
INCAS BULLETIN, Volume 12, Issue 4/ 2020, pp. 83 – 94          (P) ISSN 2066-8201, (E) ISSN 2247-4528 
 

Low-speed airfoil optimization using constrained 
differential evolution 

Mihai-Vladut HOTHAZIE*,1, Matei MIRICA2 

*Corresponding author 
1INCAS – National Institute for Aerospace Research “Elie Carafoli”,  

B-dul Iuliu Maniu 220, Bucharest 061126, Romania,  
hothazie.mihai@incas.ro 

2International Computer High School of Bucharest,  
Strada Balta Albina nr. 9,  

miricamatei97@gmail.com 
DOI: 10.13111/2066-8201.2020.12.4.8 

Received: 11 September 2020/ Accepted: 12 October 2020/ Published: December 2020 
Copyright © 2020. Published by INCAS. This is an “open access” article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

International Conference of Aerospace Sciences “AEROSPATIAL 2020”, Virtual Conference 
15-16 October 2020, Bucharest, Romania,  

Section 1 - Aerodynamics 

Abstract: Nowadays, algorithms designed to optimize the shape of an airfoil are being developed by 
many researchers. In this paper, to achieve an optimum shape configuration, a methodology based on 
an evolutionary algorithm is proposed. The main objective is to find the optimum shape of a known 
airfoil that gives the best aerodynamic performance for a fixed lift coefficient. For the airfoil 
parametrization, the class-shape method is used to develop a well-behaved geometry. The paper 
underlines the implementation of a constrained differential evolutionary algorithm using the free 
penalty scheme by varying the coefficients of the shape parametrization function. The aim is to obtain 
a better aerodynamic performance for a predetermined lift coefficient by imposing a fixed maximum 
airfoil thickness interval. The method is a general optimization procedure and can be implemented in a 
wide range of engineering design problems. 

Key Words: shape, airfoil, optimization, evolutionary algorithm, differential evolution, constraints 

1. INTRODUCTION 
The substantial progress of the computational capabilities of modern computers allows us to 
evaluate complex engineering problems without the need of simplifications. 

As a result, complex aerodynamic equations can now be solved with the help of modern 
digital computers. 

In the quest for the best aerodynamic geometry of an airfoil, numerous optimization 
techniques have been developed. 

However, many of these methods optimize the airfoil for certain situations and decrease 
the aerodynamic performances in other conditions. 

To overcome these limitations, the criteria for the optimization process must be wisely 
chosen. For this, our paper proposes an evolutionary algorithm based on a free penalty scheme 
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coupled with an efficient procedure to obtain the aerodynamic performances of an airfoil. It is 
noteworthy that the proposed objective function takes into account the lift-drag ratio at 
multiple angles of attack with corresponding weights. 

The search for the optimal and robust airfoil geometry is initiated from a known airfoil 
configuration, although, a random geometry can be used. 

In the end, a final population of numerous airfoils is obtained, and selected cases are 
chosen based on the robustness criterion. To illustrate the usefulness of this technique, a 
methodology is presented, and a series of results are analyzed followed by the corresponding 
conclusions. 

2. METHODOLOGY 
A computer program written in Fortran 90 was developed based on a differential evolution 
method. For this, a systematic aerodynamic analysis is applied, starting with a class-shape 
parametrization of the airfoil geometry followed by an approximation of the airfoil outline 
with a given number of panels. Thus, the inviscid solution is calculated using a linear vortex 
panel method. 

The viscous part of the solution is based on a boundary layer analysis using Cebeci-
Smith’s method. 

Lastly, an objective function is formulated based on the airfoil performance coefficients 
and the optimum solution is obtained using the evolutionary part of the algorithm. 

2.1 Class-shape parametrization 

The Class-Shape method was recently developed by Kulfan in 2006 [1]. The general 
mathematical formulation necessary to describe a two-dimensional airfoil geometry is defined 
as the product of the class function 𝐶𝐶(𝑥𝑥) and a shape function 𝑆𝑆(𝑥𝑥): 

𝑧𝑧(𝑥𝑥) = 𝐶𝐶𝑁𝑁1
𝑁𝑁2(𝑥𝑥) ∙ 𝑆𝑆(𝑥𝑥) (1) 

where the class function has the following form: 

𝐶𝐶𝑁𝑁2𝑁𝑁1(𝑥𝑥) ≡ (𝑥𝑥)𝑁𝑁1(1− 𝑥𝑥)𝑁𝑁2 , 0 ≤ 𝑥𝑥 ≤ 1 (2) 

Both exponents, 𝑁𝑁1 and 𝑁𝑁2, vary from 0 to 1 and generate a random airfoil shape. To 
define a NACA type airfoil, a rounded leading edge is obtained when 𝑁𝑁1 equals to 0.5, while 
a sharp trailing requires 𝑁𝑁2 to be equal to 1. 

