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Abstract: In the present paper, the meaning of the structural stability is presented and examples are
given of airplanes, UAVs and space vehicles models whose theoretical model is not structurally stable.
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1. INTRODUCTION

According to [1] there is no set rules, and an understanding of the “right” way to model real
word phenomena. One learns it by practising. The model can be reached by familiarizing
oneself with a variety of examples. A model is a mental representation of a process.

Usually, a mathematical model is a mental construction and takes the form of a set of
equations describing a number of variables. We distinguish between continuous models, in
which the variables vary continuously in space and time and discrete models whose variables
varies discontinuously.

Applied mathematicians have a procedure, almost a philosophy, that they apply when
building models, for a process of interest that they want to describe or, more importantly,
explain. Observations of the process lead, sometimes after a great deal of effort, to a
hypothetical mechanism that can explain the phenomenon.

The purpose of a model is then to formulate a description of the mechanism in quantitative
terms. The analysis of the resulting model leads to results that can be tested against
observations. Ideally, the model also leads to predictions, which if verified, lend authenticity
to the model.

It is important to realize that all models are idealizations and limited in their applicability.
In fact, one usually aims to simplify. The idea is that if a model is correct, then it can be
subsequently complicated, but the analysis its is facilitated by by the fact that a more simplified
version has been treated first.

Simplifications appear in the case of the differential systems that describe the movement
of existing airplanes, UAVs and space vehicles, and even during the development period of
new prototypes [2], [3], [4], [5], and [6]. Because of the undesirable consequences due to
simplifications, as well as the cost of new prototypes, it is useful to have a theoretical tool that
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establishes the necessary condition that has to be satisfied by the simplified system of
differential equation.

The tools could be the structural stability in S. Smale sense [7], [8] and bifurcation in
sense of [9].

This paper presents structural stability and bifurcation and gives examples of airplane,
UAV and spacecraft models whose theoretical model is not structurally stable or does not
exhibit bifurcation.

2. STRUCTURAL STABILITY
According to [9], [10] the continuous-time dynamical system
x=f(x,a) x€UcCR*a€eVcR™ (1)
is topologically equivalent in UCR™ to the dynamical system
y=f,B) yEUCR"BeV cR™ )

if there is

-a homeomorphism of the parameter space p: V — V’;

-a parameter-dependent homeomorphism of the phase-space h,: U — U

such that for all « € V, h, maps orbits of the first system onto orbits of the second system
preserving the direction of time, i.e.

ho[x(t; a,x%)] = y[t; p(a), hy(x°)] forany x® € U and any t 3)

where x(t; a, x°) is the solution of system (1) corresponding to the parameter « and to the
initial condition x° and y[t; p(a), he (x°)] is the solution of system (2) corresponding to the
parameter p(a) and initial condition h, (x°).

Let be a system x = f(x) defined in a region U € R™ by the C?! vector field f: U — R™ .
Consider a region Uy € U and assume that the scalar product < f(x), x > is strictly negative
for eachx € dU, c U.

According to [8] the system x = f(x) is structurally stable in U, € U if there exist a
neighborhood W of vector field f such that for any C! vector field g: U » R™ g € W the
system y = g(y) is topologically equivalent in Uj to the system x = f(x).

In [8] pg. 312-318 theorems and examples concerning structural stability and structural
instability are given.

Remark that if the system x = f(x) is structurally stable in Uy, < U and g € W then there
exists a bijection between the steady states (equilibriums) of the system x = f(x) and
equilibriums of the system y = g(y) located in Uj.

3. THE SYSTEM DESCRIBING THE DECUPLED LONGITUDINAL
FLIGHT IN CASE OF ALFLEX SPACE SHUTTLE IS NOT
STRUCTURALLY STABLE

Automatic-Landing Flight-Experiment (ALFLEX) is a model plane, developed by NASDAQ,
Japan. This vehicle is a reduced-scale model of the H-II Orbiting Plane, an unmanned reusable
orbiting spacecraft.

It has been built to study the flight of the spacecraft during its final approach and landing
phases.
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This flight is made possible due to complicated automatic-flight control systems, designed
to perform quick responses to commands.

As the mass of this vehicle is concentrated in its fuselage, the phenomenon of inertial
coupling may occur, i.e., a gyroscopic effect, causing small perturbations or small changes of
the control surface angles that may lead to dramatic changes in roll rate

25% Scak of HOPE-X

Mass 1735 Hg
Lengm t3.E1m
Wing Area ;4.4n¥
MALC t1.85m

Wing Span : 2.86m

Fig. 1 ALFLEX (Figure 5.1 Landing experiment [1])
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The general system of differential equations which describes the motion around the center of
gravity of a rigid aircraft, with respect to an xyz body—axis system, where xz is the plane of
symmetry, according to [2], [3] is:

% .
v X cosa X cosf — [ X cosa X sinfl —a X sina X cosf

=r X sinff —q X sina X cosf3 +
B—q B —

v )
—Xsinf + B X cosf =p X sina X cosff —r X cosa X cosfS +
X sinf +  x cosp =p B Bt—

v X sina X cosp — B X sina X sinf + @ X cosa X cosf

“

= —p X sinf + g X cosa X cosf +
p B+q B —

Lxp—Lyxt=(,—L,)Xqxr+L,xpxq+L
Ly xq=U,—L)XpXr—L,Xx(@*=1r*)+M
L xt—Lyxp=(L,—1,)XpXq—1I,;XqXr+N
& =p+ g x sing X tanb + r X cos¢p X tanh
0 = q X cosp — 1 X sing

State parameters of this system are: forward velocity V, angle of attack a, sideslip angle
B, roll rate p, pitch rate ¢, yaw rate r, Euler roll angle ¢, and Euler pitch angle 6. The constants
Iy, I, I, are moments of inertia about the x-, y-, and z-axis, respectively; I, product of inertia,
g gravitational acceleration; and m mass of the vehicle.

The external forces and moments X, Y, Z, L, M, N are, in general, functions of the state
parameters and the control parameters: &, aileron angle; &, elevator angle; and 6, rudder
angle (the body flap and the speed break are available as additional controls but, for simplicity,
they are set to 0 in the analysis to follow).

In particular, the following expressions for the external forces and moments are
considered for ALFLEX.

X =-mx g x (sind — sinby) + k X V2 X [Cyq(a — ap) + Cys, X (8 — Seo)]
Y =mx g Xsing X cosf +k xVZ(Cyg X B+ Cyr X1+ Cyy5. X 6,)

Z = mx g(cos¢p X cos® — cosby) + k X V? X [Crq(a — ag) + Cps5, X (8¢ — 8¢0)]
L=bxkxV2x(CpgxB+CypXp+CyXr+Cys, X8 +Cs X6)
M=cXkXV?X[Cpg X (@—ag) + Cpng X q+ Cps, X (5 — 8)]
N=bXkxV*x(CpgXPB+CppXP+Cpp X1+ Cps, X8+ Cns, X 8,)

&)

A simplified version of the motion in case of the ALFLEX reentry vehicle has been
presented in Goto and Matsumoto [11] and Goto and Kawakita [12].

This version was obtained from the general system presented in [2], [3], assuming that
the forward velocity V is constant V =1V, and a the angles of attack and sideslip £,
respectively, are small.

Due to these assumptions, the first three equations of general system were simplified, so
that the following system was obtained:
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V=0
B =p Xsi X + Y
=D sina r cosa mxV
t=-pxB+q+
a=-pxXptq+_———
Lxp—1I,x7=(l,—1,)xqXr+1l,Xpxq+L (6)

L xq=U,—L)XpXT—L,X(@*=1*)+M
IzXf‘—Isz?=(Ix—ly)xpxq—IXZqur+N
& =p+ g x sing X tanb + r X cos¢p X tanh
9=q><cos¢—r><sinq,')

This system of differential equations has been used to determine the set of steady states
corresponding to ALFLEX, to undertake a stability analysis along the existing paths of steady
states by Goto and Matsumoto in [11] (2000); and Goto and Kawakita in [5] (2004).

According to Goto [4] (2004), the simplified system (6) can be useful for getting an idea
about the behavior of the system, although quantitatively, the general system (4) should be
taken into consideration. In the same paper, the author remarks that if the steady states of the
simplified system (6) are used as an initial guess in the continuation method applied to
determine the steady states of the general system (4), the results are not always satisfying, and
the continuation method does not always converge.

If the general system (4) and system (6) are to accurately reflect reality, they must bear
resemblance on some level. For example, one might hope that the behavior of the dynamical
systems (4) and that defined by (6) is qualitatively the same, i.e., they are topological
equivalent.

In [7] it is proven that the dynamical systems defined by (4) and (6) are not topologically
equivalent. Furthermore, System (6) is not structurally stable.

Consequently, these systems offer quite different images about the real motion around the
center of gravity of a rigid aircraft.

For example, for a certain combination of control angles, the Simplified System (6) has a
steady state, while the General System (4) has no steady states.

Hence, it is not surprising that using the steady state of Eq. (6) as an initial guess in the
continuation method applied in order to find the steady state of Eq. (4), the method does not
converge (the limit does not exist). Even if the method converges, the limit cannot be a steady
state of Eq. (4).

