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Abstract: With the advent of technology, it has become possible to perform direct numerical simulations 
and the demand for high accuracy computing is increasing. Numerical simulations play an important 
part in understanding physics of the flow and instability mechanism in flows. For high accuracy, 
numerical schemes must be chosen that satisfy the physical dispersion relation, should not amplify or 
attenuate the solution and resolve all possible length and time scales. In the present paper, spectral 
stability analysis of linear convection equation is performed using first order forward difference (FD1) 
method and fourth order Runge Kutta (RK4) method, consisting of four stages, for time discretization 
and a second order central difference (CD2) method for evaluating spatial derivative. The results show 
that the presence of numerical instability for FD1 method is independent of the CFL number, consistent 
with the stability analysis which showed FD1 method to be unconditionally unstable. However, for RK4 
method, the solution is found to be neutrally stable only for a particular range of CFL number, even 
stable solution introduced error by attenuating the computed or analytical solution. 

Key Words: spectral stability, convection equation, RK4, FD1, CD2 

1. INTRODUCTION 

In many applications of applied physics, it is crucial to learn about the evolution of errors that 
accompany the transmission of signals over a continuous medium. Error dynamics have been 
extensively studied using methods attributed to von Neumann analysis [1],[2]. The finite 
difference schemes generally use von Neumann analysis. Stable solutions remain bounded by 
perturbations to the input, while unstable solutions grow with time [2]. For a scheme to be 
stable, its computational domain must enclose the mathematical or analytical domain of 
dependence at every point in space and time; not meeting this criterion is equivalent to 
neglecting some of the time-marching data essential for an advancement in the solution. 
Otherwise, excessive data would have to be fed into the solution because there would be 
additional information that the model knows nothing about. The time step in such a discrete 
framework should not be greater than the time taken by a wave to travel in a uniform space 
between two neighboring points. According to Courant–Friedrichs–Lewy (CFL) condition, 
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this is the part of the grid cell through which a fluid wave goes over in convection during one 
time-step. Courant number imposed by the von Neumann analysis [3] determines possible 
mesh and temporal resolutions for stable solutions [1]. Gustafsson, Kreiss, and Sundstrom 
(GKS) stability theory criteria has a different meaning in the physical space which is expressed 
in relation to group velocity: for a finite difference model to be unstable, the basic condition 
says that the model along with its boundary conditions should support a set of waves at the 
boundaries while the group velocities should be pointing into the field [4]. While solving time 
dependent partial differential equations computationally by employing finite difference methods, a 
higher number of boundary condition are required than the problem’s physics. This presents the demand 
of selecting additional numerical boundary conditions, where numerical stability is an extremely 
important factor to be taken into consideration. The stability problem for hyperbolic equations 
is mathematically solved by using the theory of Gustafsson, Kreiss, and Sundstrom's theory[5]. 
In the present work, the spectral stability analysis of a fundamental equation i.e. one 
dimensional linear convection equation is performed using two different explicit methods. 
Firstly, the time derivative is evaluated using first order forward–in time method and spatial 
derivatives are obtained by second order central difference (CD2)-scheme with Dirichlet type 
boundary condition [1]. The stability plots are then compared with a higher order method, four 
stage fourth order Runge-Kutta (RK4)-method for time integration and spatial scheme is kept 
as CD2. Since, the Navier-Stokes equation reduces to the linear convection equation in its 
basic form, hence, the inferences obtained here applies to the Navier-Stokes equation as well. 
The inferences obtained from the property charts are then used to solve the one-dimensional 
convection equation by the two different time-integration schemes. 

