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only for one-dimensional decompositions. In order to take the full advantage of POD 

method, we have applied it for decomposing the full three-dimensional flow field. For this 

reason, we have considered that it is useful to study the rotor-stator interactions in a low-

pressure centrifugal stage, using both Adamczyk and proper orthogonal decomposition. 

2. NOMENCLATURE 

e internal energy (J/kg) 

fe external acceleration (m/s
2
) 

Fx, Fy, Fz vectors of convective components of flux 

Gx, Gy, Gz vectors of diffusive components of flux 

h static enthalpy (J/kg) 

I rothalpy (m
2
/s

2
) 

p static pressure (Pa) 

r radius (m) 

R gas constant (J/(kgK)) 

S vector of source term 

T static temperature (K) 

t time (s) 

u, v, w  Cartesian components of velocity (m/s) 

V absolute velocity (m/s) 

W relative velocity (m/s) 

ijk Levi-Civita symbol 

 thermal conductivity (W/(mK)) 

 dynamic viscosity (kg/(ms)) 

t eddy viscosity (kg/(ms)) 

 azimuthal (circumferential) angle (rad)  

 static density (kg/m
3
) 

 shear stress tensor (Pa) 

 angular velocity (rad/s) 

Subscript 

R rotor 

t turbulent 

Superscript 

eff effective (laminar + turbulent) 

3. GOVERNING EQUATIONS 

For a three-dimensional rotating Cartesian coordinate system, the unsteady Reynolds-

averaged Navier-Stokes equations using the Favre averaging (a mass-weighted averaging) 

could be written in the conservative form as [5,6] 
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where energy E and rothalpy I are defined by: 
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According to the Boussinesq hypothesis and Stokes postulates and hypothesis for a 

Newtonian fluid, the shear stresses 
eff

 may be written as: 
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The Sutherland’s formula could be used to determine the dynamic viscosity  as 

function of temperature, while the eddy viscosity t is computed with a turbulence model. 

For gases, the external force fe due to the gravitational acceleration is very small, 

therefore it can be neglected. Moreover, we can assume that the heat conduction is the single 

heat source. The pressure is obtained from the equation of state, 

RTp   (8) 

4. NUMERICAL SIMULATION 

The numerical simulations of the three-dimensional viscous flow were carried out on a 

centrifugal compressor designed, manufactured and tested by COMOTI, with commercial 

CFD code FLUENT that is based on finite volume method where each unknown takes an 

average value on each discretization cell. The computational domain generated in Gambit 

was split into eight blocks to facilitate the building of a fully structured mesh as shown in 

Fig. 1. The mesh for which, the results are given, has about 253 000 hexahedral cells for the 

impeller passage and 127 000 hexahedral cells for the vaned diffuser passage. 

It is worthwhile to notice that the residual smoothing algorithm allows reaching higher 

CFL numbers (gain is one magnitude order as recently mentioned in [7]). However, we did 

not employ this technique because it can affect the accuracy of unsteady results. In order to 

decrease the computational time, impressively, the time discretization is made with a 

backward implicit first order scheme and multigrid technique is used. To take into account 

the physical properties of flow, the convective fluxes are discretized with the Roe scheme, 

which is a Godunov-type scheme [5, 6]. Because the turbulence is not a critical issue of this 

study, we used the Spalart-Allmaras model [8], which is a one-equation turbulence model. 

At the inlet, a uniform stagnation pressure (96 310 Pa) and temperature (300 K) are imposed, 
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turbulent viscosity ratio t/ is 10 and the flow is normal to inlet. At the outlet, a uniform 

static pressure (156 000 Pa) is imposed. At the left and right sides of computational domain, 

the rotational periodic boundary conditions are imposed. All the walls have been assumed 

adiabatic. The shaft speed of impeller is 14 915 rpm. 

 

Fig. 1 Computational domain of centrifugal compressor 

5. ADAMCZYK DECOMPOSITION 

Non-uniformities and unsteadiness due to the rotor-stator interaction introduce major 

complexity in the analysis of the turbomachinery flow field. This problem can be 

considerably simplified if we apply the method of Adamczyk [9, 4] that proposed the 

decomposition of an arbitrary field variable u associated to a turbomachinery in four 

contributions through the successive application of averaging operators: 
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Starting from an arbitrary field u expressed in an inertial reference frame attached to the 

stationary row, the first averaging has as objective to extract the axisymmetric field 

independent by time and azimuthal coordinate. The second averaging is a time averaging in 

the inertial reference frame and it extracts from the remained field the flow structures 

attached to the stationary row while the third averaging also is a time averaging but in the 

rotating reference frame and it extracts from the remained field, the flow structures attached 

to the rotating row. Therefore, the third contribution is steady in the rotating reference frame. 