Variation of the exponents yields to other airfoils geometries and a particular selection 
makes the basic shape in the airfoil class. To define the trailing edge thickness, an additional 
term is added to (1) so that: 

𝑧𝑧(𝑥𝑥) = 𝐶𝐶1.0
0.5(𝑥𝑥) ∙ 𝑆𝑆(𝑥𝑥) + (𝑥𝑥) ∙ ∆𝑧𝑧𝑡𝑡𝑡𝑡 . (3) 

For the shape function, a Bernstein polynomial expression is chosen: 

𝑆𝑆(𝑥𝑥) = 𝐵𝐵𝑖𝑖𝑛𝑛(𝑥𝑥) = 𝐶𝐶𝑛𝑛𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖(1 − 𝑥𝑥)𝑛𝑛−𝑖𝑖 (4) 

The class function defines general classes of geometries, whereas the shape function 
determines individual shapes within the geometry class providing easy control of the airfoil 
critical design parameters. 

To completely define the upper and the lower surface of the class-shape function 
transformation, equation (3) becomes: 
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𝑧𝑧 = √𝑥𝑥 ∙ (1 − 𝑥𝑥) ∙��𝑊𝑊𝑖𝑖 ∙ 𝐶𝐶𝑛𝑛𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 ∙ (1 − 𝑥𝑥)𝑛𝑛−𝑖𝑖� + 𝑥𝑥 ∙ ∆𝑧𝑧𝑡𝑡𝑡𝑡

𝑛𝑛

𝑖𝑖=0

 (5) 

In our problem, the coefficients of the shape function (𝑊𝑊𝑖𝑖) are the optimization variables, 
and this method, in particular, proves to be highly efficient in the differential evolution 
algorithm. 

They range between -1 to 1, so the search region of the algorithm is narrowed, reducing 
the computational time. 

For the 𝑥𝑥 component, a cosine spacing is used with uniform increments of 𝛽𝛽 to generate 
a higher density of points near the leading and the trailing edge of the airfoil: 

𝑥𝑥 =
1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝛽𝛽

2
, 0 ≤ 𝛽𝛽 ≤ 𝜋𝜋 (6) 

2.2 Vortex panel-method 

A linear strength vortex panel method was used to predict the aerodynamic properties of the 
airfoil [2]. 

The solutions will initially be inviscid flow predictions from which we will obtain the lift 
and pitching moment properties. 

After that, we will consider viscous forces in the boundary layer and we will predict the 
viscous component of the solution and the skin drag properties. This particular panel method 
has the property that the variation of the density circulation on each panel is linear and is 
continuous across two adjacent panels. 

The midpoint of the panel referred to as the control point, is where the condition of no 
normal velocity is applied. 

The velocity potential at a given control point 𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖 is composed of the effect of all vortex 
panels along the airfoil and the free stream velocity: 

∅(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = 𝑉𝑉∞(𝑥𝑥𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑦𝑦𝑖𝑖𝑐𝑐𝑠𝑠𝑠𝑠𝑐𝑐) −��
𝛾𝛾�𝑐𝑐𝑗𝑗�

2𝜋𝜋
𝑡𝑡𝑡𝑡𝑠𝑠−1 �

𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑗𝑗
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗

�𝑑𝑑𝑐𝑐𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 (7) 

where 𝑐𝑐 represents the angle of attack. 
The vortex strength is given by the linear variation along with each panel: 

𝛾𝛾�𝑐𝑐𝑗𝑗� = 𝛾𝛾𝑗𝑗 + �𝛾𝛾𝑗𝑗+1 − 𝛾𝛾𝑗𝑗�
𝑐𝑐𝑗𝑗
𝑆𝑆𝑗𝑗

 (8) 

The no penetration boundary condition at each control point is given by: 
𝜕𝜕
𝜕𝜕𝑠𝑠𝑖𝑖

∅(𝑥𝑥𝑖𝑖,𝑦𝑦𝑖𝑖) = 0, 𝑠𝑠 = 1,2, . . . ,𝑚𝑚 (9) 

Doing all the necessary differentiation and integration, Kuethe and Chow (1986) give the 
following results: 

��𝐶𝐶𝑛𝑛1𝑖𝑖𝑖𝑖𝛾𝛾𝑗𝑗
′ + 𝐶𝐶𝑛𝑛2𝑖𝑖𝑖𝑖𝛾𝛾𝑗𝑗+1

′ � = 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃𝑖𝑖 − 𝑐𝑐)
𝑚𝑚

𝑗𝑗=1

𝑠𝑠 = 1,2, . . . ,𝑚𝑚 (10) 
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in which 𝛾𝛾′ = 𝛾𝛾/2𝜋𝜋𝑉𝑉∞ represents the dimensionless circulation and 𝜃𝜃𝑖𝑖 the angle between the 
𝑠𝑠 -th panel and 𝑥𝑥 axis. 

