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Abstract: The plane non-stationary problem of the dynamics of a thin elastic shell in the form of a 
hyperbolic cylinder immersed in a liquid under the action of an oblique acoustic pressure wave is 
considered. To solve this problem, a system of equations is constructed in a related statement. In this 
case, hydroelasticity problems are reduced to equations of shell dynamics, the damping effect of the 
liquid (dissipation effect) is taken into account by introducing an integral operator of the convolution 
type in the time domain. The problem is solved approximately on the basis of the hypothesis of a thin 
layer taking into account the damping forces in the liquid. The integro-differential equations of shell 
motion are solved numerically based on the difference discretization of differential operators and the 
representation of the integral operator by the sum using the trapezoid rule. The kinematic and static 
parameters of the system are given. 

Key Words: non-stationary dynamics, damping in a liquid, first-order theory, transitional surface 
functions, damping effect of a liquid 

1. INTRODUCTION 
An important problem of modern mechanics is the study of the non-stationary interaction of 
shock waves propagating in continuous media with various deformable barriers. Research in 
this area is of considerable interest both from the point of view of developing mathematical 
methods for solving initial-boundary-value problems of mechanics, and for a number of 
technical applications, in particular, the calculation of thin-walled structural elements loaded 
by shock waves in a fluid. 

Here we study the dynamic behavior of a thin-walled elastic isotropic shell in the form of 
a hyperbolic cylinder immersed in a liquid and exposed to acoustic shock waves. The main 
focus is on the construction of approximate models of the interaction of a deformable shell 
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with a wave diffracting on it. The main mathematical apparatus developed in the work is the 
transition functions – the fundamental solutions of the non-stationary initial-boundary-value 
problem of diffraction of an acoustic medium on a smooth convex surface. 

Application of the transition functions provides a transition from solving the associated 
non-stationary problem of joint motion of the acoustic medium and the deformable obstacle 
to solving the problem only for the obstacle, the mathematical model of which takes into 
account interaction with the external environment in the form of integral relations. Thus, the 
dimension of the problem is reduced. This makes it possible to significantly simplify the 
numerical solution on the basis of the finite-element or finite-difference approach, and in some 
important particular cases, to construct analytical solutions and estimate the error introduced 
by the accepted hypotheses. Therefore, the solution to the problem is based on the apparatus 
of the transition functions, which are fundamental solutions to the non-stationary initial-
boundary-value problem of diffraction of an acoustic medium on a smooth convex surface. 

The problem of diffraction of a non-stationary plane oblique pressure wave by a thin 
elastic shell in the form of a hyperbolic cylinder placed in an acoustic medium is considered. 
To determine the hydrodynamic pressure acting on the shell, a transition function constructed 
on the basis of the thin layer hypothesis is used [1], [2], [3], [4]. The integration of the 
equations of motion of a shell of the Tymoshenko type obtained using the Maple 9.0 software 
environment is carried out with the finite-difference method using Matlab 6.5 [5], [6], [7]. 

2. MATERIALS AND METHODS 
The mathematical formulation of the problem has the following form: 

– acoustic environment (Eqs. (1-2)) [1]: 

𝜕𝜕2𝜑𝜑
𝜕𝜕𝜏𝜏2

+ 2β
∂φ
∂τ

= ∆φ, p =
∂φ
∂τ

, v = gradφ (1) 

𝜑𝜑|𝜏𝜏=0 =
∂φ
∂τ

|τ=0 = 0 (2) 

– elastic isotropic thin shell (Eqs. (3-5)): 

𝜕𝜕2𝑢𝑢𝑖𝑖
𝜕𝜕𝜏𝜏2

Lij�uj� + (p∗ + P)δi3, (i, j = 1,2,3) (3) 

𝑢𝑢𝑖𝑖|𝜏𝜏=0 =
∂ui
∂τ

|τ=0 = 0 (4) 

