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Abstract: Non-stationary inverse problems of deformed solid mechanics are among the most 
underexplored due to, inter alia, increasing dimension of non-stationary problems per unit as compared 
with stationary and static problems, as well as necessity to consider the initial conditions. In the context 
of the continuing progress of the aviation and aerospace industries, the question arises about technical 
condition monitoring of aircraft for the purposes of their safe operation. A large proportion of an 
aircraft structure consists of beam and rod elements exposed to various man-made and natural effects 
which cause defects inaccessible for visual inspection and required to be identified well in advance. It 
is well known that defects (such as cracks, cavities, rigid and elastic inclusions) are concentrators of 
stresses and largely cause processes, which lead to the destruction of elastic bodies. Therefore, the 
problem of identification of such defects and their parameters, i.e. the problem of identification, 
represents a great practical interest. Mathematically, the problem of identification represents a non-
linear inverse problem. The development of methods of solving such problems is currently a live 
fundamental research issue.  

Key Words: Inverse problem, elastic rod, influence function, Fourier series, integral transformations, 
integral equations, quadrature formulas 

1. INTRODUCTION 
This work presents an analytical solution of a direct non-stationary problem for a three-step 
elastic rod. There has been developed and implemented a numerical and analytical method of 
solving an inverse non-stationary problem of identification of defects in an elastic rod. The 
basics of the solutions of inverse problems were set forth in the fundamental works by J. 
Hadamard [1], A. N. Tikhonov [2] and [3], A. O. Vatulian [4], [5], [6] et al. Various issues 
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related to solving non-stationary problems for bodies and structures (such as creating 
mathematical models of non-stationary interactions, theoretical and numerical methods of 
investigation of non-stationary problems of dynamics) were addressed in the works of A.G. 
Gorshkov, D. V. Tarlakovsky et al. [7], [8], [9], [10]. Solutions of inverse non-stationary 
problems of identification of nonstationary loads upon Timoshenko beam were addressed in 
the works of Y. A. Vahterova, G. V. Fedotenkov, D. V. Tarlakovsky [11] and Y. A. Vahterova, 
G. V. Fedotenkov [12]. There are reasonably large number of works addressing inverse 
problems of rod mechanics, for instance, works [13], [14], [15], [16], [17]. However, in all 
existing publications on this subject the inverse problems for a rod are considered as either 
static or stationary ones. This article probable for the first time presents the solution of a non-
stationary inverse problem of the identification of a defect in an elastic rod. The problem of 
identification of defects in an elastic rod is a key problem arising during non-destructive 
control of materials and elements of structures [18], [19], [20], [21], [22], [23], [24], [25], [26], 
[27], [28], [29], [30], [31], [32], [33]. The practical importance of this article is the 
development of a new method of identification, which allows for finding defects based on data 
of motion at the end of an elastic rod. 

2. MATERIALS AND METHODS 

There is an elastic rod of a finite length with one end rigidly fixed while an axial force with a 
predetermined time law is applied to another one (Figure 1). The rod has variable geometrical 
characteristics, which change over the length depending on the existing defect. The 
geometrical characteristics are cross section areas, as well as coordinates of changes of these 
areas. These geometrical characteristics will be referred to as defect parameter of the rod. Let 
us note that even in this way of problem statement finding a precise analytical solution of the 
stated direct problem seems impossible. 

 
Fig. 1 - Elastic rod of a finite length with one end rigidly fixed 

For the purpose of an analytical solution of the problem, the real defect will be replaced 
with a model representing an abrupt change of cross section area at some a-priori unknown 
part of the rod. Therefore, the problem is reduced to the representation of the rod with a real 
defect in form of a three-step rod. One of the steps is the defect area whose geometrical 
characteristics (cross section area, coordinates of the beginning and the end) are to be found 
from the solution of the inverse problem [34], [35], [36]. 

The inverse non-stationary geometrical problem is to identify one, several or all unknown 
parameters of defect with predetermined other parameters, zero initial conditions and 
boundary conditions of fixation on one end. The opposite end of the rod is affected by some 
predetermined time-dependent axial force. It is assumed that the dependency of the 
displacement of the end face of the rod exposed to this force is known from the displacement 
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sensor which represents an additional condition necessary to solve the inverse problem (Figure 
2). 

 
Fig. 2 – Displacement sensor which represents an additional condition necessary 

For the purposes of finding a precise analytical solution of the direct problem which serves 
a basis for the solution of the inverse problem, the rod will be divided into three segments with 
three different cross section areas (Figure 3). 

