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Abstract: This paper presents a comparative study of two Successive Convexification (SCvx) 
formulations with free final time for the powered descent guidance (PDG) of Falcon 9’s first stage. SCvx 
solves non-convex trajectory problems by linearizing dynamics and constraints, then solving convex 
subproblems via CVX in MATLAB. Two cost functions are investigated—maximizing final mass and 
minimizing total thrust both aiming to reduce fuel use. The 3 degrees of freedom (3-DoF) model includes 
realistic constraints such as thrust bounds, gimbal limits, glide slope, vertical landing and a novel 
implementation of vertical thrust rate constraint into a variable time problem. Simulations reveal how 
cost function choice affects fuel efficiency and trajectory design. 
Key Words: Successive Convexification, Powered Descent Guidance, Trajectory Optimization, Falcon 
9, First Stage Landing, Convex Programming, MATLAB, CVX, Vertical Landing, Rocket Reusability, 
Thrust Vectoring, Trust Region, Fuel Optimization 

1. INTRODUCTION 
The recovery and reuse of launch vehicle stages has become a central objective in modern 
spaceflight, significantly reducing the cost of access to space. SpaceX’s Falcon 9 first-stage 
booster exemplifies this capability through a complex autonomous landing procedure that 
demands precise real-time trajectory optimization under tight physical and operational 
constraints. To enable such guidance strategies, efficient and reliable algorithms capable of 
solving non-convex optimal control problems are essential. 

This paper investigates two SCvx formulations for solving a 3-DoF powered descent 
guidance problem representative of Falcon 9 first-stage landings. SCvx addresses non-convex 
trajectory optimization by solving a sequence of convex subproblems, enabling potential real-
time implementations under strict physical constraints. 

The two formulations differ in their cost functions: one maximizes final mass, while the 
other minimizes total thrust - both aiming to reduce fuel consumption. Realistic constraints 
such as thrust and gimbal limits, glide slope, and vertical landing are enforced. Implemented 
in MATLAB using CVX, the approaches are compared via simulation to assess their impact 
on fuel efficiency, trajectory shape, and thrust behavior, offering practical insights for reusable 
rocket guidance design. 
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2. SUCCESSIVE CONVEXIFICATION ALGORITHMS ARCHITECTURE 
The SCvx algorithm is a specific instance of the broader Sequential Convex Programming 
(SCP) framework, which addresses non-convex problems through iterative convex 
approximations. Another SCP-based method is Guaranteed Sequential Trajectory 
Optimization (GuSTO), which builds on similar principles [1]. All SCP algorithms share a 
core structure: at each iteration, a convex subproblem is solved and updated based on the 
current solution. As shown in Figure 1, SCP can be viewed as a predictor-corrector process - 
evaluating the current trajectory in the forward phase, and, if necessary, refining the 
approximation in the corrector phase to improve solution accuracy [1]. 
 

 
Figure 1. Block diagram of a typical SCP algorithm 

SCP methods solve non-convex problems by iteratively refining convex approximations, 
or subproblems, based on a user-defined reference trajectory. This initial guess, often 
infeasible, guides local linearization of non-convex elements, while convex parts remain 
unchanged. Well-designed SCP algorithms ensure feasibility post-linearization and discretize 
the continuous-time subproblem for numerical solution. A convex solver computes the optimal 
solution, which is then checked against stopping criteria. If not met, the solution updates the 
trust region and serves as the next reference. Key trade-offs include how convex 
approximations are formed, solutions updated, and convergence assessed, all affecting 
performance and theoretical guarantee [2] s.  

The most general form of the problems solved by SCvx is: 
min
𝑢𝑢,𝑝𝑝

 𝐽𝐽(𝒙𝒙, 𝒖𝒖, 𝒑𝒑)

 s.t. 𝒙̇𝒙 = 𝑓𝑓(𝑡𝑡, 𝐱𝐱(𝑡𝑡), 𝐮𝐮(𝑡𝑡), 𝐩𝐩)
(𝑥𝑥(𝑡𝑡), 𝑝𝑝) ∈ 𝑋𝑋(𝑡𝑡),
(𝑢𝑢(𝑡𝑡), 𝑝𝑝) ∈ 𝑈𝑈(𝑡𝑡),

𝑠𝑠(𝑡𝑡, 𝑥𝑥(𝑡𝑡), 𝑢𝑢(𝑡𝑡), 𝑝𝑝) ≤ 0,
𝑔𝑔𝑖𝑖(𝑥𝑥(0), 𝑝𝑝) = 0,
𝑔𝑔𝑓𝑓(𝑥𝑥(1), 𝑝𝑝) = 0.