𝑁𝑁(𝑚𝑚)(ui)|ξ1=ξk1 = 0, (k = 1,2) (5) 

Here 𝜑𝜑 is the velocity potential in an acoustic medium, 𝑝𝑝 is the pressure in the reflected 
and radiated waves, v is the velocity vector of the acoustic medium, 𝑢𝑢𝑖𝑖 are the generalized 
displacements of the middle surface of the shell, Lij are the known differential operators 
determined by the geometry of the shell, δij is the Kronecker delta, β is the parameter that 
determines dissipation in a liquid [8], [9], [10], [11]. Equations (5) determine, with the help of 
operators 𝑁𝑁(𝑚𝑚)(ui), the boundary conditions depending on the shape of the shell and its 
fastening in space. 

Next, the problem is solved in a dimensionless form. Moreover, all linear dimensions are 
assigned to the focal distance 𝑎𝑎 velocities to the speed of sound in an acoustic medium 𝑐𝑐0, 
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quantities having a pressure dimension to a complex ρ0c02, time τ to 𝑡𝑡𝑡𝑡0/𝑎𝑎. From the 
conditions of the joint motion of the shell and adjacent particles of the acoustic medium, the 
conditions of non-leakage follow (Eq. (6)): 

∂w
∂τ

=
∂φ∗
∂n

|г +
∂φ
∂τ

|г (6) 

Here φ∗ is the potential velocity of the wave incident on the shell, ∂/ ∂n is the derivative 
along the external normal to the shell, w is the deflection of the shell. The pressures 𝑝𝑝1 and 𝑝𝑝2 
in both the reflected and radiated waves can be found using the transition function 𝐺𝐺(𝑥𝑥𝑖𝑖, τ) 
constructed in the framework of the thin layer hypothesis (an asterisk denotes the convolution 
operation in time τ) (Eqs. (7-9)). 

𝑝𝑝1(ξ1, τ) =
∂φ∗(ξ1, 0, τ)

∂n
∗ Gp(ξ1, τ) (7) 

𝑝𝑝2(ξ1, τ) =
∂w
∂t

(ξ1, τ) ∗ Gp(ξ1, τ) (8) 

𝑝𝑝 = 𝑝𝑝1 + p2, Gp(ξ1, τ) =
∂G(𝑥𝑥1, τ)

∂τ
|г (9) 

Moreover, the influence function G(𝑥𝑥1, τ) satisfies the following initial-boundary-value 
problem (Eqs. (10-12)): 

𝜕𝜕2𝐺𝐺
𝜕𝜕𝜏𝜏2

+ 2β
∂G
∂τ

= c02∆ξG (10) 

G|τ=0 =
∂G
∂τ

|τ=0 = 0 (11) 

∂G
∂n

|г = δ(τ), G(r, τ) = O(1)as r → ∞ (12) 

 
Fig. 1 - Parameterization of cylindrical surfaces 

3. RESULTS AND DISCUSSIONS 
In flat problems, we assume that the surface П is a cylinder with a guide Г and a generatrix 
parallel to the axis 𝑂𝑂𝑥𝑥2 (Fig. 1) of a rectangular Cartesian coordinate system and take the form 
(Eq. (13)): 

П: 𝑟𝑟(𝜉𝜉1) = 𝑟𝑟0(𝜉𝜉1) + 𝑥𝑥2𝑒𝑒2 (13) 
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where (Eq. (14)): 

Г: 𝑟𝑟0(ξ) = 𝑥𝑥1𝑒𝑒1 + 𝑥𝑥3𝑒𝑒3, ξ ∈ ω (14) 

Moreover, the curvilinear coordinate system has 𝜉𝜉1 = 𝝃𝝃, 𝜉𝜉2 = 𝑥𝑥1, 𝜉𝜉3 = 𝜂𝜂 (Eqs. (15-16)): 

𝑟𝑟 = 𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖 = 𝑟𝑟0(𝜉𝜉) + 𝑥𝑥2𝑒𝑒2 − 𝜂𝜂𝑛𝑛0(ξ) (15) 