 
Fig. 3 – Rod which divided into three segments with three different cross section areas 

3. RESULTS AND DISCUSSIONS 
Before starting to solve inverse problems it necessary to develop the technique of solving a 
direct non-stationary problem for a three-step rod. The statement of a direct problem involves 
finding the displacements of the elastic rod. 

The mathematical statement of the direct problem includes the equation of motion of a 
rod of variable cross sections, conditions of conjugation at the points of probable defect, 
boundary conditions and zero initial conditions [7]: 

𝑝𝑝
𝜕𝜕2𝑢𝑢𝑛𝑛
𝜕𝜕𝑡𝑡2

= 𝐸𝐸
𝜕𝜕2𝑢𝑢𝑛𝑛
𝜕𝜕𝑥𝑥2

,𝑛𝑛 = 1,3 ,𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝑥𝑥𝑛𝑛 = 𝑢𝑢𝑛𝑛+1(𝑥𝑥, 𝑡𝑡) ∣ 𝑥𝑥=𝑥𝑥𝑛𝑛 ,𝑛𝑛

= 1, 2,𝐸𝐸𝐹𝐹𝑛𝑛𝑢𝑢𝑛𝑛′ (𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝑥𝑥𝑛𝑛 = 𝐸𝐸𝐹𝐹𝑛𝑛+1 ,𝑢𝑢𝑛𝑛+1′ (𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝑥𝑥𝑛𝑛𝑛𝑛

= 1, 2 ,𝑢𝑢1(𝑥𝑥, 𝑡𝑡)|𝑥𝑥=𝑥𝑥0 = 0,𝐸𝐸 𝐹𝐹3
𝜕𝜕𝑢𝑢3
𝜕𝜕𝑥𝑥 �𝑥𝑥=𝑙𝑙

= −𝑃𝑃(𝑡𝑡), 

𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡)|𝑡𝑡=0 = 0
𝜕𝜕𝑢𝑢𝑛𝑛(𝑥𝑥, 𝑡𝑡)

𝜕𝜕𝑡𝑡
�
𝑡𝑡=0

= 0,𝑛𝑛 = 1,3. 

(1) 

where 𝑛𝑛 is a number of segment; 𝑢𝑢𝑛𝑛 is longitudinal displacements over the segment𝑛𝑛; 𝐸𝐸, 
𝜌𝜌

 are 
Young’s modulus and density of the rod; 𝐹𝐹𝑛𝑛 is the area of the r od at its segment, 𝑥𝑥1 and 𝑥𝑥2 
are coordinates of the ends of the first and second segments. 

Let us introduce non-dimensional values (dimensional parameters are primed): 
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𝑥𝑥 =
�́�𝑥
𝑙𝑙

,𝑢𝑢 =
�́�𝑢
𝑙𝑙

,𝐹𝐹 =
�̇�𝐹
𝐹𝐹0

, 𝜏𝜏 =
ct
l

,  𝑐𝑐2 =
𝐸𝐸
𝜌𝜌

,𝑃𝑃 =
�́�𝑃

E𝐹𝐹0
 (2) 

where 𝜏𝜏 is non-dimensional time; 𝑐𝑐 is velocity of propagation of longitudinal waves in the rod; 
𝐹𝐹0 is some reference area. Then, in a non-dimensional form the problem (1) takes the form: 

𝑢𝑢�̈�𝑛 = 𝑈𝑈𝑛𝑛′′,𝑛𝑛 = 1,3,𝑢𝑢1|𝑥𝑥=0 = 0,𝐹𝐹3�́�𝑢3|𝑥𝑥=1 = −𝑃𝑃 (𝜏𝜏),𝑢𝑢𝑛𝑛|𝑥𝑥=𝑥𝑥𝑛𝑛 = 𝑢𝑢𝑛𝑛+1|𝑥𝑥=𝑥𝑥𝑛𝑛 ,𝑛𝑛
= 1,2, 𝐹𝐹𝑛𝑛�́�𝑢𝑛𝑛 ∣ 𝑥𝑥 = 𝑥𝑥𝑛𝑛 =  𝐹𝐹𝑛𝑛+1�́�𝑢𝑛𝑛+1 ∣𝑥𝑥=𝑥𝑥𝑛𝑛 ,𝑛𝑛 =  1,2 ,𝐹𝐹𝑛𝑛�́�𝑢𝑛𝑛 ∣𝑥𝑥=𝑥𝑥𝑛𝑛 ,𝑛𝑛
= 1,2 

(3) 

