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Abstract: This paper concerns the benefits of the active boundary layer control methods. The main focus 

was studying the effectiveness of suction control for a laminar flow over an airfoil. However, injection 

normal to or along the wall was also approached using two numerical methods. For different values 

and distributions of the velocity control magnitude, a systematic comparison was done. Having the 

results of the laminar flow, a linear stability analysis based on the small disturbance theory was carried 

out obtaining both the neutral stability curves and the transition point. In the end, for each case, results 

were presented with the corresponding observations. Additionally, a study on the dependency of the 

separation point with respect to the injection velocity magnitude was done. 
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1. INTRODUCTION 

Numerous methods of improving the aerodynamic performance of an aircraft have been tested 

and validated. Nowadays, a great deal of research has been conducted in active boundary layer 

controls. Minimizing the boundary layer thickness with continuous suction or injection 

reduces the skin-friction drag considerably due to the increase of the laminar flow region [5]. 

The purpose of this paper is to study both the effectiveness of such methods and the influence 

on the transition point from laminar to turbulent flow. 

 A systematic methodology is presented starting with the governing equations of the 

laminar boundary layer. After that, solutions are obtained using two numerical methods. 

Starting with Cebeci-Smith’s method, a Falkner-Skan transformation is done. The resulting 

third-order differential equation is then rewritten using Keller’s box method as a system of 

first-order equations. After that, the system is linearized using Newton’s method. This 

procedure yields a tridiagonal matrix-vector system which is solved using the block-

elimination method. The second approach for solving the boundary layer equation is to rewrite 

them in a discrete form. An explicit formulation is used, and a stability analysis of the method 

is done using the circuit analogy method of Karplus. 

 Having the solutions of the laminar flow, a transition prediction is done using the semi-

empirical 𝑒𝑛 method based on the small-disturbance theory. Finally, results are presented with 

a comparison between the two models, and the corresponding observations and conclusions 

are drawn. 
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2. METHODOLOGY 

One method that proved to be efficient and reliable in increasing the high lift performance of 

an airfoil is the active boundary layer control with suction and fluid injection normal to or 

along the wall. The main objective of this method is to increase the area of the laminar flow 

by delaying the transition point with the positive effect of minimizing the friction drag. Starting 

with the governing equations and their corresponding boundary conditions, a numerical 

solution is obtained using both Cebeci-Smith’s method [1] and an explicit method [2]. After 

that, a linear stability analysis is done using 𝑒𝑛 method to predict the transition point. 

2.1 Laminar boundary-layer equations  

The boundary layer region is represented by a thin layer over the surface where large velocity 

gradients occur. Thus, the effect of the viscous forces within the fluid cannot be neglected. 

Starting with a generally steady, two-dimensional, incompressible flow described by Navier-

Stokes equations, a number of assumptions are made [6]. 

The first one states that the existence of the boundary layer theory is possible only for 

Reynolds numbers above a certain value, in aerodynamics 𝑅𝑒 ≥ 104. The second one assumes 

that the boundary layer thickness is very small compared to the dimensions of the body of 

which it flows. This yields to a neglection of the body curvature, meaning that for a small 

particle flowing within the boundary layer region the effects of the centrifugal forces are 

insignificant. Although the boundary layer is very thin, a physical interpretation of its 

thickness is not possible. Thus, a theoretical thickness is introduced as being at the point where 

the velocity reaches 99% of the outer region. After all these assumptions the governing 

equations of the boundary layer become: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0 

𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑈𝑒

𝑑𝑈𝑒

𝑑𝑥
+ 𝜈

𝜕2𝑢

𝜕𝑦2
 

(1) 

with the corresponding boundary conditions: 

𝑦 = 0 ⇒ 𝑢 = 𝑣 = 0 

𝑦 = 𝛿 ⇒ 𝑢 = 𝑈𝑒 
(2) 

 Having these equations, a Falkner-Skan transformation is done in which a transformed 

boundary layer thickness is introduced: 

η = y√
𝑈𝑒

𝜈𝑥
 (3) 

together with a dimensional stream function: 

𝑓(𝑥, 𝜂) =
𝜓(𝑥, 𝑦)

√𝑢𝑒𝜈𝑥
 (4) 