𝑟𝑟0 = 𝑥𝑥𝑖𝑖𝑒𝑒𝑖𝑖, 𝑛𝑛0 = 𝑛𝑛0𝑖𝑖 𝑒𝑒𝑖𝑖, 𝑛𝑛02 = 1  (16) 

where 𝑟𝑟0(𝝃𝝃) is radius vector of the curve Г, and 𝑛𝑛0(𝝃𝝃) is unit normal vector. 
To determine the transition function 𝐺𝐺�𝜉𝜉𝑖𝑖, 𝜏𝜏� in the constructed coordinate system (𝜉𝜉, 𝜂𝜂), 

we obtain the following initial-boundary-value problem (Eqs. (17-19)): 

𝜕𝜕2𝐺𝐺
𝜕𝜕𝜏𝜏2

+ 2β
∂G
∂τ

=
1
H �

∂
∂η
�

1
H
∂G
∂η
� +

∂
∂η

�H
∂G
∂η
�� (17) 

𝐺𝐺|𝜏𝜏=0 =
∂G
∂τ

|τ=0 = 0 (18) 

∂G
∂n

|η=0 = δ(τ), G(r, τ) = O(1), η → ∞ (19) 

We introduce the curvilinear coordinate system (𝜉𝜉, 𝜂𝜂) associated with the curve Г. Let 
𝑟𝑟0(𝝃𝝃) be the radius vector of the curve Г, and 𝑛𝑛0(𝝃𝝃) be the vector of the unit normal to the 
shell surface in the form of a parabolic cylinder. Then the curvilinear coordinate system is 
defined as follows (differentiation is indicated by a subscript) (Eq. (20)): 

𝑟𝑟(𝜉𝜉, 𝜂𝜂) = r0(ξ) − ηn0(ξ) (20) 

The components of the metric tensor take the form (Eq. (21)): 

𝑔𝑔11 = H1
2 = τ2[1 + 2ηk + (ηk)2], g12 = 0, g22 = H2

2 = 1 (21) 

where (Eq. (22)) 

𝑘𝑘 = 𝑘𝑘(ξ) (22) 

is curvature of the Г curve. 
In a first approximation, we can assume that the main contribution to the hydrodynamic 

load comes from the medium moving along the normal to the surface [1], [2], [3], [4]. In this 
case, the motion of the medium along the Г surface can be neglected. Therefore, the derivatives 
with respect to the coordinate 𝜉𝜉 can be set identically equal to zero, and the Laplace operator 
can be calculated on the surface of the cylinder 𝜂𝜂 = 0. So the initial-boundary-value problem 
(Eqs. (17-19)) will have the form (Eqs. (23-25)): 

𝜕𝜕2𝐺𝐺
𝜕𝜕𝜏𝜏2

+ 2β
∂G
∂τ

=
c02

H1
�
∂
∂η

�H1
∂G
∂η
�� |η−0 (23) 

𝐺𝐺|𝜏𝜏=0 =
∂G
∂τ

|τ=0 = 0 (24) 

∂G
∂n

|η=0 = δ(τ), G(r, t) = O(1), η → ∞ (25) 



71 A plane oblique pressure wave on the shell in the form of a hyperbolic cylinder 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

The transition function of the effect 𝐺𝐺0(𝜉𝜉, 𝜂𝜂) on the obstacle Г surface is found by the 
operational method and has the form (Eq. (26)) [2]: 

𝐺𝐺0(𝜉𝜉, 𝜂𝜂) = k(ξ)Ф1(𝜏𝜏) − 𝑘𝑘(𝜉𝜉)2 � Ф1(𝜏𝜏 − 𝑡𝑡)
𝜏𝜏

0
Ф2(𝜏𝜏)𝑑𝑑𝑑𝑑 (26) 

where (Eqs. (27-28)) is: 