Finally, after three averaging, the residual field (fourth contribution) represents the unsteady 

part of initial field u in the inertial and rotating reference frame associated to stationary and 

rotating row, respectively. This contribution characterizes purely unsteady phenomena of 

turbomachinery flow. In order to better understand the unsteady rotor-stator interaction, the 

fourth contribution was decomposed with POD technique as shown in the next section. 
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As it follows, we will give some results for some control points placed in a section at 

mid height of blade of vaned diffuser, at the middle distance between the blade and the right 

periodic, as shown in Fig. 2. The numbering of these control points is from upstream to 

downstream. 

 

Fig. 2 Placement of control points 

 

Fig. 3 First component of Adamczyk decomposition for static pressure normalized by inlet static pressure and 

absolute velocity normalized by inlet absolute velocity 

The first component of Adamczyk decomposition for static pressure and absolute 

velocity, at considered control points is shown in Fig. 3. One sees that the compression 

process is smooth while the absolute velocity has big variations especially in the first part of 

vaned diffuser where the strong deceleration triggers a huge jet-wake region accompanied by 

boundary layer separation on suction side of vaned diffuser blade. These phenomena 

generate huge nonuniformities in the absolute velocity field as shown in Figs. 4 and 5, which 

induce important total pressure losses. For this reason, the compression process is very slow 

in the last part of vaned diffuser. 

Furthermore, the rectangular trailing edge of vaned diffuser blade generates additional 

nonuniformities, which are shown in Fig. 5 and losses. The homogenization process of flow 

begins after the trailing edge of vaned diffuser blade and it is accompanied by significant 

total pressure losses. For this reason, the air compression is very weak downstream of the 

trailing edge. The second component of Adamczyk decomposition for static pressure clearly 

shows the stagnation point, the rarefaction near leading edge, as well as the interaction 

among the blades of vaned diffuser in the region where the distance among blades is small as 

shown in Fig. 6. 

The Adamczyk decomposition clearly shows that this classical vaned diffuser with 

circular arc blades generates a huge jet-wake zone and important pressure losses because the 

channel is extremely divergent in the first part of vaned diffuser. In order to obtain better 

compressor performance, it is necessary to renounce the single circular arc vaned diffuser. 
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Fig. 4 Second and third component of Adamczyk decomposition for static pressure normalized by inlet static 

pressure and absolute velocity normalized by inlet absolute velocity 

 

Fig. 5 Isolines of second and third component of Adamczyk decomposition for absolute velocity in the 

section from the middle height of vaned diffuser 

 

Fig. 6 Isolines of second and third component of Adamczyk decomposition for static pressure in the 

section from the middle height of vaned diffuser 

6. PROPER ORTHOGONAL DECOMPOSITION 

In the field of fluid mechanics, two approaches have been used for the POD. Historically the 

method of Continuous POD (or the classical method) of Lumley [10] proceeded by the 

Snapshot POD of Sirovich [11]. More information regarding the application of the proper 

orthogonal decomposition in the analysis of turbulent flows together with a detailed 

bibliography is given in [12]. In this paper, we used the Snapshot POD because it is much 

more efficient from the numerical point of view. The POD is a method that reconstructs a 

data set from its projection onto an optimal base. Besides using an optimal base for 

reconstructing the data, the POD does not use any prior knowledge of the data set. It is 

because of this that the basis is only data dependent and this is reason that the POD is used 

also in analyzing the natural patterns of the flow field. For the reconstruction of the dynamic 

behavior of a system the POD decomposes the data set in two parts: a time dependent part, ak 

(t), that forms the orthonormal amplitude coefficients and a space dependent part, k(x) that 

forms the orthonormal basis. The reconstructed data set is: 
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where M is the number of time instant observations in the data set. 

We denote the error of the reconstructed data set as: 
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The base from which the data set is reconstructed is said to be optimal in the sense that 

the average least squares truncation error is minimized for any given number ( m M ) of 

basis functions over all possible sets of orthogonal functions: 

 ,m    (12) 

where the . is the ensemble average and  .,. is the standard Euclidian inner product. 