2. SPECTRAL STABILITY ANALYSIS 
The one-dimensional (1D) convection equation is given below: 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 ;  𝑐𝑐 > 0 (1) 

where, c is the phase speed with which the solution travels to the right. The numerical solution 
of the wave equation is identified as; 

𝑢𝑢𝑖𝑖𝑛𝑛 = 𝑢𝑢(𝑥𝑥𝑚𝑚, 𝑡𝑡𝑛𝑛) = �𝑈𝑈�(𝑘𝑘, 𝑡𝑡𝑛𝑛) 𝑒𝑒𝑖𝑖𝑖𝑖𝑥𝑥𝑚𝑚𝑑𝑑𝑑𝑑 (2) 

where, quantity with a hat is the amplitude of the unknown function in spectral plane and xm is 
the grid node given as m*h with h as the grid spacing. Since, we are using explicit methods 
therefore, time dependence is explicit and space dependence is given by non-dimensional 
wavenumber (kh). If, the unknown is defined as 

𝑢𝑢𝑖𝑖𝑛𝑛 = 𝑢𝑢(𝑥𝑥𝑚𝑚, 𝑡𝑡𝑛𝑛) = � 𝑈𝑈�(𝑘𝑘,𝜔𝜔)𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑚𝑚−𝜔𝜔𝜔𝜔)𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 (3) 

Then, the corresponding physical dispersion relation is given by, 𝜔𝜔 = 𝑐𝑐𝑐𝑐. While, c 
denotes phase speed, the group velocity (Vg), determines the speed at which energy propagates 
[6], [7], [8] and for Eq. (1), it is given as; 

𝑉𝑉𝑔𝑔 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑐𝑐 (4) 

Hence, for the 1D convection equation which is non-dispersive in nature, the physical 
group velocity is equal to the physical phase speed. Therefore, to computationally solve 
Navier-Stokes equations, the chosen numerical methods must be stable, consistent and should 
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numerically satisfy the physical dispersion relation i.e. should preserve the correct space-time 
dependence simultaneously, called as the Dispersion Relation Preserving (DRP) schemes. The 
stability analysis for two different time-integration schemes is discussed in the following 
sections. 

2.1 Forward-in-time and Centered-in-space (FTCS) method 

The resultant discretized equation using FTCS method [4] for solving Eq. (1) is given as: 

𝑢𝑢𝑖𝑖𝑛𝑛+1 = 𝑢𝑢𝑖𝑖𝑛𝑛 +
𝑁𝑁𝑁𝑁
2

(𝑢𝑢𝑖𝑖+1𝑛𝑛 − 𝑢𝑢𝑖𝑖−1𝑛𝑛 ) (5) 

where, ‘i’ is the grid node point, ‘n’ is the time level and Nc is the CFL number defined as 
cΔt/Δx, where Δt is the time-step and Δx is the uniform grid spacing given as, 𝑥𝑥𝑖𝑖+1 − 𝑥𝑥𝑖𝑖. The 
presence and extent of numerical stability is measured by the numerical amplification factor 
[2] which is the ratio of amplitude of solution at the current time-step to the previous time-
step, given as: 

𝐺𝐺(𝑘𝑘ℎ,𝑁𝑁𝑁𝑁) =
𝑈𝑈�(𝑘𝑘, 𝑡𝑡 + 𝛥𝛥𝛥𝛥)
𝑈𝑈�(𝑘𝑘, 𝑡𝑡)

 (6) 

Substituting, Eq. (5) and (6) into Eq. (2), one gets; 

|𝐺𝐺|  = �1 + 𝑁𝑁𝑐𝑐2𝑆𝑆𝑆𝑆𝑛𝑛2𝑘𝑘ℎ (7) 

For this propagation problem, the general solution at any arbitrary time is: 

𝑢𝑢𝑖𝑖𝑛𝑛 = 𝑢𝑢(𝑥𝑥𝑚𝑚, 𝑡𝑡𝑛𝑛) = �𝐴𝐴𝑜𝑜(𝑘𝑘)[𝐺𝐺(𝑘𝑘)]𝑛𝑛 𝑒𝑒𝑖𝑖(𝑘𝑘𝑥𝑥𝑚𝑚−𝑛𝑛𝛽𝛽𝑖𝑖)𝑑𝑑𝑑𝑑 (8) 

where, A0(k) is the initial amplitude and βi gives the measure of the phase speed of the 
numerical scheme that  is given as: 

𝑐𝑐𝑁𝑁 =
𝛽𝛽𝑖𝑖
𝑘𝑘𝑘𝑘𝑘𝑘

 (9) 