Ф1(𝜏𝜏) =
1 − e−2βτ

2β
 (27) 

Ф2(𝜏𝜏) = e−2βτJ0(k(ξ)2 − β2) (28) 

In this case, the expressions for the pressure in the reflected and radiated waves taking 
into account Eqs. (7-8) are represented as (Eqs. (29-31)): 

𝑝𝑝1(𝜉𝜉, 𝜂𝜂) = −�
∂φ∗(ξ, 0, τ − t)

∂η
Gp(ξ1, t)dt

τ

0
 (29) 

𝑝𝑝2(𝜉𝜉1, 𝜏𝜏) = −�
∂u1(ξ1, τ − t)

∂t
Gp(ξ1, t)dt

τ

0
 (30) 

𝐺𝐺𝑝𝑝(𝜉𝜉, 𝜏𝜏) =
∂G0(𝜉𝜉, 𝜏𝜏)

∂τ
 (31) 

The pressure behind the wave front in the coordinate system 𝑂𝑂𝑥𝑥𝑖𝑖(𝑖𝑖 = 1,2) is given by the 
relation (Eqs. (32-33)) [2]: 

𝑝𝑝∗(𝑥𝑥1, 𝜏𝜏) = 𝑝𝑝0𝐻𝐻(𝜏𝜏 − 𝑓𝑓�𝑥𝑥𝑖𝑖, 𝜗𝜗�) (32) 

𝑓𝑓�𝑥𝑥𝑖𝑖, 𝜗𝜗� = x1cosϑ + x2sinϑ + C (33) 

Here the constant C determines the position of the wave front at the initial moment of time 
τ = 0; p0 is amplitude pressure. To determine the constant C and coordinates of the point of 
tangency, we obtain the following system of equations (Eqs. (34-35)) [3]: 

𝑥𝑥1(ξ01)cosϑ + x2(ξ01)sinϑ + C = 0 (34) 

𝑑𝑑1(ξ01)
𝑑𝑑𝜉𝜉1

cosϑ +
𝑑𝑑𝑑𝑑1(ξ01)
𝑑𝑑𝜉𝜉1

sinϑ = 0 (35) 

where ξ01 is the touch point parameter A. 
The potential velocity of the incident wave 𝜑𝜑∗�𝑥𝑥𝑖𝑖, 𝜏𝜏� (Eq. (36)) corresponds to the 

pressure (Eq. (32)): 

𝜑𝜑∗�𝑥𝑥𝑖𝑖, 𝜏𝜏� = −𝑝𝑝0(𝜏𝜏 − 𝑓𝑓�𝑥𝑥𝑖𝑖, 𝜗𝜗�)+ (36) 

For the derivative normal to the surface of the incident wave potential from Eq. (37) we 
obtain (Eqs. (37-38)): 

𝜕𝜕𝜕𝜕∗�𝜉𝜉𝑖𝑖, 𝜏𝜏�
𝜕𝜕𝜕𝜕

|𝜂𝜂=0 = 𝑝𝑝0
𝜕𝜕𝜕𝜕�𝑥𝑥𝑗𝑗, 𝜗𝜗�
𝜕𝜕𝑥𝑥𝑘𝑘

𝜕𝜕𝑥𝑥𝑘𝑘

𝜕𝜕𝜕𝜕
𝐻𝐻 �𝜏𝜏 − 𝑓𝑓�𝑥𝑥𝑗𝑗, 𝜗𝜗�� |𝜂𝜂=0

= 𝑝𝑝0(𝑛𝑛01𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑛𝑛02𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝐻𝐻 �𝜏𝜏 − 𝑓𝑓0�𝜉𝜉𝑗𝑗, 𝜗𝜗�� 
(37) 
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𝑓𝑓0�𝜉𝜉𝑖𝑖, 𝜗𝜗� = 𝑓𝑓(𝑥𝑥𝑖𝑖�𝜉𝜉𝑗𝑗�, ϑ)|η=0 (38) 