𝑢𝑢𝑛𝑛 ∣𝜏𝜏=0= 0,𝑢𝑢�̇�𝑛 ∣𝜏𝜏=0= 0,𝑛𝑛 = 1,3 (4) 
From now on the dot over a value will denote its derivative with respect to time 𝜏𝜏, while 

a prime, with respect to coordinate 𝑥𝑥. To find the real load, a problem of influence function 
for a three-step rod is to be solved. It is displacement of the rod in response to the load Ρ(𝜏𝜏) =
𝛿𝛿(𝜏𝜏), where 𝛿𝛿(𝜏𝜏) is Dirac delta function. This function is convenient because the solution of 
the problem with random load will take form: 

u =  𝐺𝐺 ∗ 𝑃𝑃 (5) 

where * is the convolution of the influence function with the real load by time 𝜏𝜏. 
Let us set the load with the Dirac delta function Ρ(𝜏𝜏) = 𝛿𝛿(𝜏𝜏). By applying the Laplace 

integral transformation with respect to time to the problem (3), with the influence function and 
property of the delta function 𝛿𝛿𝐿𝐿  (𝜏𝜏) = 1 taken into consideration, we will come up with the 
following problem in the following transforms: 

𝑠𝑠2�̈�𝐺𝑛𝑛𝐿𝐿,𝑛𝑛 = 1,3,𝐺𝐺1𝐿𝐿 ∣𝑥𝑥=0= 0,𝐹𝐹3�́�𝐺3𝐿𝐿 ∣𝑥𝑥=1=  −1,𝐺𝐺𝑛𝑛𝐿𝐿 ∣𝑥𝑥=𝑥𝑥𝑛𝑛= 𝐺𝐺𝑛𝑛+1𝐿𝐿 ∣𝑥𝑥=𝑥𝑥𝑛𝑛 ,𝑛𝑛
= 1,2,𝐹𝐹𝑛𝑛�́�𝐺𝑛𝑛𝐿𝐿 ∣𝑥𝑥=𝑥𝑥𝑛𝑛= 𝐹𝐹𝑛𝑛+1�́�𝐺𝑛𝑛+1𝐿𝐿 ∣𝑥𝑥=𝑥𝑥𝑛𝑛 ,𝑛𝑛 = 1,2, 

(6) 

where the superscript 𝐿𝐿 of the function denotes its Laplace transform; 𝑠𝑠 is a parameter of the 
Laplace transformation. 

By solving the differential equation from (6) we will obtain: 

𝐺𝐺𝑛𝑛𝐿𝐿 = 𝐴𝐴𝑛𝑛𝑒𝑒𝑠𝑠𝑥𝑥 +  𝐵𝐵𝑛𝑛𝑒𝑒−𝑠𝑠𝑥𝑥 ,𝑛𝑛 = 1, 3. (7) 

To satisfy the boundary conditions, let us find the first derivative with respect to 𝑥𝑥 of the 
expression (7): 

�́�𝐺𝑛𝑛𝐿𝐿 = 𝐴𝐴𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠𝑥𝑥 −  𝐵𝐵𝑛𝑛𝑠𝑠𝑒𝑒−𝑠𝑠𝑥𝑥,𝑛𝑛 = 1, 3. (8) 

By replacing (7) and (8) to the boundary conditions of the problem (6) we arrive at a 
system of equations in unknown coefficients 𝐴𝐴1,𝐴𝐴2,𝐴𝐴3,𝐵𝐵1,𝐵𝐵2,𝐵𝐵3: 

𝐴𝐴1 + 𝐵𝐵1 = 0,𝐹𝐹3(𝐴𝐴3𝑠𝑠𝑒𝑒𝑠𝑠 − 𝐵𝐵3𝑠𝑠𝑒𝑒−𝑠𝑠) =  −1,𝐴𝐴1𝑒𝑒𝑠𝑠𝑥𝑥1 − 𝐵𝐵1𝑒𝑒−𝑠𝑠𝑥𝑥1 = 𝐴𝐴2𝑒𝑒𝑠𝑠𝑥𝑥2 + 𝐵𝐵2𝑒𝑒−𝑠𝑠𝑥𝑥1
= 𝐴𝐴3𝑒𝑒𝑠𝑠𝑥𝑥2 + 𝐵𝐵3𝑒𝑒−𝑠𝑠𝑥𝑥1 ,𝐹𝐹1(𝐴𝐴1𝑒𝑒𝑠𝑠𝑥𝑥1 − 𝐵𝐵1𝑒𝑒−𝑠𝑠𝑥𝑥1)
= 𝐹𝐹2(𝐴𝐴2𝑒𝑒𝑠𝑠𝑥𝑥2 + 𝐵𝐵2𝑒𝑒−𝑠𝑠𝑥𝑥1),𝐹𝐹2 (𝐴𝐴2𝑒𝑒𝑠𝑠𝑥𝑥2 + 𝐵𝐵2𝑒𝑒−𝑠𝑠𝑥𝑥2)
= 𝐹𝐹3(𝐴𝐴3𝑒𝑒𝑠𝑠𝑥𝑥2 + 𝐵𝐵3𝑒𝑒−𝑠𝑠𝑥𝑥2) 