 (1) 

where 𝐱𝐱 ∈ ℝ𝑛𝑛 represents the state trajectory vector, 𝐮𝐮 ∈ ℝ𝑚𝑚 is the control vector and 𝐩𝐩 ∈ ℝ𝑑𝑑is 
a vector of parameters. The function 𝑓𝑓: ℝ × ℝ𝑛𝑛 × ℝ𝑚𝑚 × ℝ𝑑𝑑 → ℝ𝑛𝑛 represents the dynamics, 
assumed to be continuously and differentiable. 

Additionally, 𝐱𝐱 and 𝐮𝐮 are subject to constraints 𝐱𝐱 ∈ 𝑿𝑿 and 𝐮𝐮 ∈ 𝑼𝑼 where sets 𝑿𝑿 ∈ ℝ𝑛𝑛 and 
𝑼𝑼 ∈ ℝ𝑚𝑚 are assumed to be convex. The nonconvex constraints are represented by the 
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continuously differentiable function 𝑠𝑠: ℝ × ℝ𝑛𝑛 × ℝ𝑚𝑚 × ℝ𝑑𝑑 → ℝ𝑛𝑛. The initial and �inal 
boundary constraints are introduced in the problem by functions 𝑔𝑔𝑖𝑖: ℝ𝑛𝑛 × ℝ𝑑𝑑 → ℝ𝑛𝑛𝑖𝑖 
respectively 𝑔𝑔𝑓𝑓: ℝ𝑛𝑛 × ℝ𝑑𝑑 → ℝ𝑛𝑛𝑓𝑓. For the free �inal time applications, the problem formed 
by equations from (2.1) is de�ined over a normalized period [0, 1] and with the help of a 
time dilation coef�icient, the user can transform this normalized interval into the real 
time interval �t0, t𝑓𝑓 �. 

All SCP methodologies work by addressing a series of local convex approximations to 
the optimization challenge defined by (1), which are referred to as subproblems. As illustrated 
in Figure 1, the algorithm needs a user-supplied initial trajectory guess. It will be denoted as 
 {𝒙𝒙(𝑡𝑡), 𝒖𝒖(𝑡𝑡), 𝒑𝒑 }. A very common method for obtaining an initial trajectory is the straight-line 
interpolation. The first aspect needed to be addressed when performing an interpolation, is the 
selection of the initial and final states 𝐱𝐱i and 𝐱𝐱f. In this scenario, those points represent the 
initial, respectively final boundary conditions of the problem. The state trajectory is defined 
as a linear interpolation between those two conditions [3]: 

𝒙𝒙(𝑡𝑡) = (1 − 𝑡𝑡)𝐱𝐱𝑖𝑖 + 𝑡𝑡𝐱𝐱f for 𝑡𝑡 ∈ [0, 1] (2) 

But to have a complete set of data for the initial trajectory, the initial control vector needs 
to be computed. Following the same strategy as above, the user can select the initial and final 
controls based on the insight given by the physics of the problem. 

For example, if the problem concerns the landing of a rocket, one of the states from 𝒙𝒙(𝑡𝑡) 
will be the mass of the system, so each element of the initial control vector can be computed 
as 𝒖𝒖(𝑡𝑡) = 𝑚𝑚(𝑡𝑡)𝐠𝐠. To complete the image of the trajectory initialization, an input value for 𝒑𝒑 
is needed as well. If the problem to be solved is described by a free final time, then 𝒑𝒑 represents 
a guessed final time of the problem. 

Following the structure of the block diagram in Figure 1, after the initial trajectory 
generation, the next step is convexifying the problem defined by (1). From the perspective of 
computational efficiency, the most effective approach is to approximate each nonconvex 
function in the problem using a first-order Taylor expansion [3]. This approximation yields a 
line tangent to the function at a specific point - hence the term “linearization”. To apply this 
process, it is necessary to select the points around which the linearization will be performed. 
This highlights the importance of having an initial reference trajectory. By replacing each 
nonconvex function with its first-order approximation around the corresponding reference 
trajectory points, the resulting subproblems become convex. 