Subject to Eqs. (37-38) the pressure in the reflected wave is determined by the equality 
(Eq. (39)): 

𝑝𝑝1(ξ, τ) = −𝑝𝑝0(𝑛𝑛01𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑛𝑛02𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)� 𝐺𝐺𝑝𝑝(𝜉𝜉, 𝑡𝑡)𝑑𝑑𝑑𝑑
𝜏𝜏−𝑓𝑓0(𝜉𝜉,𝜗𝜗)

0
= −𝑝𝑝0(𝑛𝑛01𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑛𝑛02𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠)𝐺𝐺0(𝜉𝜉, 𝜏𝜏 − 𝑓𝑓0(𝜉𝜉, 𝜗𝜗)) 

(39) 

where the function 𝐺𝐺𝑝𝑝(𝜉𝜉1, 0, 𝜏𝜏) is understood instead of 𝐺𝐺𝑝𝑝(𝜉𝜉, 𝜏𝜏) with the average surface 
curvature 𝑘𝑘(𝜉𝜉)/2. Equation (39) allows approximately, within the framework of the thin layer 
hypothesis, to determine the reflected pressure in diffraction problems. 

Let us consider an example of solving the problem of diffraction of a plane oblique 
pressure wave by various obstacles. At the initial moment of time 𝜏𝜏 = 0, the shell and the 
medium are in an unperturbed state, which corresponds to homogeneous initial conditions 
(Eqs. (2) and (4)). 

Let us consider the problem of diffraction of a plane step pressure wave by an elastic rigid 
stationary curvilinear obstacle [12], [13], [14], [15]. An oblique plane acoustic wave with a 
front making an angle 𝑣𝑣 with the axis 𝑂𝑂𝑥𝑥1 touches at the point 𝐴𝐴 (Fig. 2) the surface of the 
cylinder with the guide Г at the initial moment of time. 

 
Fig. 2 - Plane oblique pressure wave on the shell in the form of a hyperbolic cylinder 

This surface in a Cartesian rectangular coordinate system 𝑂𝑂𝑥𝑥𝑖𝑖 with the asymptote (Eq. (40)): 

𝑥𝑥2 = µ𝑥𝑥1 (40) 

has the form (Eq. (41)): 

Г: 𝑥𝑥1 =
1
𝜇𝜇
�𝜇𝜇2 + 𝜉𝜉2, 𝑥𝑥2 = 𝜉𝜉, 𝜉𝜉 ∈ 𝑅𝑅 (41) 

where (Eq. (42)): 

𝜇𝜇 = tan (𝜑𝜑/2) (42) 

(𝜑𝜑 is the angle between the asymptotes of the hyperbola). 
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The expression for the curvature and the components of the normal vector are determined 
by the expressions for the case of a planar problem (Eqs. (43-44)): 

𝑘𝑘(𝜉𝜉) =
𝜇𝜇2

[𝜉𝜉2(1 + 𝜇𝜇2) + 𝜇𝜇4] (43) 

𝑛𝑛01 =
𝜇𝜇�𝜇𝜇2 + 𝜉𝜉2

�𝜇𝜇2(1 + 𝜇𝜇2) + 𝜇𝜇4
, 𝑛𝑛02 =

𝜇𝜇

�𝜇𝜇2(1 + 𝜇𝜇2) + 𝜇𝜇4
 (44) 

The coordinate of the touch point 𝜉𝜉0 and the constant 𝐶𝐶 are determined from Eqs. (34-35) 
and have the following form (Eq. 45): 

𝜉𝜉0 =
µ2sinϑ

�cos2ϑ − β2sin2ϑ
, C = −�cos2ϑ − µ2sin2ϑ (45) 

Figure 3 shows the spatio-temporal distribution of pressure 𝑝𝑝(ξ, τ) under the action of a 
plane direct pressure wave (ϑ = 0, p0 = 1) on a hyperbolic obstacle in an acoustic medium 
under the action of a single pressure jump (ξ0 = 0, C = −1). 

