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Abstract: Our work utilizes the quantum model of the hydrogen atom which is based on the Schrödinger 
equation with Coulomb potential. Specifically, we concentrate on the angular components of the wave 
eigenfunctions derived from this model. We consider the quantum states with n ≤ 4. In order to visualize 
the orbital shapes of these states, we built in the spherical coordinates system their 3D geometric 
representations. Furthermore, we use the corresponding spherical harmonics, to calculate the θ nodal 
values that describe the configurations of these orbital states. 
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1. INTRODUCTION 

Through their works of early twentieth century, Planck, Schrödinger (1926), Bohr, Pauli and 
others developed Quantum Mechanics. This allows the study of physical phenomena on an 
atomic and subatomic scale. It also complements areas such as Acoustics and Optics, and 
facilitates the development of Field Theory along with Quantum Electrodynamics, Nuclear 
Physics and the Standard Model. Some books allow the application of Quantum Physics [1] 
in areas as Astrophysics [2] and Stellar Atmosphere [3]. 

In our preoccupations [4-6], we focus on the harmonic components of the wave functions 
generated by the physical model of hydrogen atom. 

In addition to various theoretical aspects, the angular components of wave functions 
complement the purely mathematical and topological studies relating to the spherical 
harmonics, which are also found in the pulsation modes of stars [7]. 

The paper structure is as follows: in Section 2, we briefly present the basic equations and 
formulas for our atomic model; in Section 3, for a fixed n less than 5, we consider the spherical 
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harmonics and compute the corresponding θ nodal values. We then construct 3D 
representations of orbital states and describe them using these nodal values. 

Finally, we underline the importance of visualizing orbitals in 3D using spherical 
harmonics corresponding to the atomic shells and sub-shells. 

2. BASIC EQUATIONS FOR THE HYDROGEN ATOMIC QUANTUM 
MODEL 

In the fine structure atomic model, for an atemporal potential like Coulomb potential, 

𝑉𝑉 = 𝑉𝑉(𝑟𝑟) = −𝑒𝑒2

4𝜋𝜋𝜀𝜀0𝑟𝑟
, Schrödinger equation becomes [1]: 
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where r > 0, θ ϵ (0, π), φ ϵ [0, 2π) are the spherical coordinates, µ the reduce mass, e is the 
electron charge and ɛ0 is the permittivity of vacuum. 
This potential has also spherical symmetry [4], so we can write Laplace’s operator: 
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Solving the Schrödinger equation using the variables separation method, we find the space 
components of wave functions: 

𝜓𝜓𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟,𝜃𝜃,𝜑𝜑) = 𝑅𝑅𝑛𝑛𝑛𝑛(𝑟𝑟) ⋅ 𝑌𝑌𝑙𝑙𝑚𝑚(𝜃𝜃,𝜑𝜑) (3) 

and the following quantum states (n, ℓ, m) characterized by n =1,2,3 … the principal quantum 
number which quantifies the total energy of the electron ℓ = 0, 1, 2, …, n-1, the quantum 
number of the orbital angular momentum and m = - ℓ, … 0, …ℓ, the magnetic quantum number. 
Further, the radial components are: 
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with their associated Laguerre’s polynomials and the first Bohr’s radius a0. 
Also, the harmonic components are: 

𝑌𝑌ℓ
𝑚𝑚(𝜃𝜃,𝜑𝜑) = (−1)𝑚𝑚�

(2ℓ + 1)(ℓ−𝑚𝑚)!
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𝑚𝑚(cos𝜃𝜃)𝑒𝑒𝑖𝑖𝑖𝑖𝜑𝜑, 𝑚𝑚 ≥ 0 (5) 

and: 
𝑌𝑌ℓ
−𝑚𝑚(𝜃𝜃,𝜑𝜑) = (−1)𝑚𝑚𝑌𝑌ℓ

𝑚𝑚(𝜃𝜃,𝜑𝜑),𝑚𝑚 < 0  (6) 

with their associated Legendre’s polynomials.  
From physical reasons we compute a useful quantum expression namely the electron 
localization probability density function by formula  

|𝜓𝜓𝑛𝑛𝑛𝑛𝑛𝑛(𝑟𝑟,𝜃𝜃,𝜑𝜑)|2 (7) 
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Since in eq. (6) the spherical harmonics expressions Yℓ
m m show quasi-symmetric in relation 

to the index m, in this paper we work in the convention m = |m|. 

3. THE 2D AND 3D REPRESENTATION OF THE ATOMIC ORBITALS 
In the system of spherical coordinates in colatitude θ ϵ (0, π) and azimuth φ ϵ [0, 2π), and based 
on the formulas (5) - (7), we build and describe the orbital shapes associated with the quantum 
states of the hydrogen atom excited with n ≤ 4. 

For a fixed n, their sub-shells are used to compute the spherical expressions [5] via the 
formula (5) up to the degree ℓ = 3 and m = 0…ℓ. Then, we compute the θ nodal values for each 
sub-shell and obtain the following results: 
For ℓ = 1: 

𝑌𝑌10(𝜃𝜃,𝜑𝜑)   generates the θ nodal value: 𝜋𝜋
2
. 

𝑌𝑌11(𝜃𝜃,𝜑𝜑)   generates the θ nodal value: 0, π. 
For ℓ = 2: 
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𝑌𝑌21(𝜃𝜃,𝜑𝜑)   generates the θ nodal value: 0, 𝜋𝜋
2
 , π. 

𝑌𝑌22(𝜃𝜃,𝜑𝜑)   generates the θ nodal value: 0, π. 
For ℓ = 3: 

𝑌𝑌30(𝜃𝜃,𝜑𝜑)   generates the θ nodal values:𝜋𝜋
2
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𝑌𝑌31(𝜃𝜃,𝜑𝜑)   generates the θ nodal values: 0, π, 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎�1
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𝑌𝑌31(𝜃𝜃,𝜑𝜑)   generates the θ nodal value: 0, 𝜋𝜋
2
 , π. 

𝑌𝑌32(𝜃𝜃,𝜑𝜑)   generates the θ nodal value: 0, π. 
In Figure 1, we make the 2D representation of the sub-shells corresponded to the quantum 

states (4 ℓ = 0..3  0). 
Further, we build the 3D representation of the sub-shells, including of the special quantum 

states [6], as follows: 
The sub-shell ℓ= 0 contains only the state (4 0 0) (Fig. 2). 

Fig. 1 – The 2D representation of states (4 ℓ = 0..3  0) beginning from the left panel for the orbital S with ℓ = 0 to 
the right panel for orbital F with ℓ = 3, respectively 

Remark: According to formula (5) and also from Fig. 2 we obtain that the state (4 0 0) does 
not display any nodal angle and we can generalize this remark to S-type orbitals. 
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Fig. 2 – The 3D representation of state (4 0 0). 

Inside the shell n = 4, we construct the geometric representations in spherical coordinates (θ, 
φ) for each sub-shell, namely for each fixed ℓ. 
Thus, we obtain 3D orbital visualizations from all three harmonic pulsation modes: namely, 
for m = 0, m = ℓ and for the rest of orbital states [2]. 
In Figures 3, 4 and 5, we represent the modes with m = 0 corresponding to the orbital states (4 
1 0), (4 2 0), (4 3 0). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3 – The 3D representation of state (4 1 0) 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 – The 3D representation of state (4 2 0) 
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Fig. 5 – The 3D representation of state (4 3 0) 

In Figures 6, 7 and 8, we represent the modes with m = ℓ corresponding to the orbital 
states (4 1 1), (4 2 2), (4 3 3). 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 – The 3D representation of state (4 1 1) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 – The 3D representation of state (4 2 2) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8 – The 3D representation of state (4 3 3) 
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In Figures 9, 10 and 11, we built the pulsating modes for the rest quantum states, namely 
(4 2 1), (4 3 1), (4 3 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9– The 3D representation of state (4 2 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 – The 3D representation of state (4 3 1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11– The 3D representation of state (4 3 2) 

In Fig. 12, we make a synthesis of the spherical harmonic types to illustrate the connection 
with the sub-shells with n = 4 of the hydrogen atom. 
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Fig. 12 – The 3D representation of states (4 ℓ m) using the real part of harmonic components 

4. CONCLUSIONS 
In our work, we have constructed 3D geometric representations and given an analysis for the 
shapes of the hydrogen atomic orbitals associated with the states for a fixed n less than 5 (the 
10 states and their description in Section 3). We chose this case, because it contains at least 
one representative orbital for each of the three types of harmonics that we have found both in 
purely mathematical, topological studies and in the pulsation modes of stars [7]. We then, 
highlighted the role of observables such as θ nodal values, which are useful in the analysis and 
description of atomic orbital configurations in both 2D and 3D – representations. 
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