Before starting to explore the model any further, let us consider the formula of any first 
order Taylor approximation of a function  𝑔𝑔(𝑥𝑥), 𝑥𝑥 ∈ ℝ around a given point 𝑎𝑎 ∈ ℝ: 

𝑔𝑔(𝑥𝑥) ≅ 𝑔𝑔(𝑎𝑎) + 𝑔𝑔′(𝑥𝑥 − 𝑎𝑎) (3) 

In the next formulas, the notation 𝐱𝐱0, 𝐮𝐮0 will denote the states and controls from the initial 
guessed trajectory and 𝐱𝐱, 𝐮𝐮 will now represent vectors. The initial guess will play the role of  
𝑎𝑎 from (3) and 𝑓𝑓(𝐱𝐱, 𝐮𝐮) will represent the dynamics of the system. By using the first order 
Taylor Series approximation, the dynamics is linearized as (3): 

𝑓𝑓(𝒙𝒙, 𝒖𝒖) ≃ 𝑓𝑓(𝒙𝒙0, 𝒖𝒖0) + 𝑓𝑓′(𝒙𝒙 − 𝒙𝒙0, 𝒖𝒖 − 𝒖𝒖0) (4) 

Where the term 𝑔𝑔(𝑎𝑎) from (3) is 𝑓𝑓(𝒙𝒙, 𝒖𝒖)|𝒙𝒙0,𝒚𝒚0. Next, the term 𝑔𝑔′(𝑥𝑥 − 𝑎𝑎) from (3) must 
be constructed, so the first order derivative of 𝑓𝑓 with respect to the states 𝒙𝒙 and the first order 
derivative of 𝑓𝑓 with respect to the control 𝒖𝒖 are needed: 



Stefan Dragos DRAGAN, Alexandra BOTEZ  16 
 

INCAS BULLETIN, Volume 17, Issue 3/ 2025 

𝑨𝑨 =
𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝐱𝐱0,𝐮𝐮0

𝑩𝑩 =
𝜕𝜕

𝜕𝜕𝜕𝜕
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝐱𝐱0,𝐮𝐮0

 (5) 

𝑨𝑨 represents the state matrix and 𝑩𝑩 the control matrix of the system. They are numerically 
computed with values from the initial guessed trajectory. With those Jacobians computed, 
𝑓𝑓′(𝒙𝒙 − 𝒙𝒙0, 𝒖𝒖 − 𝒖𝒖0) from (4) can be formulated as: 

𝑓𝑓′(𝒙𝒙 − 𝒙𝒙0, 𝒖𝒖 − 𝒖𝒖0) =
𝜕𝜕

𝜕𝜕𝒙𝒙
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝒙𝒙0,𝒖𝒖0�����������
𝑨𝑨

𝒙𝒙 −
𝜕𝜕

𝜕𝜕𝒙𝒙
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝒙𝒙0,𝒖𝒖0�����������
𝑨𝑨

𝒙𝒙0 +

 +
𝜕𝜕

𝜕𝜕𝒖𝒖
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝒙𝒙0,𝒖𝒖0�����������
𝑩𝑩

𝒖𝒖 −
𝜕𝜕

𝜕𝜕𝒖𝒖
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝒙𝒙0,𝒖𝒖0
𝒖𝒖0

�������������
𝑩𝑩

𝑓𝑓′(𝒙𝒙 − 𝒙𝒙0, 𝒖𝒖 − 𝒖𝒖0) = 𝑨𝑨(𝒙𝒙 − 𝒙𝒙0) + 𝑩𝑩(𝒖𝒖 − 𝒖𝒖0)

 (6) 

At this time, the dynamic is completely linearized around the initial guessed trajectory 
and can be written as:  

𝑓𝑓(𝒙𝒙, 𝒖𝒖) ≃ 𝑓𝑓(𝒙𝒙0, 𝒖𝒖0) + 𝑓𝑓′(𝒙𝒙 − 𝒙𝒙0, 𝒖𝒖 − 𝒖𝒖0)

𝑓𝑓(𝒙𝒙, 𝒖𝒖) ≃ 𝑓𝑓(𝒙𝒙0, 𝒖𝒖0) +
𝜕𝜕

𝜕𝜕𝒙𝒙
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝒙𝒙0,𝒖𝒖0
𝒙𝒙 +

𝜕𝜕
𝜕𝜕𝒖𝒖

(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�
𝒙𝒙0,𝒖𝒖0

𝒖𝒖 −

−
𝜕𝜕

𝜕𝜕𝒙𝒙
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝒙𝒙0,𝒖𝒖0
𝒙𝒙0 −

𝜕𝜕
𝜕𝜕𝒖𝒖

(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�
𝒙𝒙0,𝒖𝒖0

𝒖𝒖0

 (7) 