 This transformation yields to a third-order differential equation in η: 

(𝑏𝑓′′)′ +
𝑚 + 1

2
𝑓𝑓′′ + 𝑚[1 − (𝑓′)2] = 𝑥 (𝑓′

𝜕𝑓′

𝜕𝑥
− 𝑓′′

𝜕𝑓

𝜕𝑥
) (5) 
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with the corresponding transformed boundary conditions: 

𝜂 = 0 ⇒ {
𝑓 = 𝑓𝑤 = −

1

√𝑢𝑒𝜈𝑥
∫ 𝑣𝑤𝑑𝑥,

𝑥

0

𝑓′ = 0

𝜂 = 𝜂𝑒 ⇒ 𝑓′ = 1

 (6) 

2.2 Numerical solution using Cebeci-Smith’s method 

To solve eqs. (5) and (6) we use Keller’s box method [3], in which we rewrite them as a system 

of first-order equations. Thus, two variables are introduced as follows: 

𝑢 = 𝑓′, 𝑣 = 𝑢′ (7) 

 Doing so, the equations become: 

(𝑏𝑣)′ +
𝑚 + 1

2
𝑓𝑣 + 𝑚(1 − 𝑢2) = 𝑥 (𝑢

𝜕𝑢

𝜕𝑥
− 𝑣

𝜕𝑓

𝜕𝑥
) 

𝜂 = 0 ⇒ {
𝑢 = 0

 𝑓 = 𝑓𝑤(𝑥)
𝜂 = 𝜂𝑒 ⇒ 𝑢 = 1

 

(8) 

 Now, the first order equations are approximated using central difference derivates and 

midpoint on an arbitrary rectangular net. This yields to following form of the system: 

ℎ𝑗
−1(𝑏𝑗

𝑛𝑣𝑗
𝑛 − 𝑏𝑗−1

𝑛 𝑣𝑗−1
𝑛 ) + 𝛼1(𝑓𝑣)𝑗−1/2

𝑛 − 𝛼2(𝑢2)𝑗−1/2
𝑛

+ 𝛼𝑛(𝑣𝑗−1/2
𝑛−1 𝑓𝑗−1/2

𝑛 − 𝑓𝑗−1/2
𝑛−1 𝑣𝑗−1/2

𝑛 ) = 𝑅𝑗−1/2
𝑛−1  

(9) 

where 

𝑅𝑗−1/2
𝑛−1 = −𝐿𝑗−1/2

𝑛−1 + 𝛼𝑛[(𝑓𝑣)𝑗−1/2
𝑛−1 − (𝑢2)𝑗−1/2

𝑛−1 ] − 𝑚𝑛 

𝐿𝑗−1/2
𝑛−1 = {ℎ𝑗

−1(𝑏𝑗𝑣𝑗 − 𝑏𝑗−1𝑣𝑗−1) +
𝑚 + 1

2
(𝑓𝑣)𝑗−1/2 + 𝑚[1 − (𝑢2)𝑗−1/2]}

𝑛−1

 

(10) 

 The boundary conditions are rewritten as follows: 

𝑓0
𝑛

= 𝑓𝑤, 𝑢0
𝑛 = 0, 𝑢𝑗

𝑛 = 1 (11) 

 The nonlinear, implicit resulting system is linearized using Newton’s method. Iterates are 

introduced for 𝑓𝑗
(𝜈)

, 𝑢𝑗
(𝜈)

, 𝑣𝑗
(𝜈)

 where 𝜈 = 0,1,2 …  We initialize the values of the variables at a 

𝑥 station with the result from the previous station. For the next iterates a linear approximation 

is done: 

𝑓𝑗
(𝜈+1)

= 𝑓𝑗
(𝜈)

+ 𝛿𝑓𝑗
(𝜈)

𝑢𝑗
(𝜈+1) = 𝑢𝑗

(𝜈) + 𝛿𝑢𝑗
(𝜈)

𝑣𝑗
(𝜈+1) = 𝑣𝑗

(𝜈+1) + 𝛿𝑣𝑗
(𝜈)

 (12) 

 This procedure yield to a linear system with a block tridiagonal structure written in matrix 

vector form as follows: 

𝐴𝛿
⃗

= 𝑟 (13) 
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where 𝛿
⃗
 represent the unknowns, 𝑟 the right-hand side of the system and 𝐴 a tridiagonal matrix. 