(9) 

By solving the system of linear algebraic equations in unknown coefficients, we obtain: 

𝐴𝐴1 =  −𝐵𝐵1 =  
−4𝑒𝑒−𝑠𝑠𝐹𝐹13

𝑠𝑠
ƒ𝐿𝐿(𝑠𝑠), (10) 
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𝐴𝐴2 = −
2�𝑒𝑒−𝑠𝑠(2𝑥𝑥1+1)𝐹𝐹12 + 𝑒𝑒−𝑠𝑠�𝐹𝐹321

𝑠𝑠
ƒ𝐿𝐿(𝑠𝑠) (11) 

𝐵𝐵2 =
2(𝑒𝑒−𝑠𝑠(1−2𝑥𝑥1)𝐹𝐹12 + 𝑒𝑒−𝑠𝑠𝐹𝐹321

𝑠𝑠
ƒ𝐿𝐿(𝑠𝑠) (12) 

𝐴𝐴3 = −
𝑒𝑒−𝑠𝑠(2𝑥𝑥1+1)𝐹𝐹123 + 𝑒𝑒−𝑠𝑠(2𝑥𝑥2+1)𝐹𝐹213 + 𝑒𝑒−𝑠𝑠(1−2𝑥𝑥1+2𝑥𝑥2)𝐹𝐹312 + 𝑒𝑒−𝑠𝑠

𝑠𝑠𝐹𝐹3
ƒ𝐿𝐿(𝑠𝑠) (13) 

𝐵𝐵3 =  
𝑒𝑒−𝑠𝑠(1−2𝑥𝑥1)𝐹𝐹123 + 𝑒𝑒−𝑠𝑠(1−2𝑥𝑥2)𝐹𝐹213 + 𝑒𝑒−𝑠𝑠(2𝑥𝑥1−2𝑥𝑥2+1)𝐹𝐹312 + 𝑒𝑒−𝑠𝑠

30
ƒ𝐿𝐿(𝑠𝑠), (14) 

where: 

𝐹𝐹123 =  
𝐹𝐹1𝐹𝐹2 + 𝐹𝐹1𝐹𝐹3 − 𝐹𝐹2𝐹𝐹3 − 𝐹𝐹22

𝐹𝐹1𝐹𝐹2 + 𝐹𝐹1𝐹𝐹3 + 𝐹𝐹2𝐹𝐹3 + 𝐹𝐹22
; (15) 

𝐹𝐹213 =  
𝐹𝐹1𝐹𝐹2 − 𝐹𝐹1𝐹𝐹3 − 𝐹𝐹2𝐹𝐹3 + 𝐹𝐹22

𝐹𝐹1𝐹𝐹2 +  𝐹𝐹1𝐹𝐹3 + 𝐹𝐹2𝐹𝐹3 + 𝐹𝐹22
 (16) 

𝐹𝐹321 =  
𝐹𝐹1 + 𝐹𝐹2

𝐹𝐹1𝐹𝐹2 +  𝐹𝐹1𝐹𝐹3 + 𝐹𝐹3𝐹𝐹2 + 𝐹𝐹22
 (17) 

𝐹𝐹312 =  
𝐹𝐹1𝐹𝐹2 − 𝐹𝐹1𝐹𝐹3 + 𝐹𝐹2𝐹𝐹3 − 𝐹𝐹22

𝐹𝐹1𝐹𝐹2 +  𝐹𝐹1𝐹𝐹3 + 𝐹𝐹2𝐹𝐹3 + 𝐹𝐹22
,𝐹𝐹12 =

𝐹𝐹1 − 𝐹𝐹2
𝐹𝐹1 + 𝐹𝐹2

, (18) 

𝐹𝐹13 =  
𝐹𝐹2

𝐹𝐹1𝐹𝐹2 + 𝐹𝐹1𝐹𝐹3 + 𝐹𝐹3𝐹𝐹2 + 𝐹𝐹22
,𝑓𝑓𝐿𝐿(𝑠𝑠) =

1
𝐺𝐺1

 (19) 