For simplicity, the following notations can be used: 

𝑓𝑓(𝒙𝒙0, 𝒖𝒖0) = 𝜮𝜮 

−
𝜕𝜕

𝜕𝜕𝒙𝒙
(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�

𝒙𝒙0,𝒖𝒖0
𝒙𝒙0 −

𝜕𝜕
𝜕𝜕𝒖𝒖

(𝑓𝑓(𝒙𝒙, 𝒖𝒖))�
𝒙𝒙0,𝒖𝒖0

𝒖𝒖0 = 𝒛𝒛 
(8) 

In the end, substituting the notations from (8) into (7), the linearized dynamics can be 
formulated as [3]: 

𝑓𝑓(𝒙𝒙, 𝒖𝒖) = 𝑨𝑨𝑨𝑨 + 𝑩𝑩𝑩𝑩 + 𝜮𝜮 + 𝒛𝒛 (9) 

Although linearization is an effective and computationally efficient method for 
approximating nonconvex functions, it comes with certain limitations such as artificial 
infeasibility and artificial unboundedness. To deal with those problems, the SCvx algorithm 
can be configured with virtual control terms and trust regions [1]. 

At the first iteration of the algorithm, the initial guessed trajectory represents the reference 
trajectory which is an approximation of a solution to problem (1). With this input, the convex 
solver finds a better solution to the problem (1). When a new, better solution is found, the 
solver stops and then the algorithm enters into the second part of the loop: with the new 
solution found by the solver, it computes the new dynamics representative for the new 
trajectory and then discretizes it again. The new set of information about the new trajectory 
and the new dynamics are the new inputs representing the new reference trajectory for a new 
iteration of the convex solver. This process in repeated all over again until the convergence 
test is passed. The convergence test verifies several aspects: 
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1.  if the differences between the new found trajectory and the old trajectory are smaller 
than a threshold; 

2. if the virtual control of the new found trajectory is smaller than a threshold; 
3. if the difference between the new found final time and the old final time is smaller 

than a tolerance set by the user. 
The conditions must be checked for the convergence to be achieved. A small enough 

difference between the states of the trajectory means that the solver is beginning to find closer 
and closer solutions which is a sign of convergence and a very small virtual control means that 
the new trajectory respects the dynamic and there is no danger of artificial infeasibility. 
All thresholds are set by the user and if the test is passed, then the algorithm founds the optimal 
trajectory and it stops. 

3. MATHEMATICAL FORMULATION OF THE PROBLEM 
We will analyze the differences produced by having two differently ways of mathematically 
formulate the cost functions for a minimum fuel usage in a descending scenario: maximize 
final mass of the vehicle and minimize total thrust used by the engine. For both scenarios we 
will consider the time of flight as an optimization parameter which will be minimize by the 
algorithm. Before introducing the two equivalent cost function formulations, we first describe 
the 3-DoF dynamics and the associated constraints of the problem. 

The vehicle operates in a constant gravitational field, with negligible aerodynamic forces. 
Thrust is provided by a single gimbaled engine, capable of varying between predefined 
minimum and maximum limits. The engine's direction can be adjusted via a controllable 
gimbal angle, which is also bounded. The states vector will be represented by mass, three 
components of position (one vertical coordinate and two lateral coordinates) and three 
components of velocity vector (one vertical component of the velocity vector and two lateral 
components of the velocity vector). The control vector will be composed by the three 
components of the thrust vector (one vertical component and two lateral components). 

The vehicle consumes the fuel mass directly proportional with the thrust magnitude. This 
proportionality constant being [3]: 

α =
1

𝐼𝐼sp ⋅ 9.81
 (10) 

where 𝐼𝐼sp represent the specific impulse. Having the proportionality constant defined, the 
dynamics describing the mass depletion of the vehicle can be formulated as [3]: 

𝑚̇𝑚 = −α‖𝑻𝑻(𝑡𝑡)‖2 (11) 

The translational dynamics can be formulated as: 
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐫𝐫‾(𝑡𝑡) = 𝐯𝐯‾(𝑡𝑡) (12) 

