paper, the author remarks that if the steady states of the 
simplified system (6) are used as an initial guess in the continuation method applied to 
determine the steady states of the general system (4), the results are not always satisfying, and 
the continuation method does not always converge. 

If the general system (4) and system (6) are to accurately reflect reality, they must bear 
resemblance on some level. For example, one might hope that the behavior of the dynamical 
systems (4) and that defined by (6) is qualitatively the same, i.e., they are topological 
equivalent. 

In [7] it is proven that the dynamical systems defined by (4) and (6) are not topologically 
equivalent. Furthermore, System (6) is not structurally stable. 

Consequently, these systems offer quite different images about the real motion around the 
center of gravity of a rigid aircraft. 

For example, for a certain combination of control angles, the Simplified System (6) has a 
steady state, while the General System (4) has no steady states. 

Hence, it is not surprising that using the steady state of Eq. (6) as an initial guess in the 
continuation method applied in order to find the steady state of Eq. (4), the method does not 
converge (the limit does not exist). Even if the method converges, the limit cannot be a steady 
state of Eq. (4). 

The longitudinally flight system decoupled from (4) is: 

𝑉𝑉 ̇ = 𝑔𝑔 × [𝑠𝑠𝑠𝑠𝑠𝑠 (𝛼𝛼 − 𝜃𝜃) − 𝑠𝑠𝑠𝑠𝑠𝑠 (𝛼𝛼 − 𝜃𝜃_0 ) ] + 𝑉𝑉^2 × [(𝐴𝐴_1 × 𝑠𝑠𝑠𝑠𝑠𝑠∆𝛼𝛼
+ 𝐴𝐴_2 × 𝑐𝑐𝑐𝑐𝑐𝑐∆𝛼𝛼) × ∆𝛼𝛼 + (𝐵𝐵_1 × 𝑠𝑠𝑠𝑠𝑠𝑠∆𝛼𝛼 + 𝐵𝐵_2 × 𝑐𝑐𝑐𝑐𝑐𝑐∆𝛼𝛼) × ∆𝛿𝛿_𝑒𝑒 

𝛼̇𝛼 = 𝑞𝑞 +
𝑔𝑔
𝑉𝑉

× [cos(𝛼𝛼 − 𝜃𝜃)− cos(𝛼𝛼 − 𝜃𝜃0)] + 𝑉𝑉 × [(𝐴𝐴1 × 𝑐𝑐𝑐𝑐𝑐𝑐∆𝛼𝛼 − 𝐴𝐴2 × 𝑠𝑠𝑠𝑠𝑠𝑠∆𝛼𝛼) × ∆𝛼𝛼
+ (𝐵𝐵1 × 𝑐𝑐𝑐𝑐𝑐𝑐∆𝛼𝛼 − 𝐵𝐵2 × 𝑠𝑠𝑠𝑠𝑠𝑠∆𝛼𝛼) × ∆𝛿𝛿𝑒𝑒 

𝑞̇𝑞 =
𝑐𝑐 × 𝑘𝑘
𝐼𝐼𝑦𝑦

× 𝑉𝑉2 × (𝐶𝐶𝑚𝑚𝑚𝑚 × ∆𝛼𝛼 + 𝐶𝐶𝑚𝑚𝑚𝑚 × 𝑞𝑞 + 𝐶𝐶𝑚𝑚𝛿𝛿𝑒𝑒 × 𝛿𝛿𝑒𝑒) 

𝜃̇𝜃=𝑞𝑞 

(7) 

The longitudinally flight system decoupled from (6) is: 
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𝑉̇𝑉 = 0 

𝛼̇𝛼 = 𝑞𝑞 +
𝑔𝑔
𝑉𝑉

(cos𝜃𝜃 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃0) 

𝑞̇𝑞 =
𝑐𝑐 × 𝑘𝑘
𝐼𝐼𝑦𝑦

× 𝑉𝑉2 × (𝐶𝐶𝑚𝑚𝑚𝑚 × ∆𝛼𝛼 + 𝐶𝐶𝑚𝑚𝑚𝑚 × 𝑞𝑞 + 𝐶𝐶𝑚𝑚𝛿𝛿𝑒𝑒 × 𝛿𝛿𝑒𝑒) 

𝜃̇𝜃=𝑞𝑞 

(8) 

In [7] it is proven that the dynamical systems defined by (7) and (8) are not topologically 
equivalent. Furthermore, System (8) is not structurally stable in the bounded region 𝑋𝑋0 =
(𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚) × (−𝜋𝜋,𝜋𝜋) × (𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚,𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚) × (−𝜋𝜋

2
, 𝜋𝜋
2

) with 0 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 1 < 𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚,  𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 < 0 <
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚. 

Consequently, systems (7) and (8) offer quite different images about the real longitudinal 
flight of a rigid aircraft. 

The main message of our findings is that in case of the ALFLEX reentry vehicle the 
simplified flight system and the simplified decupled longitudinal flight system are 
oversimplified. They are not appropriate to be used in the mathematical description of the real 
flight. 