It was shown that the minimization condition for error (x,t) translates into maximum 

condition for: 
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This maximization can be proven to take place if the time independent base 

functions (x) are obtained from the Fredholm integral equation: 
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where Rij is the correlation kernel. In this way, we transform this into an eigenvalue problem 

and k is the eigenvalue corresponding of the eigenvector k. Because we can consider the 

inner product as being the equivalent of an “energy”, the value of k is linked to the energy 

contained in mode k and the optimization process involved can be summarized as: the data 

set is projected onto a basis that maximizes the energy content. While in the classical 

approach of Lumley [10], the correlation matrix is constructed as a space correlation matrix 

and solving the eigenvalue problem, we obtain directly the eigenvectors as the spatial modes 

and then use them in order to obtain the time-dependent coefficients  

      , ,k ka t u x t x  (15) 

in the Snapshot POD of Sirovich [11], the correlation matrix is a time correlation matrix: 

   
1

, , '
V

C u x t u x t dV
V

   (16) 

which is of the size of the square of the snapshots number. From the time correlation matrix, 

we get the eigenvalues k and time dependent eigenvectors k(t). The spatial eigenmodes that 

are time- independent are computed according to the formula: 
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where 
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k k   (18) 

For the reconstruction of u(x,t), we take into account only a small number of modes that 

contain the most energy: 
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The processed data are the variations of absolute velocity magnitude and static pressure 

fields, which represent the fourth term of Adamczyk decomposition according to Eq. 9. 

These variations were obtained from numerical simulations using the commercial CFD code 

Fluent. For each period, we took 20 snapshots and the time between adjacent snapshots is of 

t = 9.5781s; therefore, the Snapshot POD of Sirovich yields 20 eigenmodes for each 

considered field. The very high efficiency of the proper orthogonal decomposition is clearly 

underlined in Table 1. The sum of the first two modes represents 90.5% and 95.5% of the 

total energy, respectively for the variations of static pressure and absolute velocity 

magnitude fields while the sum of modes 6 to the last mode represents only 0.163% and 

0.236% of the total energy, respectively for the variations of static pressure and absolute 

velocity magnitude fields. Therefore, both variations of static pressure and absolute velocity 

magnitude fields can be accurately reconstructed using only the first four modes. 

Furthermore, these results confirm that the base from which the data set is reconstructed is 

indeed optimal. 

Table 1. Fraction of total energy for the most energetic modes 

Mode Fraction of total energy for 

variation of static pressure 

Fraction of total energy for variation of 

absolute velocity 

1 6.40E-01 5.49E-01 

2 2.65E-01 4.06E-01 

3 6.63E-02 2.13E-02 

4 1.72E-02 1.58E-02 

5 8.97E-03 5.73E-03 

6 1.41E-03 7.57E-04 

7 6.29E-04 4.50E-04 

8 1.60E-04 8.52E-05 

9 4.58E-05 7.30E-05 

10 4.02E-05 5.25E-05 

 

Fig. 7 The first four most energetic modes of variation of static pressure field 
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Fig. 8 Isolines of mode 1 for variation of static 

pressure in the section from the middle height of 

vaned diffuser 

Fig. 9 Isolines of mode 2 for variation of static 

pressure in the section from the middle height of 

vaned diffuser 

  
Fig. 10 Isolines of mode 3 for variation of static 

pressure in the section from the middle height of 

vaned diffuser 

Fig. 11 Isolines of mode 4 for variation of static 

pressure in the section from the middle height of 

vaned diffuser 

The sum of the first four most energetic modes of variation of static pressure field is 

98.9% of the total energy. These modes are physical because they show how the potential 

and wake effects affect the flow, especially in the impeller region. More exactly, the first 

mode that contains 64% of the total energy shows mainly the potential effects that affect the 

flow in the impeller region. For this reason, the peak of this mode is located on the interface 

between impeller region and vaned diffuser region as shown in Figs. 7 and 8. The second 

mode contains 26.5% of the total energy and it shows particularly the interaction between the 

wakes due to the circumferential Coriolis force and blunt trailing edge of impeller blade and 

potential effects. The peak of this mode is also placed near the interface between impeller 

region and vaned diffuser region as shown in Figs. 7 and 9, because at the middle distance 

between rows, this interaction is usually maximal. The third and fourth modes have 8.3% of 

the total energy and they represent mainly, the potential effects and the interaction between 

the wakes due to the circumferential Coriolis force and blunt trailing edge of impeller blade 

and potential effects that cannot be captured by the first two modes. Their peaks are also 

placed near the interface between impeller region and vaned diffuser region as shown in 