𝑻𝑻 + 𝐆𝐆 = 𝑚𝑚𝐚𝐚‾ ⇒𝐚𝐚‾ =
(𝐓𝐓 + 𝐆𝐆)

𝑚𝑚
⇒ 𝐚𝐚 =

𝐓𝐓
𝑚𝑚

+
𝑚𝑚𝐠𝐠
𝑚𝑚

⇒

 ⇒
𝑑𝑑
𝑑𝑑𝑑𝑑

𝐯𝐯 =
𝐓𝐓
𝑚𝑚

+ 𝐠𝐠
 (13) 

Having the mathematical model of the vehicle dynamics, the desired constraints on the 
state and control are imposed. 
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First restriction is preventing the total final mass of the vehicle to be less than the mass of 
the vehicle structure: 

𝑚𝑚dry ≤ 𝑚𝑚(𝑡𝑡) (14) 

The second constraint is the glide slope of the trajectory. In other words, the vehicle must 
exist at all time inside an upward facing cone that makes an angle 𝛾𝛾 ∈ [0, 𝛾𝛾max ) with respect 
to the horizontal line. 

The convex constrain that is imposed for the vehicle to respect this condition has the 
following convex form: 

tg(𝛾𝛾max) ≤
𝒓𝒓𝐱𝐱(𝑡𝑡)

�𝒓𝒓𝒚𝒚(𝑡𝑡)2 + 𝐫𝐫𝐳𝐳(𝑡𝑡)2
 (15) 

The next constraint is the maximum velocity constraint, ensuring that the vehicle lands 
smoothly, along the computed trajectory: 

𝑣𝑣max ≥ ‖𝐯𝐯‾‖ (16) 

The magnitude constraint of the thrust vector is addressed by: 
𝑇𝑇max ≥ ‖𝐓𝐓‖
𝑇𝑇min ≤ ‖T‖ (17) 

Besides the magnitude range constraint of the thrust vector, the values of the gimbal angle 
must be bounded too [3]: 

cos (𝛿𝛿max)‖𝑻𝑻‖2 ≤ 𝐞𝐞1𝐓𝐓 (18) 

where 𝐞𝐞1 represents the unit vector on the x  axis (vertical axis), so 𝐞𝐞1𝐓𝐓 represents the vertical 
component of the thrust vector. 

Supplementary, a vertical landing constraint will be imposed. The thrust vector must have 
very low values on the lateral component on the last ten nodes of the trajectory: 

𝑒𝑒2TN−10,N−9,…,N ≤ 1 

𝑒𝑒3TN−10,N−9,…,N ≤ 1 
(19) 

A novel constraint implementation into a SCvx free final time algorithm is the vertical 
thrust rate constraint: 

𝑇̇𝑇𝑥𝑥
max𝜏𝜏𝜎𝜎old

𝑖𝑖−1 ≤ |𝐞𝐞1𝐓𝐓𝑘𝑘+1 − 𝐞𝐞1𝐓𝐓𝑘𝑘| (20) 

where 𝑇̇𝑇𝑥𝑥
𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum vertical thrust rate accepted, 𝜏𝜏 is the time step, 𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖−1 is 
the final time found by the previous SCvx iteration (𝑖𝑖 − 1) and 𝑘𝑘 represents the time node from 
trajectory. 

Before presenting the complete convex formulation suitable for implementation within an 
SCvx algorithm, several key aspects must be addressed. 

First, the system dynamics and thrust magnitude constraints introduce non-convexities 
into the problem. 

Second, once the problem has been convexified through linearization, the continuous-time 
dynamics must be discretized to enable numerical solution by the algorithm. 

To handle these steps, first-order Taylor expansions are applied to linearize the non-
convex constraints from dynamics equations and a Lossless Convexification technique is used 
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for convexifying the thrust bounds constraint, while a first-order hold method is used for time 
discretization. 