𝐺𝐺1 = 1 + 𝑒𝑒−2𝑠𝑠 + 𝐹𝐹123�𝑒𝑒−2𝑠𝑠𝑥𝑥1 + 𝑒𝑒−2𝑠𝑠(1−𝑥𝑥1)� + 𝐹𝐹213�𝑒𝑒−2𝑠𝑠𝑥𝑥2 + 𝑒𝑒−2𝑠𝑠(1−𝑥𝑥2)�
+  𝐹𝐹312�𝑒𝑒−2𝑠𝑠(𝑥𝑥1−𝑥𝑥2+1) + 𝑒𝑒−2𝑠𝑠(𝑥𝑥2−𝑥𝑥1)� (20) 

Let us expand the function 𝑓𝑓𝐿𝐿(𝑠𝑠) exponentially in series: 

𝑓𝑓𝐿𝐿(s) =  �(−1)𝑛𝑛
∞

𝑛𝑛=0

� 𝑍𝑍𝛼𝛼,𝑛𝑛
∣𝛼𝛼∣=𝑛𝑛

𝐹𝐹𝛼𝛼𝑒𝑒−2𝑠𝑠𝑠𝑠(𝛼𝛼,𝑥𝑥1,𝑥𝑥2), (21) 

𝒛𝒛𝜶𝜶,𝒏𝒏 =  
n!

𝑎𝑎1!𝑎𝑎2!𝑎𝑎3!𝑎𝑎4!𝑎𝑎5!𝑎𝑎6!𝑎𝑎7!
, (22) 

𝐹𝐹𝛼𝛼 =  𝐹𝐹123
𝛼𝛼2+𝑎𝑎3𝐹𝐹213

𝛼𝛼4+𝑎𝑎5𝐹𝐹312
𝛼𝛼6+𝛼𝛼7 (23) 

α ∣= �𝛼𝛼𝑖𝑖

7

𝑖𝑖=1

, (24) 

φ(𝛂𝛂, 𝑥𝑥1,𝑥𝑥2) = 𝛼𝛼1 + 𝛼𝛼2𝑥𝑥1 + 𝛼𝛼3(1− 𝑥𝑥1) + 𝛼𝛼4𝑥𝑥2 + 𝛼𝛼5(1− 𝑥𝑥2) + 𝛼𝛼6(𝑥𝑥1 − 𝑥𝑥2 + 1)
+  𝛼𝛼7(𝑥𝑥2 − 𝑥𝑥1) 

(25) 

where 𝒛𝒛𝛼𝛼,𝑛𝑛 is a multinomial coefficient, 𝜑𝜑(𝜶𝜶,𝑥𝑥1, 𝑥𝑥2) > 0. 
Then, with the exponential expansion in series taken into consideration, let us substitute 

the found expressions for coefficients into (7): 
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𝐺𝐺𝐿𝐿 = 𝐺𝐺1𝐿𝐿𝐻𝐻(𝑥𝑥1 − 𝑥𝑥) + 𝐺𝐺2𝐿𝐿𝐻𝐻(𝑥𝑥 − 𝑥𝑥1)𝐻𝐻(𝑥𝑥2 − 𝑥𝑥) + 𝐺𝐺3𝐿𝐿𝐻𝐻(𝑥𝑥 − 𝑥𝑥2), (26) 

𝐺𝐺1𝐿𝐿 =
−4
𝑠𝑠
𝐹𝐹13� � 𝑧𝑧𝛼𝛼,𝑛𝑛

∣𝛼𝛼∣=𝑛𝑛

∞

𝑛𝑛=0

(−1)𝑛𝑛𝐹𝐹𝛼𝛼�(−1)𝑛𝑛
2

𝑗𝑗=1

𝐹𝐹𝛼𝛼�(−1)𝑗𝑗+1
2

𝑗𝑗=1

𝑒𝑒−𝑠𝑠𝑦𝑦𝑗𝑗  (27) 

𝐺𝐺2𝐿𝐿 =
−2𝐹𝐹321

𝑠𝑠
� � 𝑧𝑧𝛼𝛼,𝑛𝑛

∣𝛼𝛼∣=𝑛𝑛

∞

𝑛𝑛=0

(−1)𝑛𝑛𝐹𝐹𝛼𝛼 � 𝑎𝑎𝑚𝑚

4

𝑚𝑚=1

𝑒𝑒−𝑠𝑠𝑦𝑦𝑚𝑚 , (28) 

𝐺𝐺3𝐿𝐿 =
−1
𝑠𝑠𝐹𝐹3

� � 𝑧𝑧𝛼𝛼,𝑛𝑛
∣𝛼𝛼∣=𝑛𝑛

∞

𝑛𝑛=0

(−1)𝑛𝑛𝐹𝐹𝛼𝛼�𝑏𝑏𝑘𝑘

8

𝑘𝑘=1

𝑒𝑒−𝑠𝑠𝑦𝑦𝑘𝑘 , (29) 