The longitudinally flight system decoupled from (4) is:

V=gxXx|[sin(a—0)—sin(a—0.0)]+V"2x[(A_1 X sinA«x
+ A_2 X cosAa) X Aa + (B_1 X sinAa + B_2 X cosAa) X A§_e
a=q+ % X [cos(a — 0) — cos(a — 6y)] +V X [(A; X cosAa — A, X sinAa) X Aa
+ (B; X cosAa — B, X sinAa) X Ad, (7
cxXk

qg= X V2 X (Cpg X At + Cig X g + Cpps, X 8¢)

y
6=q
The longitudinally flight system decoupled from (6) is:
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V=0
. g
a=q +V(c056 — cosby)

cxk (®)
X V2 X (Cpg X At + Cpg X q + Crp5, X )

C'I =
y
6=q

In [7] it is proven that the dynamical systems defined by (7) and (8) are not topologically

equivalent. Furthermore, System (8) is not structurally stable in the bounded region X, =
T T .

(Vimin Vinax) % (=10, ) X (Gmin» Gmax) X (_E»E) with 0 < Vipin <1 < Vinax, Gmin <0 <

qmax .

Consequently, systems (7) and (8) offer quite different images about the real longitudinal
flight of a rigid aircraft.

The main message of our findings is that in case of the ALFLEX reentry vehicle the
simplified flight system and the simplified decupled longitudinal flight system are
oversimplified. They are not appropriate to be used in the mathematical description of the real
flight.

4. CRASHES OF HIGH-PERFORMANCE FIGHTER AIRPLANE SUCH AS
YF-22A AND B-2, DUE TO OSCILLATIONS

Fig. 2 YF-22 A fighter airplane
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Fig. 3 B2 fighter airplane

Interest in oscillation susceptibility of aircrafts has been generated by the crashes of high-
performance fighter airplanes such as YF-22A and B-2, due to oscillations that were not
predicted during the aircraft development process [12]. Flight quality criteria for oscillation
prediction are based on linear analysis and quasi-linear extensions [ 13]. However, these criteria
cannot, in general, predict the presence or the absence of oscillations, because of the large
variety of non-linear phenomena that have been identified as factors contributing to
oscillations and which are neglected in the linear approach. Sources of these factors include
pilot behavioral transitions, actuator rate limiting [14—15] and changes in aircraft dynamics
caused by transitions in operating conditions [17], gain scheduling and mode switching [18].
The analysis of nonlinear oscillations involves the computation of non-linear phenomena
including Hopf bifurcation that led sometimes to large changes in the stability of the pilot-
vehicle-system [19]. More recently, theoretical bifurcation studies have been undertaken for
longitudinal flight dynamics, using the elevator deflection and mass of the vehicle as
bifurcation parameters [20 - 22]. The occurrence of saddle-node and Hopf bifurcations has
been pointed out in the case of the F-8 aircraft, and it has been emphasized that these
bifurcations may result in jump behavior and pitch oscillations of flight dynamics. Moreover,
system controllability with respect to the variation of the elevator deflection angle has been
discussed in [10, 11]. However, these bifurcation studies can only explain locally the
appearance of oscillatory behavior (associated with supercritical Hopf bifurcations), and they
do not represent a tool for understanding the global nature of longitudinal flight dynamics.
More precisely, a supercritical Hopf bifurcation that occurs at the critical value &, of the
elevator deflection, can only explain the appearance of asymptotically stable limit cycles for
values of J, close to the critical value §;, i.e. for §, in a neighborhood of the form (6; —
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g,0;) or (8;,6, + €). Nevertheless, Hopf bifurcations are not the only type of bifurcation
phenomena leading to oscillatory behavior. In [19, 24], it has been shown that in a longitudinal
flight with constant forward velocity, equilibria exist for the ADMIRE aircraft and the
ALFLEX reentry vehicle only if the elevator deflection §, belongs to a closed and bounded
interval J. When the elevator deflection is at the boundary of the interval J, a countable infinity
of'saddle-node bifurcation points is present. When the elevator deflection exceeds these critical
values and is outside the interval J, numerical simulations show that the angle of attack and
pitch rate oscillate with the same period, while the pitch angle increases or decreases infinitely.
Hence, the orbit of the system is spiraling.

In [25] the existence of oscillatory solutions of the simplified dynamical system which governs
the motion around the center of gravity in a longitudinal flight with constant forward velocity
of a rigid aircraft, when the automatic flight control system is decoupled and the elevator
deflection exceeds the bifurcation values. Sufficient conditions are obtained for the existence
of oscillatory solutions for any value of the elevator deflection outside the interval which
corresponds to the existence of equilibria.

Oscillatory longitudinal flight of the ALFLEX reentry vehicle [25].
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Fig. 4 Oscillatory longitudinal flight of ALFLEX

Evolution of the state parameters (a, q, @) considering the initial condition (8.18,0,—9.16).
Oscillatory longitudinal flight of the ADMIER unmanned aircraft [26].
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Fig. 5 Oscillatory longitudinal flight of ADMIRE

Evolution of the state parameters (a,q,0) considering the initial condition
(0.08869,0,0.159329)rad.

5. CONCLUSION

Mathematical tools such as structural stability and bifurcations can be used to analyze the
system of differential equations governing aircraft dynamics, in terms of the fit between the
calculated description of the motion and the actual motion.
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