The coefficients above are given by: 

𝐶𝐶𝑛𝑛1𝑖𝑖𝑖𝑖 = 0.5𝐷𝐷𝐷𝐷 + 𝐶𝐶𝐶𝐶 − 𝐶𝐶𝑛𝑛2𝑖𝑖𝑖𝑖 

𝐶𝐶2𝑛𝑛𝑖𝑖𝑖𝑖 = 𝐷𝐷 + 0.5𝑄𝑄𝐷𝐷/𝑆𝑆𝑗𝑗 − (𝐴𝐴𝐶𝐶 + 𝐷𝐷𝐷𝐷)𝐶𝐶/𝑆𝑆𝑗𝑗 
(11) 

in which 

𝐴𝐴 = −�𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑗𝑗�𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑖𝑖 − �𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑗𝑗�𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 

𝐵𝐵 = �𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑗𝑗�
2 + �𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑗𝑗�

2 
𝐶𝐶 = 𝑐𝑐𝑠𝑠𝑠𝑠�𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗� 
𝐷𝐷 = 𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑗𝑗� 

𝐷𝐷 = �𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑗𝑗�𝑐𝑐𝑠𝑠𝑠𝑠𝜃𝜃𝑗𝑗 − �𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑗𝑗�𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃𝑗𝑗 

𝐷𝐷 = 𝑙𝑙𝑠𝑠 �1 +
𝑆𝑆𝑗𝑗2 + 2𝐴𝐴𝑆𝑆𝑗𝑗

𝐵𝐵 � 

𝐶𝐶 = 𝑡𝑡𝑡𝑡𝑠𝑠−1 �
𝐷𝐷𝑆𝑆𝑗𝑗

𝐵𝐵 + 𝐴𝐴𝑆𝑆𝑗𝑗
� 

𝑃𝑃 = �𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑗𝑗�𝑐𝑐𝑠𝑠𝑠𝑠�𝜃𝜃𝑖𝑖 − 2𝜃𝜃𝑗𝑗� + �𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑗𝑗�𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑖𝑖 − 2𝜃𝜃𝑗𝑗� 
𝑄𝑄 = �𝑥𝑥𝑖𝑖 − 𝑋𝑋𝑗𝑗�𝑐𝑐𝑐𝑐𝑐𝑐�𝜃𝜃𝑖𝑖 − 2𝜃𝜃𝑗𝑗� + �𝑦𝑦𝑖𝑖 − 𝑌𝑌𝑗𝑗�𝑐𝑐𝑠𝑠𝑠𝑠�𝜃𝜃𝑖𝑖 − 2𝜃𝜃𝑗𝑗� 

(12) 

At the trailing edge, Kutta condition is applied: 

𝛾𝛾1′ + 𝛾𝛾𝑚𝑚+1
′ = 0 (13) 

Now, the resulting system consists of 𝑚𝑚 + 1 equation and is rewritten as follows: 

� 𝐴𝐴𝑛𝑛𝑖𝑖𝑖𝑖

𝑚𝑚+1

𝑗𝑗=1

𝛾𝛾𝑗𝑗′ = (𝑅𝑅𝑅𝑅𝑆𝑆)𝑖𝑖, 𝑠𝑠 = 1,2, . . . ,𝑚𝑚 + 1 (14) 

where, for 𝑠𝑠 < 𝑚𝑚 + 1: 

𝐴𝐴𝑛𝑛𝑖𝑖1 = 𝐶𝐶𝑛𝑛1𝑖𝑖1 
𝐴𝐴𝑛𝑛𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑛𝑛1𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑛𝑛2𝑖𝑖𝑖𝑖−1 , 𝑗𝑗 = 2,3, . . . ,𝑚𝑚 

𝐴𝐴𝑛𝑛𝑖𝑖𝑚𝑚+1 = 𝐶𝐶𝑛𝑛2𝑖𝑖𝑚𝑚 
(𝑅𝑅𝑅𝑅𝑆𝑆)𝑖𝑖 = 𝑐𝑐𝑠𝑠𝑠𝑠(𝜃𝜃𝑖𝑖 − 𝑐𝑐) 

(15) 

and for 𝑠𝑠 = 𝑚𝑚 + 1 

𝐴𝐴𝑛𝑛𝑖𝑖1 = 𝐴𝐴𝑛𝑛𝑖𝑖𝑚𝑚+1 = 1 
𝐴𝐴𝑛𝑛𝑖𝑖𝑖𝑖 = 0 𝑗𝑗 = 2,3, . . . ,𝑚𝑚 

(𝑅𝑅𝑅𝑅𝑆𝑆)𝑖𝑖 = 0 
(16) 