𝑎𝑎1 = −𝑎𝑎4 = 1,𝑎𝑎2 = −𝑎𝑎3 = 𝐹𝐹12,𝑏𝑏2 = −𝑏𝑏1 = 1, 𝑏𝑏3 = −𝑏𝑏4 = 𝐹𝐹123, 𝑏𝑏5 = −𝑏𝑏6
= 𝐹𝐹213, 𝑏𝑏7 = −𝑏𝑏8 = 𝐹𝐹312. (30) 

𝑦𝑦1 = 1 + 2φ(α, 𝑥𝑥1,𝑥𝑥2) − x; 𝑦𝑦2 = 1 + 2φ(α, 𝑥𝑥1,𝑥𝑥2) + x; 
𝑦𝑦3 = 1 + 2φ(α, 𝑥𝑥1,𝑥𝑥2) − x − 2𝑥𝑥1;𝑦𝑦4 = 1 + 2φ(α, 𝑥𝑥1,𝑥𝑥2) + x − 2𝑥𝑥1 
𝑦𝑦5 = 1 + 2𝜑𝜑(α, 𝑥𝑥1,𝑥𝑥2) + x + 2𝑥𝑥1;𝑦𝑦6 = 1 + 2φ(α,𝑥𝑥1, 𝑥𝑥2)− x − 2𝑥𝑥2 

𝑦𝑦6 = 1 + 2𝜑𝜑(α,𝑥𝑥1, 𝑥𝑥2) + x − 2𝑥𝑥1 + 2𝑥𝑥2;𝑦𝑦8 = 1 + 2φ(α,𝑥𝑥1, 𝑥𝑥2)− x + 2𝑥𝑥1 − 2𝑥𝑥2 

(31) 

The construction of the original is not challenging, however, for solving a problem with 
random load based only on the property of Laplace transformation, knowing the 
transformation of the influence function is enough, because its structure allows for solving the 
problem with random load without evaluating the integral of convolution type (5). Let us note, 
that with predetermined value of 𝜏𝜏 the expression for 𝑢𝑢𝑛𝑛 will contain only a finite number of 
non-zero summands [37], [38], [39].  

Indeed, let us denote ∫ 𝑃𝑃(𝑡𝑡)𝑑𝑑𝑡𝑡 = 𝑄𝑄(𝜏𝜏)𝜏𝜏
0 , then, according to the lag theorem [11], the 

originals adapted to the real load 𝑃𝑃(𝜏𝜏), formulas (5) and properties of transformation of 
convolution operation by time, and the original of the function of displacement of the rod will 
take form: 

u(x, τ) = 𝑢𝑢1(x, τ)𝐻𝐻(𝑥𝑥1 − 𝑥𝑥) + 𝑢𝑢2(x, τ)𝐻𝐻(𝑥𝑥 − 𝑥𝑥1)𝐻𝐻(𝑥𝑥2 − 𝑥𝑥) + 𝑢𝑢3(x, τ)𝐻𝐻(𝑥𝑥 − 𝑥𝑥2), (32) 

𝑢𝑢1 =
−4
𝑠𝑠
𝐹𝐹13� � 𝑧𝑧𝛼𝛼,𝑛𝑛

∣𝛼𝛼∣=𝑛𝑛

∞

𝑛𝑛=0

(−1)𝑛𝑛𝐹𝐹𝛼𝛼�(−1)𝑗𝑗+1
2

𝑗𝑗=1

P(τ − 𝑦𝑦𝑗𝑗) (33) 

𝑢𝑢2 =
−2
𝑠𝑠
𝐹𝐹321� � 𝑧𝑧𝛼𝛼,𝑛𝑛

∣𝛼𝛼∣=𝑛𝑛

∞

𝑛𝑛=0

(−1)𝑛𝑛𝐹𝐹𝛼𝛼 � 𝑎𝑎𝑚𝑚

4

𝑚𝑚=1

P(τ − 𝑦𝑦𝑚𝑚)H(τ − 𝑦𝑦𝑚𝑚), (34) 

𝑢𝑢3 =  
1
𝐹𝐹3
� � 𝑧𝑧𝛼𝛼,𝑛𝑛

∣𝛼𝛼∣=𝑛𝑛

∞

𝑛𝑛=0

(−1)𝑛𝑛𝐹𝐹𝛼𝛼�𝑏𝑏𝑘𝑘

8

𝑘𝑘=1

P(τ − 𝑦𝑦𝑘𝑘)H(τ − 𝑦𝑦𝑘𝑘). (35) 