Using the block-elimination method, a solution of the system can be obtained efficiently. 

2.3 Numerical solution using an explicit method 

Another method for solving the boundary layer equations is approached using an explicit 

formulation.Using the parabolic momentum equation,an explicit downstream marching 

procedure is done to determine the 𝑥 component of the velocity. Similarly, from the auxiliary 

continuity equation, the 𝑦 component of the velocity is obtained. 

 The second derivative from the momentum equation, as well as the second term from the 

left-hand side, is written using a central difference for better accuracy. Also, the remaining 

terms are expressed similarly. The pressure gradient term is obtained using the inviscid 

solution. So, the momentum equation becomes: 

𝑢𝑛+1,𝑚 = 𝑄𝑛,𝑚(𝑢𝑛,𝑚+1 + 𝑢𝑛,𝑚−1) − (2𝑄𝑛,𝑚 − 1)𝑢𝑛,𝑚 

−
𝑈𝑒

𝑢𝑛,𝑚
(𝑈𝑒𝑛+1

− 𝑈𝑒𝑛) −
𝑣𝑛,𝑚

𝑢𝑛,𝑚
(

∆𝑥

∆𝑦
) (

𝑢𝑛,𝑚+1 − 𝑢𝑛,𝑚−1

2
) 

(14) 

where 

𝑄𝑛,𝑚 =
𝜈∆𝑥

𝑢𝑛,𝑚∆𝑦2
 (15) 

 It can be noted that the factor 𝑄𝑛,𝑚 depends on 𝑢𝑛,𝑚 and not on 𝑈𝑒𝑛
. This means that 

𝑄𝑛,𝑚 is not constant across the layer at any 𝑥 station. Using this form of the equation the 𝑥 

component of the velocity can be obtained. For the 𝑦 component, the auxiliary equation of the 

system is used. An expression similar to Keller’s box method is applied, and the continuity 

equation becomes: 

1

2
[
𝑢𝑛+1,𝑚 − 𝑢𝑛,𝑚

∆𝑥
+

𝑢𝑛+1,𝑚−1 − 𝑢𝑛,𝑚−1

∆𝑥
] +

𝑣𝑛+1,𝑚 − 𝑣𝑛+1,𝑚−1

∆𝑦
= 0 (16) 

 Obtaining the components of the velocity, a stability analysis of the numerical scheme is 

done. Because of the nonlinearity of the original system, the von Neumann method can not be 

applied. So, a circuit analogy method of Karplus is used. This yields the following stability 

condition: 

∆𝑥 ≤
1

2

𝑢𝑛,𝑚∆𝑦2

𝜈
 (17) 

 Using the above expression, it can be concluded that a variable step size along the surface 

is required for the explicit method. 

Having a solution for the velocity components, both the displacement and momentum 

thickness can be obtained by integrating the velocity profiles.The wall shear-stress can be 

expressed as follows: 

𝜏𝑤 = 𝜇 (
𝜕𝑢

𝜕𝑦
)

𝑦=0

≈
𝜇

2∆𝑦
(4𝑢𝑛,2 − 𝑢𝑛,3) (18) 

 The code for this method was written in FORTRAN 90 and it was used in comparison to 

Cebeci-Smith’s method for the injection/suction method of control normal to the wall. Also, a 

study of injection along the wall was done using this method with acceptable results. 
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2.4 Stability analysis 

Having the solutions of the laminar flow, a linear stability analysis is done using the 𝑒𝑛 

method. This is based on the assumption that transition occurs only when a small disturbance 

introduced at a critical number is amplified by a factor of 𝑒𝑛. In our paper, the spacial 

amplification theory was approached. 