Using the physical dispersion relation (𝜔𝜔 = 𝑐𝑐𝑐𝑐), the non-dimensional numerical phase 
speed is 

𝑐𝑐𝑁𝑁
𝑐𝑐

=
𝛽𝛽𝑖𝑖
𝜔𝜔𝜔𝜔𝜔𝜔

 (10) 

As, we can see from Eq. (7), the amplification factor is always greater than 1, i.e. |G| > 1 
for FTCS scheme, hence the method is unconditionally unstable. Hence, whatever value of 
CFL number is chosen, the method will always be unstable. The amount of dispersion added 
by a numerical method is quantified with the help of numerical group velocity, (VgN). It is 
crucial to note that for a one-dimensional convection equation model, the difference between 
numerical group velocity and the physical group velocity must be approximately zero for a 
vast range of wavenumbers since the group velocity and disturbance energy moves together 
[4]. Thus, highly accurate method yields VgN/c and cN/c as 1 and any deviation from 1 gives 
us a measure of dispersion and phase error, respectively. The non-dimensional numerical 
group velocity and phase speed are computed using the numerical dispersion relation, 

𝜔𝜔𝑒𝑒𝑒𝑒 = 𝑐𝑐𝑁𝑁𝑘𝑘 as: 
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𝑉𝑉𝑔𝑔𝑁𝑁
𝑐𝑐

=
1
𝑁𝑁𝑐𝑐

𝑑𝑑𝛽𝛽𝑖𝑖
𝑑𝑑𝑑𝑑ℎ

;   
𝑐𝑐𝑁𝑁
𝑐𝑐

=
𝛽𝛽𝑖𝑖
𝜔𝜔𝜔𝜔𝜔𝜔

=
𝛽𝛽𝑖𝑖

𝑁𝑁𝑐𝑐𝑘𝑘ℎ
 (11) 

where, 𝛽𝛽𝑖𝑖 = 𝑡𝑡𝑡𝑡𝑡𝑡−1�−𝐺𝐺𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖/𝐺𝐺𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� is the phase angle. Figure 1 shows the numerical 
amplification factor, (|G|) in the top frame. It is noticed that the |G| values ranges from 1 to 
3.295 i.e. greater than one everywhere, implying unstable numerical method. However, there 
exists a neutrally stable region for very small values of Nc resolving low and high 
wavenumbers, shown by the shaded area in grey. The non-dimensional numerical group 
velocity (VgN/c) and the non-dimensional numerical phase speed (cN/c) are shown in the 
middle and bottom frames, respectively. It is noticed that for a narrow range of kh, the phase 
error is of the order of O(10-4) and the error increases with increase in Nc and kh. From the 
bottom frame, one notices that the dispersion error is minimum for a narrow range of small 
wavenumbers. However, for high wavenumbers, one notices q-waves i.e. negative group 
velocity, implying that the solution travels in the direction which is opposite to the physical 
solution. 

 
Figure1. Numerical property charts for 1D convection equation using FTCS scheme (a) numerical amplification 

factor, (|G|), (b) non-dimensional phase speed, (cN/c), and (c) non-dimensional group velocity, (VgN/c). The 
shaded area in |G| shows the neutrally stable region (|G|=1) 
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2.2 Four-step 4th order Runge-Kutta (RK4) method with 2nd order central difference 
(CD2) scheme 

The stencil for RK4 method (Trefethen, 1982) is given as: 

Step-1  𝑢𝑢(1) = 𝑢𝑢(𝑛𝑛) + ∆𝑡𝑡
2
𝐿𝐿[𝑢𝑢(𝑛𝑛)] 

Step-2  𝑢𝑢(2) = 𝑢𝑢(𝑛𝑛) + ∆𝑡𝑡
2
𝐿𝐿[𝑢𝑢(1)] 

Step-3  𝑢𝑢(3) = 𝑢𝑢(𝑛𝑛) + ∆𝑡𝑡𝑡𝑡[𝑢𝑢(2)] 

Step-4  𝑢𝑢(𝑛𝑛+1) = 𝑢𝑢(𝑛𝑛) + ∆𝑡𝑡
6
�
𝐿𝐿�𝑢𝑢(𝑛𝑛)�+ 2𝐿𝐿�𝑢𝑢(1)�+

2𝐿𝐿�𝑢𝑢(2)�+ 𝐿𝐿[𝑢𝑢(3)]
� 

(12) 