Now let 𝐹𝐹1 = 𝐹𝐹2 = 𝐹𝐹3 = 𝐹𝐹,𝑥𝑥1 = 𝑥𝑥2 = 𝑙𝑙, which corresponds to a rod of constant cross 
section. Then, the formulas (11)–(13) imply: 
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𝑢𝑢1(x, τ) = −
1
𝐹𝐹
�(−1)𝑛𝑛
∞

𝑛𝑛=0

(𝑃𝑃(𝜏𝜏 − (1 + 2𝑛𝑛) + 𝑥𝑥)𝐻𝐻[𝜏𝜏 − (1 + 2𝑛𝑛) + 𝑥𝑥]

− 𝑃𝑃(𝜏𝜏 − (1 + 2𝑛𝑛)− 𝑥𝑥)𝐻𝐻[𝜏𝜏 − (1 + 2𝑛𝑛) − 𝑥𝑥]) 
(36) 

which coincides with the solution for a rod of constant cross section. 
For solving the inverse non-stationary problem of identification of a defect, the rod is 

broken down into three segments (Figure 3) in the way that the first and third segments have 
equal areas of cross section while the third (middle) segment differs from those two. Here 𝐹𝐹1 
is the area of cross section of the rod at the defect-free segment; 𝐹𝐹2 is the area of cross section 
at the defected segment; 𝑥𝑥1 and 𝑥𝑥2 are coordinates of the localization of defect. As it was noted 
above, the middle segment will describe the defect, if any, while the displacements of the end 
of the third segment should coincide with the displacements registered by the sensor (Fig.3). 
The required parameters are well within the found solution of the problem (10). Therefore, we 
arrive at the following equation: 

u(l, τ) = u(l, τ, 𝑥𝑥1,𝑥𝑥2,𝐹𝐹2) = 𝑈𝑈𝑑𝑑(τ), (37) 

where 𝑈𝑈𝑑𝑑(𝜏𝜏) are the values of displacements registered by the sensor. 
Equation (1) at the predetermined moment of time 𝜏𝜏 represents a non-linear algebraic 

equation with three unknowns serving as parameters of the defect. Therefore, for creating a 
system of a closed equation system with respect to three unknown, it is sufficient to fix three 
moments of time 𝜏𝜏𝑘𝑘,𝑘𝑘 = 1,2,3 and, correspondingly, obtain three equations from which the 
required unknown parameters can be found: 

𝑈𝑈𝑘𝑘(𝑥𝑥1, 𝑥𝑥2,𝐹𝐹2) = 0,𝑘𝑘 = 1,2,3, (38) 

where: 𝑈𝑈𝑘𝑘(𝑥𝑥1,𝑥𝑥2,𝐹𝐹2) = u(l, τ, 𝑥𝑥1,𝑥𝑥2,𝐹𝐹2) − 𝑈𝑈𝑑𝑑𝑘𝑘  ,𝑈𝑈𝑑𝑑𝑘𝑘 = 𝑈𝑈𝑑𝑑(𝜏𝜏𝑘𝑘). 
Therefore, the geometrical inverse problem will be reduced to solving a system of non-

linear equations with respect to unknown parameters of the defect of the rod. For solving the 
system of non-linear equations the Newton method is applied. 

𝑈𝑈𝑘𝑘(𝑥𝑥1,𝑥𝑥2,𝐹𝐹2) are non-linear functions defined and continuously differentiable in some 
area 𝐺𝐺 ⊂ ℝ3; 𝜏𝜏𝑛𝑛 is a fixed moment of time. Let us write it in a vector form: 

x = (𝑥𝑥1, 𝑥𝑥2,𝐹𝐹2)𝑇𝑇 ,𝑈𝑈(𝑥𝑥) = (𝑈𝑈1(𝑥𝑥),𝑈𝑈2(𝑥𝑥),𝑈𝑈3(𝑥𝑥))𝑇𝑇 ,𝑈𝑈(𝑥𝑥) = 0 (39) 

It is necessary to find a vector 𝒙𝒙∗ = (𝑥𝑥1∗, 𝑥𝑥2∗,𝐹𝐹2∗)𝑇𝑇, which, when placed to the initial system, 
will turn each equation into a true numerical equality. 