The resulting system is solved based on a LU decomposition. Having the solutions, the 
velocity at every control point is computed by the following formula: 
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𝑉𝑉𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐(𝜃𝜃𝑖𝑖 − 𝑐𝑐) + ��𝐶𝐶𝑡𝑡1𝑖𝑖𝑖𝑖𝛾𝛾𝑗𝑗
′ + 𝐶𝐶𝑡𝑡2𝑖𝑖𝑖𝑖𝛾𝛾𝑗𝑗+1

′ �
𝑚𝑚

𝑗𝑗=1

 

𝐴𝐴𝑡𝑡𝑖𝑖1 = 𝐶𝐶𝑡𝑡1𝑖𝑖1 

𝐴𝐴𝑡𝑡𝑖𝑖𝑖𝑖 = 𝐶𝐶𝑡𝑡1𝑖𝑖𝑖𝑖 + 𝐶𝐶𝑡𝑡2𝑖𝑖𝑖𝑖−1 𝑗𝑗 = 2,3, . . . ,𝑚𝑚 
𝐴𝐴𝑡𝑡𝑖𝑖𝑚𝑚+1 = 𝐶𝐶𝑡𝑡2𝑖𝑖𝑚𝑚 

(17) 

Knowing the velocities of each control points, the pressure coefficient can be determined 
as follows: 

𝐶𝐶𝑝𝑝𝑖𝑖 = 1 − 𝑉𝑉𝑖𝑖2 (18) 

2.3 Boundary layer analysis 

The boundary layer represents the region close to the wall, where the viscous forces cannot be 
neglected. 

In this case, the viscous part solution of the flow is obtained using the boundary layer 
method described by Cebeci-Smith [3]. 

To determine the parameters of the steady two-dimensional incompressible boundary 
layer, we start with the governing equations: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

= 0

𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

= 𝑈𝑈𝑡𝑡
𝑑𝑑𝑈𝑈𝑡𝑡
𝑑𝑑𝑥𝑥

+ 𝜈𝜈
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

−
𝜕𝜕
𝜕𝜕𝑦𝑦

�𝑢𝑢′𝜕𝜕′�

0 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦

 (19) 

For the laminar part of the flow, the Reynolds shear stress term −𝜌𝜌𝑢𝑢′𝜕𝜕′ equals to zero. 
Using the above system of equations, we introduce a Falkner-Skan transformation in which 
the similarity variable 𝜂𝜂 is given by: 

𝜂𝜂 = 𝑦𝑦�
𝑈𝑈𝑡𝑡
𝜈𝜈𝑥𝑥

 (20) 

Also, a dimensional stream function is introduced: 

𝑓𝑓(𝑥𝑥, 𝜂𝜂) =
𝜓𝜓(𝑥𝑥,𝑦𝑦)

�𝑢𝑢𝑡𝑡𝜈𝜈𝑥𝑥
 (21) 

 With this transformation, the system of governing equations can be expressed as a third-
order differential equation known as the Falkner-Skan equation. 

(𝑏𝑏𝑓𝑓′′)′ +
𝑚𝑚 + 1

2
𝑓𝑓𝑓𝑓′′ + 𝑚𝑚[1 − (𝑓𝑓′)2] = 𝑥𝑥 �𝑓𝑓′

𝜕𝜕𝑓𝑓′

𝜕𝜕𝑥𝑥
− 𝑓𝑓′′

𝜕𝜕𝑓𝑓
𝜕𝜕𝑥𝑥�

 (22) 

 The boundary conditions for the continuity and momentum equations are rewritten as 
follows: 
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𝜂𝜂 = 0 ⇒ �
𝑓𝑓 = 𝑓𝑓𝑤𝑤 = −

1

�𝑢𝑢𝑡𝑡𝜈𝜈𝑥𝑥
� 𝜕𝜕𝑤𝑤𝑑𝑑𝑥𝑥,
𝑥𝑥

0

𝑓𝑓′ = 0
𝜂𝜂 = 𝜂𝜂𝑡𝑡 ⇒  𝑓𝑓′ = 1

 (23) 

 The numerical solution is obtained by discretizing the system using Keller’s Box method 
[4]. 

Firstly, we express the equations above as a first-order system by introducing new 
variables that represent the derivatives of 𝑓𝑓. Then, an approximation is done using a 
rectangular box with centered derivates and averages at the midpoints. To solve the nonlinear 
system, we use Newton’s method. This yields to a linear system with a tridiagonal structure of 
the following form: 

𝐴𝐴𝛿𝛿 = 𝑟𝑟 (24) 

 The solution is obtained using the block elimination method described by Cebeci and 
Bradshaw. Based on the empirical criteria reported by Michael, the transition is assumed to 
occur when the momentum thickness exceeds a certain value determined by the following 
equation: 

𝑅𝑅𝑅𝑅𝜃𝜃𝑡𝑡𝑡𝑡 = 2.9𝑅𝑅𝑅𝑅𝑥𝑥𝑡𝑡𝑡𝑡
0.4 (25) 

 If the Reynolds number is sufficiently large, turbulence can occur. For the solution of the 
turbulent flow, a differential method developed by Cebeci and Smith is used [3]. It’s based on 
the method described for the laminar flow, but with the addition of the Reynolds shear stress 
modeled using the algebraic eddy viscosity formulation. 