These procedures follow the approach outlined in [3]. 
Now, the whole problem is convex, discretized and ready to completely be formulated 

with the two variants of cost functions: 

a) maximize final mass: 

minimize �𝑤𝑤𝑚𝑚�𝑚𝑚𝑓𝑓 − 𝑚𝑚0� + 𝑤𝑤𝜇𝜇‖𝜇𝜇‖1 + 𝑤𝑤traj �Δtraj �2
+ 𝑤𝑤�me Δ𝑡𝑡𝑓𝑓� 

(21) 

where 𝑤𝑤𝑚𝑚 is a weight on the difference between final and initial mass, 𝑤𝑤𝜇𝜇‖𝜇𝜇‖1 is the virtual 
control term meant to handle artificial infeasibility [1] [3], 𝑤𝑤traj �Δtraj �2

is a term guarding 
against artificial unboundedness playing the role of a trust region [1] [3] and 𝑤𝑤�me Δ𝑡𝑡𝑓𝑓 is the 
term which includes the final time of the trajectory as an optimization variable along with its 
numerical weight [3]. 

b) minimize total thrust: 

minimize �𝑤𝑤𝑇𝑇𝑻𝑻 + 𝑤𝑤𝜇𝜇‖𝜇𝜇‖1 + 𝑤𝑤traj �Δtraj �2
+ 𝑤𝑤�me ⋅ Δ𝑡𝑡𝑓𝑓� 

(22) 

where 𝑤𝑤𝑇𝑇 represents a numerical weight on the whole thrust used across trajectory. 
The importance of minimizing a variable from the cost function is direct proportional with the 
value of its weight. 

Subject to: 
Bounded time condition: 

0 ≤ 𝑡𝑡𝑓𝑓 (23) 

Initial conditions: 
𝑚𝑚(0) = 𝑚𝑚total 

𝒓𝒓(0) = 𝒓𝒓𝑖𝑖
𝒗𝒗(0) = 𝒗𝒗𝑖𝑖

 (24) 

Final conditions: 

𝒓𝒓�𝑡𝑡𝑓𝑓� = 𝒓𝒓𝑓𝑓

𝒗𝒗�𝑡𝑡𝑓𝑓� = 𝒗𝒗𝑓𝑓
 (25) 

Discrete dynamics [3]: 

𝒙𝒙𝑘𝑘+1 = 𝑨𝑨‾ 𝑘𝑘𝒙𝒙𝑘𝑘 + 𝑩𝑩‾ 𝑘𝑘𝒖𝒖𝑘𝑘 + 𝑪𝑪‾ 𝑘𝑘+1𝒖𝒖𝑘𝑘+1 + 𝜮𝜮‾ 𝑘𝑘𝜎𝜎 + 𝒛𝒛‾𝑘𝑘 + 𝜇𝜇, 𝑘𝑘 ∈ [1, 𝐾𝐾 − 1] (26) 

State Constraints: 
𝑚𝑚𝑑𝑑𝑑𝑑𝑑𝑑 ≤ 𝑚𝑚(𝑡𝑡)

tg(𝛾𝛾max) ≤
𝒓𝒓𝑥𝑥(𝑡𝑡)

�𝒓𝒓𝑦𝑦(𝑡𝑡)2 + 𝒓𝒓𝑧𝑧(𝑡𝑡)2

v𝑚𝑚𝑚𝑚𝑚𝑚 ≥ ‖𝒗𝒗‖

 (27) 

Control constraints: 
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T𝑚𝑚𝑚𝑚𝑚𝑚 ≥ ‖𝑻𝑻‖ 

T𝑚𝑚𝑚𝑚𝑚𝑚 ≤
𝑢𝑢0𝑇𝑇

‖𝑢𝑢0‖2
𝒖𝒖 

cos (𝛿𝛿max)‖𝑻𝑻‖2 ≤ 𝒆𝒆‾1𝑻𝑻 

𝒆𝒆2𝑻𝑻𝑁𝑁−10,𝑁𝑁−9,…,𝑁𝑁 ≤ 1 

𝒆𝒆3𝑻𝑻𝑁𝑁−10,𝑁𝑁−9,…,𝑁𝑁 ≤ 1 

𝑇̇𝑇𝑥𝑥
𝑚𝑚𝑚𝑚𝑚𝑚𝜏𝜏𝜎𝜎𝑜𝑜𝑜𝑜𝑜𝑜

𝑖𝑖−1 ≤ �𝒆𝒆1𝑻𝑻𝑘𝑘+1 − 𝒆𝒆1𝑻𝑻𝑘𝑘� 

(28) 