With such approach, the formula for finding the solution is a natural generalization of the 
formula of one-dimensional integral method [8], [13]: 

xn+1 = xn − W−1(xn)U(𝑥𝑥𝑛𝑛),𝑛𝑛 = 0,𝑁𝑁 (40) 
where: 

W =

𝜕𝜕𝑈𝑈1(𝑥𝑥)
𝑑𝑑𝑥𝑥1

𝜕𝜕𝑈𝑈1(𝑥𝑥)
𝑑𝑑𝑥𝑥2

𝜕𝜕𝑈𝑈1(𝑥𝑥)
𝑑𝑑𝐹𝐹2

𝜕𝜕𝑈𝑈2(𝑥𝑥)
𝑑𝑑𝑥𝑥1

𝜕𝜕𝑈𝑈2(𝑥𝑥)
𝑑𝑑𝑥𝑥2

𝜕𝜕𝑈𝑈2(𝑥𝑥)
𝑑𝑑𝐹𝐹2

𝜕𝜕𝑈𝑈3(𝑥𝑥)
𝑑𝑑𝐹𝐹2

𝜕𝜕𝑈𝑈3(𝑥𝑥)
𝑑𝑑𝑥𝑥2

𝜕𝜕𝑈𝑈3(𝑥𝑥)
𝑑𝑑𝐹𝐹2

 is the matrix of Jacobi.  
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With an additional assumption 𝑈𝑈𝑘𝑘(𝑥𝑥1,𝑥𝑥2,𝐹𝐹2)𝜖𝜖𝐶𝐶2, there is a quadratic convergence of the 
method. 

Usually, the condition ‖𝒙𝒙𝑛𝑛+1 − 𝒙𝒙𝑛𝑛‖ < 𝜇𝜇, is taken as a criterion of the end of iteration 
process, where 𝜇𝜇 is the required precision of the solution. 

For solving the direct and inverse problem let us set the following parameters for the three-
step rod: 𝑁𝑁 = 10, 𝑥𝑥1 = 0.49,𝑥𝑥2 = 0.51,𝐹𝐹1 = 𝐹𝐹3 = 0.07,𝐹𝐹2 = 0.01,𝑃𝑃(𝜏𝜏) =
10−3 cos(𝜏𝜏) , 𝜀𝜀 = 10−3 is noise; 𝜇𝜇 = 0.01 is the prescribed precision of the solution; 𝑢𝑢3(𝜏𝜏) 
are displacements known from the solution of the direct problem (10). 

Let us solve a direct problem with the parameters specified above. The Figure 4 illustrates 
the displacements for a three-step rod at moments of time 𝜏𝜏 = 1 (full line), 𝜏𝜏 = 2 (dashed 
line), 𝜏𝜏 = 1 (dash-and-dot line): 

 
Fig. 4 – Displacements for a three-step rod at moments of time 

To identify a defect in an elastic rod it is necessary to find 𝐹𝐹2, 𝑥𝑥1, and 𝑥𝑥2 with three 
predetermined moments of time 𝜏𝜏1 = 1,𝜏𝜏2 = 2 and 𝜏𝜏3 = 3, while the area 𝐹𝐹1 is already 
known. Based on the geometrical sense of the problems, the sought-for parameters are 
additionally limited with: 0 < 𝐹𝐹2 < 0.1,0 < 𝑥𝑥1 < 𝑥𝑥2 < 1,. Here 𝑥𝑥1 = 𝑥𝑥2 = 𝐹𝐹2 = 0 are initial 
values of the sought-for parameters corresponding to the zero iteration of the Newton method 
(17). Let us substitute the known values into the formula (13) and solve the system of non-
linear equations with respect to 𝐹𝐹2, 𝑥𝑥1, and 𝑥𝑥2. We will obtain 𝐹𝐹2 = 0.01,𝑥𝑥1 = 0.49 and 𝑥𝑥2 =
0.51 which corresponds to the predetermined parameters for the given rod. Let us solve the 
same problem with the noise taken into account. We will obtain𝐹𝐹2 = 0.01001,𝑥𝑥1 = 0.4899 
and 𝑥𝑥2 = 0.5099  

4. CONCLUSIONS 
As can be seen from this article, a non-stationary inverse problem of identification of a defect 
in an elastic rod can be solved correctly without regularization methods. The reason is the 
equations solving the inverse problem immediately result from the solution of the direct 
problem which explicitly contains the required values as parameters. Non-stationary nature of 
the problem allowed for fixing three moments of time and creating a system of non-linear 
equations with respect to the sought-for parameters of the defect. A solution has been 
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investigated for an inverse problem with noised measurements. The solution has demonstrated 
the minimal influence of the noise to the solution of an inverse problem, which proves the 
stability of the proposed method. The algorithm of solving non-stationary direct and inverse 
problems for a three-step elastic rod was converted into code and successfully tested. 
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