Figs. 7, 10 and 11. Unfortunately, these modes also contain some numerical errors such as 

reflection of numerical waves at rotational periodic boundaries near the leading edge of 

blades of vaned diffuser due to a sudden change of direction of these frontiers as shown in 

Fig. 10. The last modes contain only 1.1% of the total energy and represent mainly, the 

numerical errors that occur at the interface between rotating region and stationary region and 

due the rotational periodicity condition that is not too correct. Fortunately, they contain little 

energy (information). 
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Fig. 12 The first four most energetic modes of variation of absolute velocity magnitude field 

  
Fig. 13 Isolines of mode 1 for variation of absolute 

velocity magnitude in the section from the middle 

height of vaned diffuser 

Fig. 14 Isolines of mode 2 for variation of absolute 

velocity magnitude in the section from the middle 

height of vaned diffuser 

 

 

 

Fig. 15 Isolines of mode 3 for variation of absolute 

velocity magnitude in the section from the middle 

height of vaned diffuser 

Fig. 16 Isolines of mode 4 for variation of absolute 

velocity magnitude in the section from the middle 

height of vaned diffuser 

The first two most energetic modes of variation of absolute velocity magnitude field 

contain as much as 95.5% of the total energy. The first mode has 54.9% of the total energy 

and it represents the interaction between wakes due to the circumferential Coriolis force and 

blunt trailing edge of impeller blade and potential effects. According to theory of 

characteristics, this interaction affects especially the vaned diffuser region and its peak is 

located near the middle distance between impeller and vaned diffuser as shown in Figs. 12 

and 13. The second mode contains 40.6% of total energy and it represents the interaction 

between wakes and potential effects in the vaned diffuser region as well as the propagation 

of potential effects in the impeller region as shown in Figs. 12 and 14. The third and fourth 

modes have 3.7% of the total energy and they contain both physical and numerical 

information. Their peaks are also placed near the interface between impeller region and 

vaned diffuser region as shown in Figs. 12, 15 and 16. From the physical point of view, they 
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contain the information regarding the interaction between wakes and potential effects as well 

as the influence of potential effects in the impeller region. From the numerical point of view, 

they represent the numerical errors that occur at the interface between rotating region and 

stationary region and due to the rotational periodicity condition as shown in Figs. 15 and 16. 

Furthermore, one sees that the value of the third mode is not close to zero at the outlet 

boundary of computational domain as shown in Fig. 12 because we imposed a uniform static 

pressure on this frontier and this is not too correct according to the theory of characteristics 

[5, 6]. The analysis of time-dependent coefficients ak(t) (also called modal amplitudes or 

Fourier coefficients) allows to see if the neighboring spatial modes could interact or the 

interaction among them is excluded. 

 
Fig. 17 The time-dependent coefficients ak(t) corresponding to the first four most energetic modes of variation of 

static pressure field 

 

Fig. 18 The time-dependent coefficients ak(t) corresponding to the first four most energetic modes of variation of 

absolute velocity field 

One expects to be a correlation between spatial modes of variations of static pressure 

and absolute velocity. However, Figs 17 and 18 suggest that the first mode of variation of 

static pressure does not correspond to the first mode of variation of absolute velocity; the 

second mode of variation of static pressure does not correspond to the second mode of 

variation of absolute velocity and so on. But the periods of the first two time-dependent 

coefficient ak(t) are very close for both variations of static pressure and absolute velocity. 

Furthermore, the periods of a3(t) and a4(t) are also very close for both variations of static 

pressure and absolute velocity. These observations suggest that we should couple the first 

two modes and modes three and four in order to see their physical meaningfulness. 
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Fig. 19 The coupling of time-dependent coefficients ak(t) corresponding to the first four most energetic modes of 

variation of static pressure field 

 

Fig. 20 The coupling of time-dependent coefficients ak(t) corresponding to the first four most energetic modes of 

variation of absolute velocity field 

Analyzing Figs. 19 and 20, one suggest the possibility to exist a correlation between the 

first two coupled modes of variation of static pressure and the first two coupled modes of 

variation of absolute velocity. However, the following two coupled modes of variations of 

static pressure and absolute velocity seem to be uncoupled. 

7. RECONSTRUCTION 

Because the POD is a method that reconstructs a data set from its projection onto an optimal 

base, we need only four modes to accurately rebuild the variations of static pressure and 

absolute velocity fields. We will rebuild them for two moments placed at half the period (the 

number of impeller blades is equal to the number of vaned diffuser blades) as shown in Figs. 

21 and 22.  