Using the Falkner-Skan transformation, the eddy viscosity equations for the inner and 
outer regions are: 

(𝜈𝜈𝑡𝑡+)𝑖𝑖 = 0.16𝑅𝑅𝑥𝑥
1/2 �1 − 𝑅𝑅𝑥𝑥𝜕𝜕 �−

𝑦𝑦
𝐴𝐴
��
2
𝜂𝜂2𝜕𝜕𝛾𝛾𝑡𝑡𝑡𝑡𝛾𝛾

(𝜈𝜈𝑡𝑡+)0 = 0.168𝑅𝑅𝑥𝑥
1/2[𝜂𝜂𝑡𝑡 − 𝑓𝑓(𝜂𝜂𝑡𝑡)]𝛾𝛾𝑡𝑡𝑡𝑡𝛾𝛾

𝑦𝑦
𝐴𝐴

=
𝑁𝑁
26

𝑅𝑅𝑥𝑥
1/4𝜕𝜕𝑤𝑤

1/2𝜂𝜂,  𝜕𝜕+ = 𝑚𝑚𝑅𝑅𝑥𝑥
1/4(𝜕𝜕𝑤𝑤)−3/2

𝑅𝑅𝑥𝑥 =
𝑢𝑢𝑡𝑡𝑥𝑥
𝜈𝜈

, 𝜈𝜈𝑡𝑡+ =
𝜈𝜈𝑡𝑡
𝜈𝜈

 (26) 

 Obtaining the solutions, for both the inviscid and viscous part of the flow, drag, lift, and 
momentum can be calculated as follows: 

𝐿𝐿 = −�𝜕𝜕 ∙ 𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃 − 𝑐𝑐) 𝑑𝑑𝐴𝐴 + �𝜏𝜏𝑤𝑤 ∙ cos(𝜃𝜃 − 𝑐𝑐)  𝑑𝑑𝐴𝐴 

𝐷𝐷 = �𝜕𝜕 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐 (𝜃𝜃 − 𝑐𝑐) 𝑑𝑑𝐴𝐴 + �𝜏𝜏𝑤𝑤 ∙ sin(𝜃𝜃 − 𝑐𝑐)  𝑑𝑑𝐴𝐴 

𝑀𝑀𝑐𝑐/4 = −�𝜕𝜕 ∙ 𝑐𝑐𝑠𝑠𝑠𝑠 (𝜃𝜃 − 𝑐𝑐) �(𝑥𝑥 − 0.25)𝑑𝑑𝑥𝑥 + 𝑑𝑑𝑦𝑦� 

(27) 

where 𝜏𝜏𝑤𝑤 is the wall shear stress, 𝑐𝑐 represents the angle of attack and 𝜃𝜃 the angle between the 
panel and 𝑥𝑥-axis. 
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2.4 Differential evolution 

Differential evolution (DE) as introduced by Storn & Price [5] operates similarly as a standard 
evolutionary algorithm (EA). 

Even though in EA a probability parameter is used, in DE the offspring population is 
generated by varying the current generation by a scaled difference between two random 
members. In the following, a general constrained optimization problem is presented: 
 Minimize the objective function 𝑓𝑓(𝑥𝑥) subjected to: 

𝑔𝑔𝑘𝑘(𝑥𝑥) ≤ 0, 𝑘𝑘 = 1, …𝐾𝐾 
ℎ𝑙𝑙(𝑥𝑥) = 0, 𝑙𝑙 = 1, … 𝐿𝐿, 𝐿𝐿 < 𝑠𝑠 
𝑙𝑙𝑘𝑘 ≤ 𝑥𝑥𝑗𝑗 ≤ 𝑢𝑢𝑗𝑗 , 𝑗𝑗 = 1, …𝑠𝑠 

(28) 

where 𝑔𝑔𝑘𝑘(𝑥𝑥) represents the inequality constraints and ℎ𝑙𝑙(𝑥𝑥), equality constraints. 
 In our code, a free parameter scheme was used in which a modified fitness function is 
introduced to ensure the superiority of any feasible point compared to all unfeasible ones [6], 
[7]. The modified fitness function is written as follows: 