The numerical amplification factor for RK4-CD2 given below is derived by substituting 
the spectral representation of the unknown, Eq. (2) and Eq. (6) into Eq. (12) and simplifying: 

𝐺𝐺 = �1−
𝑁𝑁𝑐𝑐2 𝑠𝑠𝑠𝑠𝑠𝑠2 𝑘𝑘 ℎ

2
+
𝑁𝑁𝑐𝑐4 𝑠𝑠𝑠𝑠𝑠𝑠4 𝑘𝑘 ℎ

24 � +  𝑖𝑖 �−𝑁𝑁𝑐𝑐 𝑠𝑠𝑠𝑠𝑠𝑠 𝑘𝑘 ℎ +
𝑁𝑁𝑐𝑐3 𝑠𝑠𝑠𝑠𝑠𝑠3 𝑘𝑘 ℎ

6 � (13) 

Unlike, FTCS method, the numerical amplification factor of RK4-CD2 depends on the 
value of CFL number. 

While, the corresponding non-dimensional group velocity and phase speed are obtained 
by substituting the real part and imaginary part of |G| from Eq. (13) in Eq. (11). 

Similar to the graphs obtained from FTCS method, we have three graphs pertaining to 
numerical amplification factor (|G|), the non-dimensional group velocity (VgN/c) and the non-
dimensional phase speed (cN/c) for RK4-CD2 method as shown in Figure 2 in top, middle and 
bottom frames, respectively. 

The values of |G| in case of RK4 method is always positive and ranges from 0.5 to 2.023. 
For small values of Nc, one notices a neutrally-stable region (|G|=1), resolving the entire range 
of wavenumbers, as shown by shaded are in grey. 

However, for higher values of CFL number, the solution will be stable with damped 
magnitude for intermediate wavenumber range. 

From the middle frame of Figure 2, one notices that the phase speed in case of RK4 is a 
bit more random and not as linear as FTCS because RK4 is a fourth order method thus showing 
more uncertainty with phase shifts.  

However, for small wavenumbers, the phase error is of the order O (10-3) and keeps on 
increasing with wavenumber. 

From the bottom frame of Figure 2, it is noticed that the VgN/c is of the order of O (10-2) 
for small wavenumbers and keeps on increasing with kh. 

Also, one notices the presence of q-waves i.e. unphysical group velocity for high 
wavenumber range. 

With the inferences obtained in the present section, the 1D convection equation is solved 
using FTCS method and results are then compared with that of RK4-CD2 method. 
Additionally, the effect of numerical parameter such as CFL number is shown for the RK4-
CD2 solution in the following section. 
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Figure 2. Numerical property charts for 1D convection equation using RK4 scheme (a) numerical amplification 

factor, (|G|), (b) phase velocity, (cN/c), and (c) group Velocity, (VgN/c). The shaded area in |G| shows the 
neutrally stable region (|G|=1). 
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3. RESULTS AND DISCUSSIONS 
The linear convection Eq. (1), given below, is solved here in one dimensional (1D) grid with 
5000 grid points and a domain length varying from 0 < x < 10. 

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑐𝑐
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 0 ;  𝑐𝑐 > 0 

With the initial condition given as the Gaussian wave-packet: 

𝑢𝑢(𝑥𝑥, 0) = 𝑒𝑒−𝛼𝛼(𝑥𝑥−𝑥𝑥0)2  𝑐𝑐𝑐𝑐𝑐𝑐[𝑘𝑘0(𝑥𝑥 − 𝑥𝑥0)] 

The wave packet is centered at x0=2.0 at t = 0 and the width size of the wave-packet is 
regulated by the parameter, α = -5 and initial wave number is k0=50 with physical phase speed 
taken as c=0.1. The FTCS simulation is carried out for Nc = 0.09 while, the RK4-CD2 
simulations are carried out for two different values of CFL number, Nc = 0.09 and Nc = 0.1 to 
see the effect of time-step on the accuracy of the solution. These particular values of Nc are 
chosen from the analysis of property charts discussed in section A, as these CFL number values 
lie in the neutrally stable region and correspond to minimum dispersion and phase error for 
both the numerical methods.  

3.1 Solution of 1D convection Equation using FTCS 

The analytically computed solutions are represented by solid lines in Figure 3 along with the 
exact or true solution by dashed lines for Nc = 0.09. From the property charts shown in Figure 
1 for FTCS, the chosen Nc value lies in the neutrally stable region either for very small 
wavenumber range or for high wavenumbers. However, the majority of intermediate wave-
numbers shows instability with |G|>1. 

 
Figure. 3 Results of FTCS method for Nc = 0.09. The analytical solution is compared with exact or real solution 

at t = 5, 10, 12, 15, 21, 30, 42, 50 
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Hence, the computed solution also shows amplification in the magnitude from t = 5. 
Additionally, since the FTCS method is unconditionally unstable, one notices the rise of static 
instability at initial wave-packet location i.e. x0 = 2.0 at t = 15, which keeps on amplifying 
with time. Furthermore, as VgN/c and cN/c shows contamination in the third/ second decimal 
place (Figure. 1), thus, one notices in Figure 3b, both dispersion and dissipation errors at later 
times of t = 30, which increases with time. 

3.2 Solution of 1D convection Equation using RK4-CD2 

To examine the impact of utilizing a higher order time discretization scheme on the analytical 
solution, a fourth order (RK4) method with four stages is used while keeping the spatial 
discretization method same as CD2 for the same CFL number of 0.09. Figure 4 below shows 
the analytical solution with solid lines and exact solution by dashed lines at indicated times of 
t = 5, 10, 12 and 15. Here, Nc = 0.09 lies in the neutrally stable region (from Figure 2, |G|=1) 
for the entire wavenumber range. Hence, the computed solution magnitude matches 
completely with that of the exact solution. However, the computed solution shows 
amplification in the maximum magnitude with respect to time with (|G|max) as 1.018 at t = 5 
and (|G|max) as 1.057 at t = 15. Figure 4 also shows the computed and exact solution by solid 
and dashed lines respectively at later times of t = 21, 30, 42 and 50. Here also, the amplitude 
keeps on increasing with (|G|max) = 1.197 at t = 50. However, one notices the dissipation errors 
and dispersion errors in the computed solution from t = 21, which keeps on increasing with 
respect to time. This is due to the contamination by VgN/c and cN/c in the third/ second decimal 
as shown in Figure 2 for the RK4-CD2 method. Though, the computed solution does not show 
instability for any moment of the simulation carried out up to t = 50. 

 
Figure. 4 Results of RK4-CD2 method for Nc = 0.09. The analytical solution is compared with the exact or true 

solution at t = 5, 10, 12, 15, 21, 30, 42, 50 
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In order to examine the effect of CFL number on the stability of the computed solution, 
the RK4-CD2 method is computed for a higher Nc value of 0.1 as discussed in the following 
section. For the same grid size and physical phase speed, higher value of CFL number offers 
the advantage of computing faster as one can use a higher value of time-step 

3.3 Comparison 

Figure 5 shows the comparison of the error = uexact – ucomputed, in the computed solution at the 
same time instant between (a) FTCS method for Nc = 0.09, (b) RK4-CD2 scheme for Nc = 
0.09 and (c) RK4-CD2 method for Nc = 0.1. The error plotted for the FTCS scheme for Nc = 
0.09 in frame (a) shows the generation and evolution of static and local instability at the initial 
wave packet location of x0 = 2.0 at t = 2. Also, the error magnitude is of the order of 0.2 at t 
= 8 and is increasing with time with a value of 0.4 at t = 15, consistent with the observation 
from the spectral stability analysis which showed the method to be unstable. However, for the 
RK4-CD2 method, the error is plotted for two different values of CFL number, Nc = 0.09 and 
for Nc = 0.1 represented in frames (b) and (c), respectively. From frame (b), it is noticed that 
the error magnitude for the RK4-CD2 method is lower in comparison to that for the FTCS 
method for the same CFL number of 0.09, owing the higher order discretization RK4 method. 
On comparing, frames (b) and (c), one notices that on increasing the value of Nc from 0.09 to 
0.1 for the RK4-CD2 method, the error magnitude increases from 0.15 to 0.25 (approx.) at a 
time instant of t = 15. Although, from frames (a) and (c), it is observed that the error is still 
lower in comparison to FTCS method where the error magnitude is of the order of 0.4 at t = 
15. Additionally, the RK4-CD2 solution for both the values of Nc is free from numerical 
instability. 

 
Figure 5. Variation of error for (a) FTCS scheme for Nc = 0.09, (b) RK4 - CD2 scheme for Nc = 0.09, and (c) 

RK4-CD2 scheme for Nc = 0.1. 
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4. SUMMARY AND CONCLUSIONS 
In order to numerically solve the Navier-Stokes equation accurately, the chosen numerical 
methods should capture the physics of the flow without contaminating the solution with errors. 
Thus, the efficacy of the discretization scheme for each and every term in the governing 
equation is investigated. The present research work is one such investigation where a 
fundamental one-dimensional (1D) convection equation is solved as it governs many 
convection dominated flows, using different numerical methods. The 1D convection equation 
is non-dispersive in nature and is used for spectral stability analysis of various space-time 
discretization methods. 

Here, the one-dimensional convection equation was assessed and a stability analysis was 
performed using the first order forward-in time and second order centered in space (FTCS) 
methods. To illustrate the effect of using a higher order time integration scheme, the four-stage 
fourth order (RK4) method along with CD2 for spatial discretization is also analyzed in the 
spectral plane. 

It is found that the FTCS method is unconditionally unstable while the RK4 method 
provides neutrally stable solution for particular value of numerical parameter (CFL number, 
Nc). With the observations obtained from the spectral property charts, the model 1D convection 
equation is solved using FTCS and RK4-methods for particular values of Nc corresponding to 
near-neutral stability. 

The FTCS results plotted in Figure 3 for Nc = 0.09, shows unstable solution with 
increasing magnitude from the beginning of the computation. Additionally, at some 
intermediate time of t = 15 onwards, one notices the generation of local instability where the 
wave-packet is placed initially at t = 0. This instability keeps on amplifying with respect to 
time, consistent with |G|-contours greater than 1 for any value of Nc, plotted in Figure 1. 
Furthermore, one can notice the dispersion and dissipation errors at later times of t = 30, due 
to the deviation in the VgN/c and cN/c values from unity (Figure. 1), respectively.  

Unlike the FTCS method, the results of RK4-CD2 method plotted in Figure 4, did not 
show instability for any time instant for Nc = 0.09. The computed solution overlaps with the 
original or exact solution at examined times of t = 5, 10, 12, and 15. However, at later times, 
one notices the presence of errors known as dissipation errors and dispersion errors increasing 
with increasing time as depicted in Figure 2. 

The contamination by VgN/c and cN/c is of the order of 10-2 and 10-3, respectively. A bigger 
value of CFL number of 0.1 is used to compute the solution using the RK4-CD2 method with 
the objective to evaluate the variation resulting from a higher time-step value on the accuracy 
of the solution and to save computing time. 

Observations to be made from Figure 5, which shows the error comparison between the 
FTCS (top frame) and RK4-CD2 (middle frame) methods for the same Nc = 0.09, are that the 
error is larger for the FTCS method. 

At the same time, static instability is observed for FTCS, which is absent for RK4-CD2. 
The bottom frame shows the RK4-CD2 result for a larger value of Nc = 0.1, which has a larger 
error than that of RK4-CD2 for Nc = 0.09 but still smaller than that of the FTCS method.  

Additionally, even for larger Nc value the RK4-CD2 method does not show any sign of 
numerical instability. 

In the future, the present study can also be performed for two- and three-dimensional 
flows, such as benchmark problem of 2D Lid-driven cavity and flows for which an analytical 
solution for the Taylor-Green instantaneous vortex exists, to analyze the efficacy of space-
time dependent numerical methods in uniform and non-uniform structured grids.  
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