 
Fig. 3 - Space-time pressure 𝑝𝑝(ξ, τ) distribution 

Shown in Figs. 4 and 5 are sections of this graph for various values ξ and τ, respectively. 

 

Fig. 4 - Temporal pressure 𝑝𝑝(ξ, τ) distribution 
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Fig. 5 - Spatial distribution of pressure 𝑝𝑝(ξ, τ) at various points in time 

The resolving equations for the shell can be written in the operator form (Eqs. (46-47)): 

𝜕𝜕2

𝜕𝜕𝜏𝜏2
= Lu + p (46) 

𝐿𝐿 = 𝐶𝐶
𝑑𝑑
𝑑𝑑𝜉𝜉2

+ B
d
dξ

+ A (47) 

suitable for numerical solution of a discrete analogue of a problem (𝐿𝐿 is a linear operator of a 
problem, 𝑝𝑝 is a vector function of the right-hand sides) [5]. 

In the general case, the construction of resolving Eqs. (46-47) in curvilinear coordinates 
associated with a surface of arbitrary shape, is very difficult. 

At the same time, the use of computer algebra systems that support the basic operations 
of tensor analysis allows us to automate the transition from the general formulation of the 
problem to its operator record in a specific coordinate system. 

In this case, the Maple 9.0 computer algebra system with the Tensor extension package 
was used. 

The results of the solution are presented in Figs. 2-5 for steel thin shell in the form of a 
hyperbolic cylinder (density = 7200𝑘𝑘𝑘𝑘/𝑚𝑚3, modulus of elasticity 𝐸𝐸 = 2 ∙ 106𝑀𝑀𝑀𝑀𝑀𝑀, Poisson 
coefficient 𝑣𝑣 = 0.3, shell thickness ℎ = 0.01𝑚𝑚, ratio between semiaxes 𝑏𝑏/𝑎𝑎 = 0.5), placed in 
water (density 𝜌𝜌0 = 1000𝑘𝑘𝑘𝑘/𝑚𝑚3, sound speed 𝑐𝑐0 = 330𝑚𝑚/𝑠𝑠, 𝛽𝛽 = 0.1). The pressure 
intensity at the front of the incident wave at the initial time (Eq. (48)) is: 

𝜌𝜌0 = 104Pa (48) 

Shown in Figs. 6-7 are the dependences of the deflection and normal velocity of the shell 
on the dimensionless time at the frontal point and the point of contact. 

Figure 8 shows the time dependence of the total pressure on the shell at various points of 
the shell. 
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Fig. 6 - Shell deflection 𝑤𝑤(τ, ξ) 

 
Fig. 7 - Normal shell speed 𝑤𝑤(𝜏𝜏,𝜉𝜉)

𝑑𝑑𝑑𝑑
  

 
Fig. 8 - Total pressure 𝑝𝑝(τ, ξ) 
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4. CONCLUSIONS 
The following items were obtained in the present research: 

− an approximate model of diffraction of an acoustic pressure wave on an elastic and 
rigid obstacle in the form of a hyperbolic cylinder was built; 

− a fundamental solution to the problem of diffraction of an acoustic pressure wave on 
a canonical surface of the second order in the form of a hyperbolic cylinder was obtained in 
special functions; 

− a numerical method for solving the obtained integro-differential equations of motion 
of an elastic shell interacting with an acoustic medium taking into account damping in a liquid 
has been developed; 

− the non-stationary deformed state of thin shells of variable curvature in the form of a 
hyperbolic cylinder interacting with weak shock waves, based on the developed method, was 
studied; 

− the integro-differential equations of motion of the elastic shell are obtained taking into 
account the interaction with the ideal fluid. 

The obtained solutions (Figs. 6-8) show that taking damping in a liquid into account 
reduces the static and kinematic parameters of the system (marked with the symbol - ∆). 
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