𝑓𝑓�𝑥𝑥𝑖𝑖,𝑔𝑔� = 𝑓𝑓�𝑥𝑥𝑖𝑖,𝑔𝑔 � + 𝐶𝐶�𝑥𝑥𝑖𝑖 ,𝑔𝑔 � +  𝜃𝜃𝑔𝑔�𝑥𝑥𝑖𝑖,𝑔𝑔�, 𝑥𝑥𝑖𝑖,𝑔𝑔 ∊ 𝑐𝑐𝑔𝑔 (29) 

where 𝑓𝑓�𝑥𝑥𝑖𝑖,𝑔𝑔 � is the original fitness function, 𝐶𝐶�𝑥𝑥𝑖𝑖,𝑔𝑔 � represents the constraints violation 
function and 𝜃𝜃𝑔𝑔�𝑥𝑥𝑖𝑖,𝑔𝑔� is an additional penalty term. 
 The penalty term has three expressions depending on the number of feasible points in the 
population: 

Θ𝑔𝑔(𝑥𝑥𝑖𝑖,𝑔𝑔) = �
0 𝑠𝑠𝑓𝑓 𝑥𝑥𝑖𝑖,𝑔𝑔 ∈ Ω

−𝑓𝑓(𝑥𝑥𝑖𝑖,𝑔𝑔) 𝑠𝑠𝑓𝑓 𝑐𝑐𝑔𝑔 ∈ Ω = ∅
−𝑓𝑓�𝑥𝑥𝑖𝑖,𝑔𝑔� + 𝑚𝑚𝑡𝑡𝑥𝑥𝑦𝑦∈𝑠𝑠𝑔𝑔∩Ω𝑓𝑓(𝑦𝑦) 𝑠𝑠𝑓𝑓 𝑐𝑐𝑔𝑔 ∈ Ω = ∅, 𝑥𝑥𝑖𝑖,𝑔𝑔 ∉ Ω

� (30) 

 To direct the search process to a feasible region, the penalty term is used. Although the 
feasible points are favored, the randomized distribution is still maintained, ensuring the 
maximal probability of finding the global minimum. 
 For a totally feasible population, there is no need to penalize any member, so the penalty 
term is reduced to zero. Because of the nature of the population, the constrained violation 
function is also zero. 

Secondly, if the population consists of only unfeasible members, the evaluation criterion 
is based only on the constrained violation function. 

In the third case, for a mixt population, the modified fitness function for an unfeasible 
member will be expressed by the sum between the maximum value for a feasible point of the 
original fitness function and the constrained violation function. 

This procedure ensures that the feasible point will always have a better fitness function 
than an unfeasible one. 

The newly generated population requires four main steps. An initial population must be 
generated with a minimum number of feasible members, to ensure a high convergence rate. 
This is done by imposing an mp parameter. 

The second phase generates a mutated population by varying the initial population using 
a sum between a scaled difference of two random members. In our code, the following method 
was used: 
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𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑡𝑡1

𝑔𝑔 + 𝐷𝐷 ∙ �𝑋𝑋𝑡𝑡2
𝑔𝑔 − 𝑋𝑋𝑡𝑡2

𝑔𝑔 � (31) 

where F represents the scaling factor. However, other variants can be used. For example: 

𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑡𝑡1

𝑔𝑔 + 𝐷𝐷2 ∙ �𝑋𝑋𝑡𝑡2
𝑔𝑔 − 𝑋𝑋𝑡𝑡2

𝑔𝑔 � 

𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑡𝑡1

𝑔𝑔 + 𝐷𝐷 ∙ �𝑋𝑋𝑡𝑡2
𝑔𝑔 − 𝑋𝑋𝑡𝑡2

𝑔𝑔 � + 𝐷𝐷2 ∙ �𝑋𝑋𝑡𝑡2
𝑔𝑔 − 𝑋𝑋𝑡𝑡2

𝑔𝑔 � 

𝑋𝑋�𝑖𝑖
𝑔𝑔+1 = 𝑋𝑋𝑡𝑡1

𝑔𝑔 + 𝐷𝐷1 ∙ �𝑋𝑋𝑡𝑡2
𝑔𝑔 − 𝑋𝑋𝑡𝑡2

𝑔𝑔 � + 𝐷𝐷2 ∙ �𝑋𝑋𝑡𝑡2
𝑔𝑔 − 𝑋𝑋𝑡𝑡2

𝑔𝑔 � 

(32) 

After that, a cross-over population is generated. Using the initial and the mutated population, 
a trial generation is created using the following rule: considering a cross-over parameter 𝑐𝑐𝑟𝑟 ∈
(0,1) and two randomly generated numbers 𝑅𝑅𝑖𝑖 ∈ 𝑟𝑟𝑡𝑡𝑠𝑠𝑑𝑑(0,1),  𝐼𝐼𝑖𝑖 ∈ 1,𝑠𝑠𝜕𝜕, a new member is 
obtained using the following expression: 

𝑌𝑌𝑖𝑖,𝑔𝑔 = �
𝑋𝑋�𝑖𝑖,𝑗𝑗   𝑠𝑠𝑓𝑓  𝑅𝑅𝑖𝑖 < 𝑐𝑐𝑟𝑟  𝑐𝑐𝑟𝑟    𝐼𝐼𝑖𝑖 = 𝑗𝑗  

𝑋𝑋𝑖𝑖,𝑗𝑗 𝑐𝑐𝑡𝑡ℎ𝑅𝑅𝑟𝑟𝑒𝑒𝑠𝑠𝑐𝑐𝑅𝑅  (33) 

 The number 𝐼𝐼 is generated to ensure that at least one member from the parent population 
is chosen. 