4. CRASHES OF HIGH-PERFORMANCE FIGHTER AIRPLANE SUCH AS 
YF-22A AND B-2, DUE TO OSCILLATIONS 

 
Fig. 2 YF-22 A fighter airplane 
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Fig. 3 B2 fighter airplane 

Interest in oscillation susceptibility of aircrafts has been generated by the crashes of high-
performance fighter airplanes such as YF-22A and B-2, due to oscillations that were not 
predicted during the aircraft development process [12]. Flight quality criteria for oscillation 
prediction are based on linear analysis and quasi-linear extensions [13]. However, these criteria 
cannot, in general, predict the presence or the absence of oscillations, because of the large 
variety of non-linear phenomena that have been identified as factors contributing to 
oscillations and which are neglected in the linear approach. Sources of these factors include 
pilot behavioral transitions, actuator rate limiting [14–15] and changes in aircraft dynamics 
caused by transitions in operating conditions [17], gain scheduling and mode switching [18]. 
The analysis of nonlinear oscillations involves the computation of non-linear phenomena 
including Hopf bifurcation that led sometimes to large changes in the stability of the pilot-
vehicle-system [19]. More recently, theoretical bifurcation studies have been undertaken for 
longitudinal flight dynamics, using the elevator deflection and mass of the vehicle as 
bifurcation parameters [20 - 22]. The occurrence of saddle-node and Hopf bifurcations has 
been pointed out in the case of the F-8 aircraft, and it has been emphasized that these 
bifurcations may result in jump behavior and pitch oscillations of flight dynamics. Moreover, 
system controllability with respect to the variation of the elevator deflection angle has been 
discussed in [10, 11]. However, these bifurcation studies can only explain locally the 
appearance of oscillatory behavior (associated with supercritical Hopf bifurcations), and they 
do not represent a tool for understanding the global nature of longitudinal flight dynamics. 
More precisely, a supercritical Hopf bifurcation that occurs at the critical value 𝛿𝛿𝑒𝑒∗ of the 
elevator deflection, can only explain the appearance of asymptotically stable limit cycles for 
values of  𝛿𝛿𝑒𝑒 close to the critical value 𝛿𝛿𝑒𝑒∗, i.e. for 𝛿𝛿𝑒𝑒 in a neighborhood of the form (𝛿𝛿𝑒𝑒∗ −
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𝜀𝜀, 𝛿𝛿𝑒𝑒∗)  or (𝛿𝛿𝑒𝑒∗, 𝛿𝛿𝑒𝑒∗ + 𝜀𝜀). Nevertheless, Hopf bifurcations are not the only type of bifurcation 
phenomena leading to oscillatory behavior. In [19, 24], it has been shown that in a longitudinal 
flight with constant forward velocity, equilibria exist for the ADMIRE aircraft and the 
ALFLEX reentry vehicle only if the elevator deflection  𝛿𝛿𝑒𝑒  belongs to a closed and bounded 
interval J. When the elevator deflection is at the boundary of the interval J, a countable infinity 
of saddle-node bifurcation points is present. When the elevator deflection exceeds these critical 
values and is outside the interval J, numerical simulations show that the angle of attack and 
pitch rate oscillate with the same period, while the pitch angle increases or decreases infinitely. 
Hence, the orbit of the system is spiraling. 
In [25] the existence of oscillatory solutions of the simplified dynamical system which governs 
the motion around the center of gravity in a longitudinal flight with constant forward velocity 
of a rigid aircraft, when the automatic flight control system is decoupled and the elevator 
deflection exceeds the bifurcation values. Sufficient conditions are obtained for the existence 
of oscillatory solutions for any value of the elevator deflection outside the interval which 
corresponds to the existence of equilibria.  

Oscillatory longitudinal flight of the ALFLEX reentry vehicle [25]. 

 
Fig. 4 Oscillatory longitudinal flight of ALFLEX 

Evolution of the state parameters (𝛼𝛼, 𝑞𝑞,𝜃𝜃) considering the initial condition (8.18,0,−9.16). 
Oscillatory longitudinal flight of the ADMIER unmanned aircraft [26]. 
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𝛿𝛿𝑒𝑒 = 0.048 𝑟𝑟𝑟𝑟𝑟𝑟                                                                       𝛿𝛿𝑒𝑒 = −0.05 𝑟𝑟𝑟𝑟𝑟𝑟 

Fig. 5 Oscillatory longitudinal flight of ADMIRE 

Evolution of the state parameters (𝛼𝛼, 𝑞𝑞,𝜃𝜃) considering the initial condition 
(0.08869,0,0.159329)𝑟𝑟𝑟𝑟𝑟𝑟. 

5. CONCLUSION 
Mathematical tools such as structural stability and bifurcations can be used to analyze the 
system of differential equations governing aircraft dynamics, in terms of the fit between the 
calculated description of the motion and the actual motion. 
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