4. RESULTS FROM SIMULATIONS 
The results presented are the results of running the problem above using the specifications of 
the SpaceX Falcon 9 first step [4]. Specifically, it has a total mass of 396400 [kg], a maximum 
thrust of 7600 [kN] and a minimum thrust of 2400 [kN]. The gimbal angle can deflect the 
thrust vector away by the vertical direction with a maximum of 20 [deg] and the maximum 
thrust rate allowed for this example is set to 400 [kN/s]. The initial position of the mission is 
at 1000 [m] on vertical, respectively 200 [m] and 100 [m] on laterals. The initial velocity has 
the components -10 [m/s] on vertical, respectively -1 [m/s] and 1[m/s] on laterals. The target 
position is [0; 0; 0] [m] and the final velocity is set to be [0; 0; 0]. The maximum velocity that 
the vehicle is allowed to have along trajectory is 50 [m/s] and the vehicle is constrained to 
remain in a glideslope cone making 60 [deg] with respect to the horizontal. 
For these simulations, a number of 100 discretization points was used and the algorithm was 
run in the Matlab R2021a environment using the CVX SDPT 3 solver for the convex 
optimization problem. 

 
Figure 2. 3D trajectory - maximize final mass 

 
Figure 3. 3D trajectory - minimize total thrust 

Figure 2 and Figure 3 reveal that both SCvx formulations—maximizing final mass and 
minimizing total thrust – yield smooth, feasible trajectories that meet the problem's initial and 
final conditions. Visually, the two trajectories appear very similar, indicating that both 
objective functions are effective in guiding the vehicle to its target while respecting dynamic 
and physical constraints. This suggests that, under the given conditions, the choice of cost 
function has minimal impact on the overall trajectory shape. However, as explored further in 
the simulation results, subtle differences may still arise in thrust usage, fuel efficiency, or 
control behavior, which are not immediately apparent from the trajectory plots alone. 
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Figure 4. Positions - maximize final mass 

 
Figure 5. Positions - minimize total thrust 

Maximizing final mass yields a faster, more fuel-efficient descent with sharper position 
changes (Figure 4). Minimizing total thrust produces a slower, more controlled trajectory that 
stretches the descent time to reduce instantaneous thrust demand (Figure 5). Both methods 
result in accurate landing at the origin. 

 
Figure 6. Velocity - maximize final mass 

 
Figure 7. Velocity - minimize total thrust 

As it can be observed in Figure 6 and Figure 7, maximizing final mass leads to a faster, 
more fuel-efficient descent, while minimizing total thrust results in a slower, more 
conservative trajectory with gentler velocity changes. Another observation is represented by 
the lateral velocities becoming closer and closer to zero several seconds before touchdown. 
This fact enforces the vertical landing constraint formulated in the problem, meaning that close 
to the landing site, the vehicle has only vertical motion.  

 
Figure 8. Thrust profile - maximize final mass 

 
Figure 9. Thrust profile - minimize total thrust 
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The maximize final mass formulation applies more aggressive and time-varying thrust, 
particularly near landing, to minimize fuel use by shortening the burn duration (Figure 8). In 
contrast, the minimize total thrust formulation results in a smoother thrust profile with fewer 
sharp variations, favoring gradual control inputs and extended descent time to reduce overall 
thrust expenditure (Figure 9). 

 
Figure 10. Consumed mass and final time - maximize 

final mass 

 
Figure 11. Conusmed mass and final time - minimize 

total thrust 

Figure 10 and Figure 11 prove that maximizing final mass formulation achieves better 
fuel efficiency and faster landing, while minimizing total thrust reduces instantaneous control 
effort at the cost of higher total fuel use and longer flight time. 

 
Figure 12. Gimbal angle evolution - maximize final 

mass 

 
Figure 13. Gimbal angle evolution - minimize total 

thrust 

Maximizing final mass results in larger and more dynamic gimbal deflections, enabling 
tighter maneuvering for rapid descent (Figure 12). In contrast, minimizing total thrust produces 
gentler, more stable gimbal behavior, prioritizing smoother control at the cost of longer flight 
time (Figure 13). 

Both of them respect the gimbal constraint limit and in the final part they are both equal 
to zero. 

This is another mathematical way of expressing that the vertical landing constraint is 
respected because the vehicle does not need any lateral forces to reach the final position in the 
last seconds of flight. 
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Figure 14. Vertical thrust rate - maximize final mass 

 
Figure 15. Vertical thrust rate - minimize total thrust 

The maximize final mass case involves high-frequency, high-amplitude thrust changes, 
enabling quick trajectory corrections to save fuel (Figure 14). In contrast, the minimize total 
thrust strategy maintains a more stable thrust rate, reducing control effort and promoting a 
smoother descent (Figure 15). Also, it can be observed that the vertical thrust rate constraint is 
being respected. 