  
Fig. 21 The first moment for which, the 

reconstruction is built and isolines of static pressure 

computed with commercial code Fluent 

Fig. 22 The second moment for which, the 

reconstruction is built and isolines of static pressure 

computed with commercial code Fluent 
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Fig. 23 Reconstruction of variation of absolute velocity magnitude field for first moment 

 
Fig. 24 Reconstruction of variation of static pressure field for first moment 

 
Fig. 25 Reconstruction of variation of absolute velocity magnitude field for second moment 

 
Fig. 26 Reconstruction of variation of static pressure field for second moment 
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Analyzing the Figs. 23-26, one observes that only four modes are enough to accurately 

reconstruct the variations of static pressure and absolute velocity magnitude fields. 

Furthermore, the points where the field variable u(x,t) has high absolute values are better 

reconstructed than the points with small absolute values because the data set is projected 

onto a basis that maximizes the energy content. In other words, points with high energy 

(information) are reconstructed more accurately than points with low energy. 

As it follows, we will reconstruct the variations of static pressure and absolute velocity, 

in the section from the middle height of vaned diffuser, using all modes, the first two modes 

and modes three and four, as shown in Figs 27-38. 

  
Fig. 27 Reconstruction of variation of static pressure 

field for first moment, using all modes (20) 
Fig. 28 Reconstruction of variation of static pressure 

field for second moment, using all modes (20) 

 
 

Fig. 29 Reconstruction of variation of absolute 

velocity field for first moment, using all modes (20) 
Fig. 30 Reconstruction of variation of absolute 

velocity field for second moment, using all modes 

(20) 

 
 

Fig. 31 Reconstruction of variation of static pressure 

field for first moment, using the first two modes 
Fig. 32 Reconstruction of variation of static pressure 

field for second moment, using the first two modes 
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Fig. 33 Reconstruction of variation of absolute 

velocity field for first moment, using the first two 

modes 

Fig. 34 Reconstruction of variation of absolute 

velocity field for second moment, using the first two 

modes 

  

Fig. 35 Reconstruction of variation of static pressure 

field for first moment, using only modes 3 and 4 
Fig. 36 Reconstruction of variation of static pressure 

field for second moment, using only modes 3 and 4 

  

Fig. 37 Reconstruction of variation of absolute 

velocity field for first moment, using only modes 3 

and 4 

Fig. 38 Reconstruction of variation of absolute 

velocity field for second moment, using only modes 3 

and 4 

The reconstruction clearly shows that the pressure gradient has a secondary role in the 

absolute velocity field where rotational and Coriolis effects are dominants. According to 

Bernoulli equation, there is not any correlation between the first two coupled modes of static 

pressure variation and the first two coupled modes of absolute velocity variation although the 

coupled time coefficients ak(t) suggested the possibility to exist a relationship between them. 

8. CONCLUSIONS 

Both Adamczyk and proper orthogonal decompositions have been successfully applied to the 

decomposition of fully three-dimensional static pressure and absolute velocity magnitude 

fields obtained from numerical simulations, using the commercial CFD code Fluent. 

The Adamczyk decomposition clearly shows that the single circular arc vaned diffuser 

generates a huge jet-wake region and important pressure losses because the channel is highly 

divergent in the first part of vaned diffuser. In order to obtain better compressor performance 

it is necessary to renounce the circular arc vaned diffuser. 
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Both variations of static pressure and absolute velocity magnitude fields can be 

accurately reconstructed using only the first four modes; therefore, the proper orthogonal 

decomposition method is a very efficient method for the data storage of unsteady flows. 

Moreover, the POD technique is able to capture the relevant features of the unsteady rotor-

stator interaction, especially, the potential effects and the interaction between wakes due to 

the circumferential Coriolis force and blunt trailing edge of impeller blade and potential 

effects. 

The reconstruction clearly shows that the pressure gradient has a secondary role in the 

absolute velocity field because the rotational and Coriolis effects are dominants. This 

conclusion is in concordance with Rochuon’s observations [4]. 

Furthermore, the POD method clearly shows the numerical errors such as those errors 

that occur at the interface between rotating region and stationary region because the 

information exchange does not use the characteristic variables, the reflection of numerical 

waves at rotational periodic and outlet boundaries as well as their magnitude. In order to 

obtain more accurate results, we should impose the phase-lagged condition [4,13], which is 

not yet available in Fluent, on the left and right sides of computational sides, instead of the 

rotational periodicity condition or to simulate the whole stage [7]. 
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