The final step is the acceptance phase where a selection criterion is imposed to generate 
the new population. 

A one-to-one competition between the initial and the cross-over population takes place. 
The following expression was used: 

𝑋𝑋𝑖𝑖
𝑔𝑔+1 = �

𝑋𝑋�𝑖𝑖,𝑗𝑗   𝑠𝑠𝑓𝑓   𝑓𝑓(𝑋𝑋𝑖𝑖
𝑔𝑔) < 𝑓𝑓(𝑌𝑌𝑖𝑖

𝑔𝑔)
𝑌𝑌𝑖𝑖
𝑔𝑔 𝑐𝑐𝑡𝑡ℎ𝑅𝑅𝑟𝑟𝑒𝑒𝑠𝑠𝑐𝑐𝑅𝑅 

 (34) 

3. RESULTS 
The results of the algorithm are presented below. Using the described parametrization 
technique, the coefficients of the shape function, 𝑊𝑊𝑖𝑖, become the design parameters. Assuming 
an airfoil with a rounded leading edge in incompressible flow, an optimization process is done 
on the following cases: 
1. For a fixed 𝐶𝐶𝐿𝐿, an objective function is imposed to reduce 𝐶𝐶𝐷𝐷 as follows: 

𝑓𝑓𝑜𝑜𝑜𝑜𝑗𝑗 = �𝑡𝑡𝑖𝑖 �
𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
𝛼𝛼𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 (35) 

where 𝑡𝑡𝑖𝑖 represents the weight parameter of the objective function at 𝑐𝑐𝑖𝑖. 
Furthermore, an interval for the maximum airfoil thickness is introduced. 

2. Using the same objective function as before, no additional constraints are imposed for the 
optimization process. 
To demonstrate the capabilities of the constrained differential evolution optimizer, three 

cases are presented. 
Starting with a NACA 2415, an optimized geometry is obtained imposing the same lift 

coefficient as the baseline airfoil and a maximum airfoil thickness interval. 
The objective criterion is to minimize the ratio between drag and lift coefficient at 

different angles of attack. 
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A comparison between the airfoil shape is shown in Figure 1 where we can see a change 
in the maximum thickness point closer to the trailing edge. 

This slows the boundary layer transition which causes a decrease in the skin friction drag 
coefficient. 

Figure 2 shows the comparison between the drag coefficient polars. It can be seen that for 
the desired angles of attack the drag coefficient is lower, validating the extension of the 
predominantly laminar flow regime area. 

Figure 3 compares the lift-drag curves for the NACA 2415 and the obtained airfoil which 
shows improved aerodynamic performance. 

As presented in the table below, the objective function is stated for three angles of attack 
at a given Reynolds number. 

However, the algorithm can be easily extended to include corresponding Reynolds 
numbers for different angles of attack. 
 

 
Figure: 1 Airfoil geometry comparison 

Objective function 0.1 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
0𝑜𝑜

+0.8 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
2𝑜𝑜

+0.1 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
4𝑜𝑜

 𝑅𝑅𝑅𝑅 = 106 

𝑁𝑁𝑝𝑝𝑜𝑜𝑝𝑝 𝑁𝑁𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷 𝐶𝐶𝑡𝑡 

40 50 0.4 0.7 

NACA 2415 

𝑊𝑊𝑖𝑖 0.2421 0.242
1 0.2463 -0.187 -0.180 -0.127 

AIRFOIL_OPT 

𝑊𝑊𝑖𝑖 0.2030 0.238
2 0.2415 -0.188 -0.188 -0.052 

𝑐𝑐 0 1 2 3 4 5 6 

𝐶𝐶𝑙𝑙 
0.25
911 0.38140 0.50

352 
0.62
561 

0.74
737 

0.86
907 

0.98
980 

𝐶𝐶𝑑𝑑(𝑐𝑐𝜕𝜕𝑡𝑡) 0.00
498 0.00499 0.00

508 
0.00
549 

0.00
590 

0.00
660 

0.00
704 

 
Figure: 2 CD vs 𝑐𝑐 

 
Figure: 3 CL vs CD 

 A similar approach is done for a second airfoil, NACA 64215. Figure 4 shows that the 
maximum airfoil thickness is increased, which speeds up the boundary layer transition, which 
in turn, moves the boundary layer separation point closer to the trailing edge. 