 
Figure 16. Time convergence - maximize final mass 

 
Figure 17. Time convergence - minimize total thrust 

Figure 16 and Figure 17  show that both SCvx formulations demonstrate rapid and stable 
convergence in under six iterations. The method effectively refines the trajectory time from an 
initial rough guess to an optimized solution, confirming its efficiency and robustness for both 
fuel-saving and thrust-minimization objectives. 

 
Figure 18. Glide slope evolution - maximize final 

mass 

 
Figure 19. Glide slope evolution - minimize total 

thrust 
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Figure 18 and Figure 19 present the evolution of the glide slope angle along the generated 
trajectory. In this case, the glide slope angle is defined as the angle between the position vector 
of the vehicle and the horizontal plane. Because this angle can be calculated using only the 
coordinates of the vehicle on each axis, it can be verified that the evolution of this parameter 
is correct by looking at the initial starting point. The initial position is (1000, 200, 100) [m] 
which correlates with a glide slope angle of approximately 78 [deg] which is what the plot is 
showing. This angle converging to 90 [deg] as the vehicle is approaching the landing site is 
another mathematical formulation to describe a vertical landing on the last time period of the 
trajectory. The glide slope constraint enforced here was that the vehicle to be always inside of 
a cone whose generator makes a 60 [deg] angle with the horizontal plane. It can be cleary seen 
the constraint is respected.  

 
Figure 20. Mass evolution - maximize final mass 

 
Figure 21. Mass evolution - minimize total thrust 

Maximizing final mass leads to faster fuel-efficient burns with less total mass loss (Figure 
20), while minimizing total thrust spreads out consumption, resulting in greater fuel usage over 
time despite smoother control actions (Figure 21). As observed, both trajectories exhibit an 
almost linear behavior in the initial phase. However, around the midpoint, the maximize final 
mass strategy must decelerate the vehicle from a higher velocity, requiring greater thrust—but 
only for a shorter duration. 

 
Figure 22. Virtual control evolution - maximize final 

mass 

 
Figure 23. Virtual control evolution - minimize total 

thrust 

The feasibility of the trajectory with respect to the dynamics and constraints is best 
described by the virtual control element displayed in Figure 22 and Figure 23. Virtual control 
is a fail-safe against the artificial infeasibily. A feasible trajectory solution is described by a 
very small virtual control on the whole trajectory wich is the sum of all virtual controls on 
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each point of the trajectory. Both formulations converge quickly, but the minimize total thrust 
approach shows faster feasibility recovery. The presence of small virtual control in the 
maximize final mass case suggests a slightly more challenging initial setup, though both 
converge to physically valid solutions within a few iterations. 

5. CONCLUSIONS 
This study presented a comparative analysis of two Successive Convexification (SCvx) 
formulations applied to the powered descent guidance (PDG) problem for a reusable launch 
vehicle, using the Falcon 9 first stage as a representative case. Both formulations - maximizing 
final mass and minimizing total thrust - produced feasible and dynamically consistent 
trajectories that satisfied all mission constraints. 

Simulation results revealed that the maximize final mass formulation achieved faster 
descent and greater fuel efficiency by applying more aggressive thrust and control maneuvers 
over a shorter time horizon. In contrast, the minimize total thrust formulation favored 
smoother, more gradual control inputs, resulting in a longer flight duration but increased total 
fuel consumption. 

The position, velocity, and thrust profiles showed that both strategies effectively guided 
the vehicle to the target while staying within glide slope, gimbal, and thrust constraints. 
However, the final mass maximization exhibited sharper changes in thrust rate and gimbal 
angle, which may be more demanding on actuators. On the other hand, thrust minimization 
offered a more stable control profile with lower instantaneous demands. 

Virtual control and time convergence plots confirmed the robustness and efficiency of the 
SCvx algorithm in both cases. Virtual control dropped to near-zero within a few iterations, 
indicating high-quality convergence, especially for the thrust minimization case. 

In summary, both SCvx formulations are valid and effective. The choice between them 
should be guided by mission priorities: 

• Maximize final mass is ideal for fuel-critical missions requiring efficient fuel use. 
• Minimize total thrust is better suited for missions prioritizing low control effort and 

smoother descent dynamics. 
These findings offer valuable insights for designing real-time guidance algorithms for 

reusable rocket landings, balancing fuel use, control effort, and trajectory smoothness 
depending on operational goals. 
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