 Based on a small disturbance theory [4], the governing equation for the linear stability 

analysis was derived. Assuming that the instantaneous components of the flow 𝑢, 𝑣, 𝑝 are 

divided into a mean flow term, 𝑢, 𝑣, 𝑝 and a fluctuating one, 𝑢′, 𝑣′, 𝑝′, neglecting the squares 

and products of the fluctuating terms and assuming that the mean flow velocity 𝑢 is a function 

of 𝑦 only, a system of equations in dimensionless quantities is obtained: 

𝜕𝑢´

𝜕𝑥
+

𝜕𝑣 ´

𝜕𝑦
= 0 

𝜕𝑢´

𝜕𝑡
+ 𝑢

𝜕𝑢´

𝜕𝑥
+ 𝑣 ´

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝´

𝜕𝑥
+

1

𝑅
(

𝜕2𝑢´

𝜕𝑥2
+

𝜕2𝑢´

𝜕𝑦2 ) 

𝜕𝑣 ´

𝜕𝑡
+ 𝑢

𝜕𝑣 ´

𝜕𝑥
= −

𝜕𝑝´

𝜕𝑦
+

1

𝑅
(

𝜕2𝑣´

𝜕𝑥2
+

𝜕2𝑣 ´

𝜕𝑦2 ) 

(19) 

 This system of equations describes how disturbances originating near the wall spread out 

through the boundary layer. To study the properties of these equations we represent a two-

dimensional disturbance as follows: 

𝑞´(𝑥, 𝑦, 𝑡) = 𝑞(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) (20) 

where 𝛼 is a dimensionless number and 𝜔 is the frequency of the disturbance. Also expressing 

the velocity components such that: 

𝑢´ =
𝜕𝜓

𝜕𝑦
, 𝑣 ´ =

𝜕𝜓

𝜕𝑥
 (21) 

the momentum equation becomes: 

𝜕

𝜕𝑡
∇2𝜓 + 𝑢

𝜕

𝜕𝑥
(∇2𝜓) −

𝜕𝜓

𝜕𝑥

𝑑2𝑢

𝑑𝑦2
=

1

𝑅
∇4𝜓 (22) 

 Expressing the disturbance stream function as: 

𝜓 = 𝜙(𝑦)𝑒𝑖(𝛼𝑥−𝜔𝑡) (23) 

eqn. (22) becomes a fourth order differential equation for the amplitude 𝜙(𝑦), known as the 

Orr-Sommerfeld equation: 

𝜙𝑖𝑣 − 2𝛼2𝜙´´ + 𝛼4𝜙 = 𝑖𝑅(𝛼𝑢 − 𝜔)(𝜙´´ − 𝛼2𝜙) − 𝑖𝑅𝛼𝑢´´𝜙 (24) 

 The solution of the equation is obtained using the spatial amplification theory where 𝜔 is 

realand 𝛼 a complex number. The eigenvalues of the Orr-Sommerfeld equation are represented 

in (𝛼, 𝑅) or (𝜔, 𝑅) diagrams. The value where 𝛼𝑖 = 0 represents the neutral stability curve 

separating the stable from the unstable region. To calculate the transition point, the 

amplification rate −𝛼𝑖 is calculated as a function of 𝑅 for dimensional frequencies 𝜔∗. After 

that, the variation of the integrated amplificated factor rate is derived using: 
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𝑛 = − ∫ 𝛼𝑖𝑑𝑥

𝑥

𝑥0

 (25) 

2.5 Numerical solution of the Orr-Sommerfeld equation 

 The numerical solution is similar to the solution of the boundary layer equations obtained 

using Cebeci-Smith’s method. Applying Keller’s box method, the Orr-Sommerfeld equation 

and its corresponding boundary condition are reduced to a first order system of equations: 

𝜙´ = 𝑓 

𝑓 ´ = 𝑠 + 𝜉1
2𝜙 

𝑠´ = 𝑔 

𝑔´ = 𝜉1
2𝑠 − 𝜉3𝜙 

(26) 

 After that the system of equations is rewritten in a form of a tridiagonal matrix-vector 

form as follows: 

𝐴𝛿
⃗

= 𝑟 (27) 

where 𝛿
⃗
 represents the unknowns. We note that the system derived depends only on four 

parameters: 

𝛿
⃗

= 𝛿
⃗
(𝛼, 𝛽, 𝜔, 𝑅) (28) 

 Because 𝛼 and 𝛽 are complex numbers and 𝜔 is real, the solution depends on six scalars. 

Fixing four of these, the remaining ones can be calculated such that the boundary conditions 

are satisfied. This corresponds to an eigenvalue problem that is solved using an eigenvalue 

procedure described in Tuncer-Cebeci [2]. 

3. RESULTS 

Airfoils that are designed for laminar flow make use of large areas with a negative pressure 

gradient moving the transition point closer to the trailing edge. This can be further improved 

by using active boundary layer controls. In the following, a series of results obtained using the 

methods presented in the methodology chapter are presented based on three cases: suction 

control with a constant or linear variation of the surface mass transfer and a combination 

between injection or suction with the same variation. For a NACA 2412, the displacement 

thickness, 𝛿∗, the momentum thickness, 𝜃∗, and the skin friction coefficient, 𝐶𝑓, are 

represented. For different angles of attack, the effect of the control method on the separation 

point was analyzed. 

Suction/ injection normal to the wall 

In case of suction/injection normal to the wall the following input data were required: 

Reference velocity [m/s] 10 Total number of control points 200 

Reference length [m] 1 Total number of normal grid points 95 

Kinematic viscosity [m2/s] 2E-5 Starting suction/injection point Freely chosen 

Reynolds number  500000 Ending suction/injection point Freely chosen  
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 Note that both the control velocity magnitude and the length of the control region are 

dimensionless values. 

Although a wide range of angles of attack was tested, the boundary layer parameters 

represented in this paper are only for the case of a 4𝑜 angle of attack. 

 
Figure 1. Displacement thickness obtained with 

Cebeci-Smith method 

 
Figure 2. Displacement thickness obtained with the 

explicit method 

 The downstream development of the displacement thickness obtained with both methods 

for different suction and injection cases is shown in Figure 1 and Figure 2.  

 
Figure 3. Momentum thickness obtained with Cebeci-

Smith method 

 
Figure 4. Momentum thickness obtained with the 

explicit method 

 In the case of suction, we note that in the control region, the displacement thickness is 

suppressed, and the separation point is shifted toward the trailing edge. On the other hand, 

injection promotes the displacement thickness to a higher value. 

In Figure 3 and Figure 4 the variation of the momentum thickness with the local Reynolds 

number is portrayed. 

In both cases, suction and injection, development is similar to the displacement thickness. 

In the case of the explicit method with blowing, the values of the momentum thickness 

are higher than the ones from Cebeci-Smith’s method. Also, in the case of constant suction, 

the overall values tend to be lower. 
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Figure 5. Skin friction coefficient obtained with 

Cebeci-Smith method 

 
Figure 6. Skin friction coefficient obtained with the 

explicit method 

 Figure 5 and Figure 6 show the development of the skin friction coefficient with respect to 

the local Reynolds number. In the case of suction, the sharp rise of the skin friction coefficient 

comes from the high values of the velocity gradient due to the sudden decrease of the boundary 

layer. The explicit method gives a steeper slope because of the wall-shear stress 

approximation. 

Injection along the wall 

Results in case of injection along the wall were obtained using the explicit method. Having the 

same airfoil, NACA 2412, at the same angles of attack, three cases were tested. For the same 

angle of attack as in the previous case, a representation of the boundary layer parameters with 

respect to the local Reynolds number was plotted. Also, the following input data was 

necessary: 

 As in the previous case, the velocity magnitude is dimensionless. Also, instead of a control 

region, a point of injection is necessary. 

 
Figure 7. Displacement thickness obtained with the 

explicit method 

 
Figure 8. Momentum thickness obtained with the 

explicit method 

Reference velocity [m/s] 10 Total number of control points 200 

Reference length [m] 1 Total number of normal grid points 100 

Kinematic viscosity [m2/s] 2E-5 
Total number of normal grid points 

in the initial section 
21  

Reynolds number 500000 Injection velocity magnitude Freely chosen 
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 The development of the displacement thickness, 𝛿∗, and the momentum thickness, 𝜃, 

along the wall is represented in Figure 7 and Figure 8. As expected in this case, both values have 

a steep increase past the region of the injection point. Also, numerical instabilities due to the 

nature of the scheme can be seen near the separation point. 

 
Figure 9. Skin friction coefficient obtained with the 

explicit method 

 
Figure 10. Dependency of the separation point with 

respect to the injection velocity magnitude 

 Figure 9 shows the variation of the skin friction coefficient with respect to the local 

Reynolds number. Past the injection point, a sharp rise occurs due to the high values of the 
𝜕𝑢

𝜕𝑦
.The same instabilities near the separation point can be observed due to the wall-shear stress 

approximation.Figure 10 shows the variation of the separation point with respect to the injection 

velocity magnitude. It can be seen that past a certain value of the velocity magnitude, the effect 

of the control method is undesirable. Also, if the value is too small, the separation point 

remains unchanged. 

Stability analysis 

Flow transition was investigated for NACA 2412 using the 𝑒𝑛 method. The following input 

data was required for the stability analysis: 

 As in the previous cases, the transition point was determined for a wide range of angles 

of attack as seen in the following table: 

RESULTS 

AoA 
Without control Suction control 

Transition point  Separation point Transition point  Separation point 

0𝑜 0.342 0.96 0.449 1 

2𝑜 0.215 0.95 0.291 0.99 

4𝑜 0.107 0.93 0.138 0.98 

6𝑜 0.052 0.93 0.056 0.94 

 The following diagrams are represented only for the case of an 4𝑜 angle of attack. 

Reference velocity [m/s] 43 Total number of control points 200 

Reference length [m] 1 Total number of normal grid points 100 

Kinematic viscosity [m2/s] 0.00002 Total number of tested frequencies ≤5 

Reynolds number 5000000 
The starting point of the stability 

analysis 
Freely chosen 
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Figure 11. Transition prediction together with the 

integrated amplification rates (no control) 

 
Figure 12. Transition prediction together with the 

integrated amplification rates (𝑉𝑤 = −0.0009) 

 Figure 11 and Figure 12 show the amplification factor 𝑁 for different frequencies. Also, the 

transition point is determined for 𝑁 = 9. In the case of boundary layer control with suction, 

the transition point is delayed from 0.107 to 0.138. 

 The neutral stability curves of the amplification rate, 𝛼𝑖, (Figure 14) and of the dimensional 

frequency, 𝜔, (Figure 13) represent the locus where 𝛼𝑖 = 0. Also, the instability region is 

defined by the area between the curves while the critical Reynolds number is the point where 

the first neutral stability point can occur. The beneficial effect of suction control can be seen 

due to the overall reduction of the region between the branches. 

 
Figure 13. Neutral stability curves 𝜔𝑣𝑠. 𝑅 

 
Figure 14. Neutral stability curves 𝛼𝑣𝑠. 𝑅 

 On the other hand, a reduced critical Reynolds number in the suction case denotes a higher 

chance of instability. 

4. CONCLUSIONS 

This work proves that active boundary layer control can vastly improve the aerodynamic 

performance of an airfoil. In the case of the laminar flow, a very good agreement can be seen 

between the two methods. Although some differences can occur, the explicit method proves 

to be reliable and easier to implement. However, for more accurate results, Cebeci-Smith’s 

method is recommended. 
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 Both codes validate the following conclusions: 

- Simulation over large areas of continuous suction/injection normal to the wall is well 

predicted; 

- The influence of the control region is highly influencing the separation point; 

- The suction velocity magnitude must not exceed a certain value, otherwise, the flow 

is separated prematurely. 

 In the case of injection along the wall, the velocity magnitude of the injected flow is one 

order higher than the suction/injection normal to the wall. Same as in the previous case, the 

values of the control velocity magnitude must be within a certain interval. 

 The stability analysis using the 𝑒𝑛 method proves to be reliable and consistent, although, 

errors may occur for angles of attack higher than 6𝑜. Also, as expected, the transition point 

moves towards the leading edge with the increase of the angle of attack. The suction delays 

the transition point and the overall drag is reduced due to the increased area of laminar flow.  

 Although results are promising, a practical approach is rarely used because of the 

additional power required for the control system. Additionally, the overall trend in aviation is 

to lower complexity devices. However, with the recent advances in material and 

manufacturing, research in this field is highly encouraged due to the superior aerodynamic 

performances that can be achieved using these techniques. 
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