Also, it is noticeable that the geometry of the airfoil tends to a symmetrical design. When 
compared to the baseline airfoil, as shown in Figure 5 and Figure 6, the lift-drag ratio is higher 
for the optimized airfoil indicating improved performance. 
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In the case of the objective function, it can be seen that the weight parameters are slightly 
modified, and the obtained design parameters are presented below. 

 
Figure: 4 Airfoil geometry comparison 

Objective 
function 

0.15 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
0𝑜𝑜

+0.7 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
2𝑜𝑜

+0.15 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
4𝑜𝑜

 𝑅𝑅𝑅𝑅 = 106 

𝑁𝑁𝑝𝑝𝑜𝑜𝑝𝑝 𝑁𝑁𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷 𝐶𝐶𝑡𝑡 

30 60 0.6 0.6 

NACA 64215 

𝑊𝑊𝑖𝑖 0.2421 0.2421 0.2463 -0.187 -0.180 -0.127 

AIRFOIL_OPT 

𝑊𝑊𝑖𝑖 0.2129 0.2129 0.1937 -0.128 -0.124 -0.128 

𝑐𝑐 0 1 2 3 4 5 6 

𝐶𝐶𝑙𝑙 
0.17
016 

0.29
082 

0.41
146 

0.53
189 

0.65
222 

0.77
229 

0.89
212 

𝐶𝐶𝑑𝑑(𝑐𝑐𝜕𝜕𝑡𝑡) 0.00
491 

0.00
469 

0.00
471 

0.00
472 

0.00
501 

0.00
549 

0.00
606 

 
Figure: 5 CD vs α 

 
Figure: 6 CL vs CD 

 In the third case, an airfoil configuration is obtained starting from a random geometry 
with no other constraints imposed. 

The objective function is to obtain the best ratio between lift and drag coefficient for 
specified angles of attack. 

It is noteworthy that the obtained airfoil geometry, see Figure 7, is symmetrical which 
translates to the benefits of lower cost and ease of construction. 

Also, Figure: 9 shows that the aerodynamic performance is superior compared to similar 
airfoils.  
 

 
Figure: 7 Optimized airfoil geometry 

Objective 
function 

0.15 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
0𝑜𝑜

+0.7 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
2𝑜𝑜

+0.15 �𝐶𝐶𝐷𝐷
𝐶𝐶𝐿𝐿
�
4𝑜𝑜

 𝑅𝑅𝑅𝑅 = 106 

𝑁𝑁𝑝𝑝𝑜𝑜𝑝𝑝 𝑁𝑁𝑖𝑖𝑡𝑡𝑡𝑡𝑡𝑡 𝐷𝐷 𝐶𝐶𝑡𝑡 

40 80 0.5 0.7 

AIRFOIL_OPT 

𝑊𝑊 0.160
4 0.1623 0.1604 -0.193 -0.193 -0.193 

𝑐𝑐 0 1 2 3 4 5 6 

𝐶𝐶𝑙𝑙 
0.02
468 

0.04
678 

0.16
837 

0.28
960 

0.41
079 

0.53
131 

0.65
219 

𝐶𝐶𝑑𝑑(𝑐𝑐𝜕𝜕) 0.00
480 

0.00
483 

0.00
510 

0.00
533 

0.00
558 

0.00
580 

0.00
662 
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Figure: 8 CD vs α  

Figure: 9 CL vs CD 

4. CONCLUSIONS 
This paper presents an optimization technique for solving aerodynamic problems with a high 
efficiency in-house code that can be modified at any time for other engineering problems. The 
method described proves to be capable of preventing a local optimization, directing the search 
process to a global solution. 
 Reference work performed in [8] showed that airfoil parametrization based on thickness 
(Class Shape) and polynomial camber line brings severe limitations from the robustness point 
of view. The resulting optimized airfoils parametrized with Class Shape satisfy the imposed 
constraints and provide results comparable to those obtained in [9], where the authors used the 
genetic algorithm from Matlab. Moreover, the same results can be achieved starting from an 
arbitrary shape and imposing the same constraints proving a high convergency rate of the 
algorithm.  
 The technique can be modified using other optimization schemes, but a specific set of 
rules should be followed: 

- An initial feasible solution shouldn’t be inserted by the user in order to converge. 
- The sensitivity of the algorithm shouldn’t be very high if one or more initial 

parameters are changed. 
 Taking everything into account, the methodology can be easily modified to accommodate 
more refined objective functions at different Reynolds numbers. Also, the parametrization 
technique used proves to be flexible enough to obtain satisfactory results. To speed up the 
searching process, constraints must be implemented. The aerodynamic model can be changed 
to a simplified one in order to accelerate the optimization process, but it should be noted that 
the results are of lower quality. 
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	where 𝛼 represents the angle of attack.
	The vortex strength is given by the linear variation along with each panel:

