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Abstract: In the current age of globalization, the development of autopilots is superficial as the standard
of living is improved through aerial surveillance, defense applications, and door- to-door
transportation. To design the PID controller, a mathematical model is created to address the system
identification for estimating longitudinal derivatives and to study the handling qualities of aircraft in
order to improve piloting performance. This paper exhibits a comparative assessment between the
classical closed-loop PID tuning methods like ZN, Modified ZN, Tyreus-luyben, Astrom- Hagglund and
the modern control techniques like pole placement, LOR for the pitch controller design. The simulation
results are displayed in the time-domain, which demonstrates the effectiveness of the approach used to
design a robust controller.

Key Words: System Identification, ZN, Modified ZN, Tyreus- luyben, Astrom- Hagglund, Pole
placement, LOR

Nomenclature
ax, Ay, 4, Linear accelerations along x, y, z body axes (m/s°)
p,q, T roll, pitch, yaw rates (rad-s-1)
Oa, O, Or aileron, elevator, rudder deflection angle
D,0, vy angle of roll, pitch and yaw (deg)
a angle of attack
B slide slip angle
\Y Airspeed (m/s)
u, vV, w Longitudinal, lateral, and vertical airspeed
R Measurement co-variance Matrix
J Cost Function
[0) vector of unknown parameters
T Thrust
Cp, Coefficient of drag force at zero angle of attack
Cp, Change in Coefficient of drag force with change in angle of attack
Cog, Change in Coefficient of drag force with change in elevator deflection angle
Cr, Change in Coefficient of lift force with change in angle of attack
Cry Coefficient of lift force at zero angle of attack
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Ci, Change in Coefficient of lift force with change in pitch rate
Cuy, Change in Coefficient of lift force with change in elevator deflection angle
Cny Coefficient of pitching moment at zero angle of attack
Cng Change in Coefficient of pitching moment with change in angle of attack
Cin, Change in Coefficient of pitching moment with change in pitch rate
Cing, Change in Coefficient of pitching moment with change in elevator deflection angle
Uo Perturbed velocity along X
p Air density
M, Non-dimensional variation of pitching moment with pitch rate
M, Non-dimensional variation of pitching moment with change in angle of attack
Z, Non-dimensional variation of Z force with angle of attack
M, Non-dimensional variation of pitching moment with angle of attack
Wng, Frequency of short period
Esp Damping ratio of short period
PID Proportional Integral Derivative
LQR Linear Quadratic Regulator
OEM Output Error Method
ZN Ziegler Nicholas
RCTA Research cum trainer aircraft
UAV Unmanned Aerial Vehicle

1. INTRODUCTION

The rapid development of flying machines like multi-rotor drones and hybrid aircraft is
booming. In this context the automatic control design has played a vital role of a catalyst by
boosting the interest of researchers in area of application e.g. reconnaissance missions, aerial
photography, terrain surveillance, flying accidental military troops etc. An autopilot lessens
the pilot workload during various flight regimes at different altitudes and Mach numbers. It
also handles unfavourable weather conditions and provides artificial stability. The
prerequisites of controller design include in-depth knowledge of control theory, parameter
estimation of provided aircraft model at different altitude, Mach numbers [1], [2], and flying
handling quality. Khoi Nguyen Dang researched on optimized design of the attitude controller
of quadrotor using a system Identification approach. LQR (Linear quadratic regulator) theory
was used to design the linear quality servo’s to improve the performance characteristics[3].
Valderrama designed an aircraft pitch controller to improve the stability and performance of
the UAV(Unmanned aerial vehicle) [4]. ZN (Ziegler Nicholas) methodology was adopted to
tune the PID (Proportional Integral Derivative) controller. Various time domain characteristics
to study performance of controller are discussed. G. Sudha [5] optimizes various tuning
methods for the PID such as Ziegler Nicholas, Tyreus-Luyben, Astrom- Hagglund but the
simulation results tuned by ZN method shows the optimum result. The Pitch controller of F-
16 aircraft is designed using LQR and linear feedback approach. Pole placement technique is
used to determine the value of gain. Simulink block diagram of LQR and linear feedback are
validated with the aircraft pitch control system by [6]. The optimal control methodology is
adopted to estimate the parameters of the dynamic model by using the Cost function ‘J” which
is derived using OEM(Output error method) by [7] Gottlicher. The present paper focuses on
designing a PID controller for the pitch control of Hansa-III using various closed-loop tuning
techniques- ZN, Modified ZN, Tyreus-luyben, Astrom-Hagglund, pole-placement, and LQR
based on the study of the specialized literature. The maximum likelihood estimation method
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41 Classical and Modern gain estimation approach of PID controller for the pitch control of the RCTA aircraft

was implemented to estimate the stability and control derivative of 4 - seater canard aircraft,
firefly. This statistical method has benefits to measure both process and measurement noise as
stated by Kim [8]. This technique is widely applicable in time-domain analysis to estimate
derivatives using the vehicle flight data. D. H. Shim [9] researched by developing the Non-
linear transport aircraft Simulink model applying M. L and EKF. Mathematical modeling is
developed to design LQR Controller having optimal weighing matrices that be used for
tracking aircraft trajectory. This approach can handle the noise and make the system robust.
Maximum Likelihood is a widely used statistical technique to minimize the error and make
the system dynamically stable as suggested by the researcher [10]. It uses linearized
perturbation state equation to study the dynamic response characteristics of longitudinal
motion to assess flight handling [11]. One of the most crucial problem in system identification
is data compatibility as explained by Grauer [12]. Data compatibility is a part of parameter
estimation and is used to check the data accuracy by making bias free and error free flight data.
The transfer function of the pitch controller is calculated using longitudinal state equations.
The Simulink model is constructed to perform simulations and optimize the performance
parameters of a PID Controller.

2. IDENTIFICATION AND MODELLING OF HANSA-IIT

Hansa-III is two-seater trainer aircraft (RCTA) manufactured by NAL, Bangalore, India. Three
designs were developed by NAL in which Hansa-II was built as prototype and Hansa-III was
finalized for production. In order to fetch the flight data, multi-variant sensors are instrumented
in the aircraft for flight data acquisition. The aircraft structure is fully composite having a low
wing configuration with tricycle landing gear arrangement. It consists of a Rotax-914 F3
engine coupled with Hoffmann propeller [10] as shown in fig. 1.

Fig. 1 A three-view sketch of Hansa-III research aircraft

The System Identification is an indispensable tool that identifies parameters of the physical
system based on observations by developing a mathematical model of the dynamic system.
Zadeh stated, “Identification is a tool to identify systems on basis of Inputs, outputs and test
condition ” [13] as explained in fig. 2 The unified concept stated by the German Aerospace
Centre (DLR) of Quad M to define five elements is a key to define the System Identification
[14], [15].

1. Maneuverers: The control inputs in terms of voltage (3-2-1-1) input, doublet, and pulse
were fed, in addition converted to respective motion and control variables using an appropriate
calibration chart to experience the despite output.

2. Measurement: A high-quality sensor measures the process and measurement noise of the
system, known as a data compatibility check.
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3. Model: An algorithm of differential equations derived from Newtonian law of motion in
terms of acceleration, state and control variable is used for the flight vehicle system
Identification [16].

4. Methodology: The procedure adopted on the Input/output interface to acquire desired
output of the flight vehicle.

INPUT PHYSICAL SYSTEM }—o OUTRUT ‘
U eV —
MANUEVER
_—

‘ SENSOR

nt
MEASUREMENT
|0/p Model
‘ MATHEMETICAL MODEL
P.E ALGORITHM

METHODOLOGY

________________________

T Model Updation
Fig. 2 Concept of System Identification

Step 1. The raw flight data at a low angle of attack is recorded in terms of voltage (3-2-1-1)
input from flight laboratory of Indian Institute of Technology, Kanpur and converted to
respective motion. The raw data are calibrated in form of V, p, q, r 0, y, 3¢, 0a, &, @, ax, ay, a,
o, and B to locate the sensor position [10].

Step I1. Recorded data consist of systematic errors like scale factor, bias factor, time delay,
and zero shifts cause data incompatible so sensors are required to avoid measurement errors.
The flight path reconstruction, also known as a data compatibility check, ensures the data
accuracy fetched from the data acquisition system and forms the model consistent and error-
free.

Step II1. Mathematical model of aircraft is formulated by the algorithm of equations of motion
[17]. The following set of state equations, observation equations estimates aircraft transfer
function for designing PID Controller.

Governing Longitudinal Equation in Wind Axis [18], [19]

allb:—{%}CD+gsin(a—0)+{%}cosa )]
d= - {%} C,+q+Zcos(a—6) {%} sina )
6=gq 3)

0= (%) Gn i @

In order to analyse the aircraft dynamics, the aircraft is modelled in terms of mathematical
equations as aecrodynamic stability and control derivatives shown below

CL:{CLO + CL(Z' a+ CLQI% + CLae. 66} (5)
CD:{CD0 + Cppe @+ Coggyt Cog,: 58} (©6)
Cm:{ Cmo + Cmge @+ G+ Cmse.Se} %

A few assumptions are required before modelling the system.
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1. At cruise state; Thrust setting angle = 0 Flight-path Y = constant.

2. Elevator control input excites short period dynamics; hence flight velocity is constant.
Referring longitudinal State Equation (2-4) and applying following assumptions mentioned in
above section as

i@ = —{%}CL+q (®)

6=q )

i = <q.s.c>.cm (10)
IZV

Applying equation (5-7) to estimate non-dimensional derivatives as longitudinal stability and
control predominantly excite short period mode, is expressed as

. pvs qc
a = q_ w {CL0+CLa.a+ CLq.Z—IJl+ CLé'e'(Se} (11)
6=q (12)
. pV3s,c qc
1= {Cmo + Gt Gy + cmae.se} (13)
Table 1: Geometrical parameters[20]
Geometrical Parameters | Value Geometrical Parameters | Value
Wing Horizontal Tail
Planform area 12.47(m?) Planform area 2.04(m?)
Aspect ratio 8.8 Aspect ratio 6.35
MAC 1.21(m) MAC 0.59(m)
Root Chord 1.3(m) Root Chord 0.78(m)
Tip Chord 0.8 Tip Chord 0.354(m)
Taper ratio 6(deg) Taper ratio 0.454
Aircraft Aerodynamic derivatives
Aircraft span 10.47(m) (Cryw)ss 4.5
Mass 750(kg) (CLat)ss 1.48
Velocity 36(m/s) (Cm,, f)ss 0.3
Moment of Inertia Iy 907(kg-m?) €, 0.22
at da
Moment arm 3.624(m)
Density 0.96(kg/m?)
Moment of Inertia Iy 925(kg-m?)
Moment arm 3.624(m)

Step IV. Maximum likelihood is enforced for longitudinal parameter estimation of the
dynamic model of Hansa-III using real flight data [10]. The statistical technique is applied in
the time domain to estimate the stability and control derivatives by minimizing the cost
function J [14], [21]

JO,R)=L(z | O,R) =% Y N_.[z(tk) — y(tk)]R[ z(tk) — y(tk)] + N/2 In [det(R)] +
Nny/2 In(2[])

The unknown parameter vector ® determines the value of the non-dimensional longitudinal
derivatives given
6= |:CLO CLa CLq CLSe CDO CDa CD&e Cmo Cma Cmq Cmde ]T ( 1 4)
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Table 2: Longitudinal Parameters Value using ML Technique[22]

S. No Derivatives Value
1. C, 0.2254
2. Cr, 6.45
3. CLq 37.2
4. CLse 0.0196
5. Crm,g 0.078
6. Crmy -0.4259
7. Cmq -11.61
8. Cmse -0.8665

The simplifying longitudinal state equation by substituting geometrical and longitudinal
parameters as presented in Table 1, 2 is represented as

@ =0.8207.q — 1.851.a + 0.00562 .5, — 0.0646 (15)
g=-201.qg— 4403.a —8.95.5, + 0.806 (16)
0=q (17)
The generalized State equation in Matrix form can be written as:
= Ax + Bu (18)
y =Cx +Du (19)

The state space matrices A, B, C, and D from equation (18-19) are compared with equation
(15-17) to define the plant matrix A, the control matrix B, the output matrix C, and the null
matrix D as reflected in equation (20-21)

1.851 0.8207 0 —0.0056 —8.95
H [4403 —201 OHq —0.0646 —0.806] [8] (20)
olle 0 0
a
[61=[0 0 1] g]+[0][6] 21)

The flight control designer has the formidable task to design the controller of an airplane of
good dynamic qualities as flying handling qualities are directly linked to the dynamic response
of the aircraft [11]. The damping and frequency of both short period and long period plays a
vital role while studying the pilot handling hence, an approximation of short period mode can
be obtained by dropping the X-force equation and reducing the state matrix.

A:[—1.851 0.8207
—-4.403 -2.017r
The eigenvalues of the state matrix A can be obtained by solving

Al —Al=0 (22)
The characteristic equation for the determinant is
Zg Zy _
22 = (Mg + Mg+ Z)h+M, 2 - M, =0 (23)

Short period roots in term of damping and natural frequency are calculated using equation (22-
23)
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W, = |20 —M, = 7333 = 2.70, f,, = 0.429 (24)
0
- b oo (5)
= Ty,

The damping and natural frequency of short-period mode can be determined in terms of
derivatives. The flying handling quality of an airplane can be defined by stability and control
characteristics. The handling quality is experienced by pilot depending on the category and
class of aircraft. The flight phase is classified into three categories A, B, and C as displayed in
Table 3. The information mentioned in table3 illustrate that Hansa-III is B category, Class-I
Aircraft [17]. The value of & andf,, calculated using equation (22-23) provides information
about handling quality as per Cooper-Harper Scale rating as discussed in fig. 3

Table3: Short period mode flying quality

Category A and C Category B
Class &sp (min) &sp(max) &sp (min) &sp (Max)
I 0.35 1.30 0.3 2.0
11 0.25 2.00 0.2 2.0
111 0.15 - 0.15 -
1.3
1.2
1.1
1.0
0.9
0.8 =
2 07 ADES BN
& - / /fﬂoceptable \
< los AP a Wi
< |05 Poor\ Goo9)7L
0.4 N —_: —
03 =
0.2 L Unacceptable
0.1
0
0.1 0.2 04 060810 2.0

& ( damping ratio)
Fig. 3 Relationship between &gy, fnsp and level of flying qualities of short period mode [17]

frsp= 0.429; %5, = 0.71

The value of & and f;, demonstrates that Hansa-III has a good flying quality and has a pilot-
scale rating of 2. Thus, a minimum pilot effort is required to attain the desired performance.
The above explanation provides the information that the automatic controllers can be designed
as the aircraft satisfy all criteria to attain stability. The methodology followed to design a PID
Controller requires the transfer function. The transfer function of short period mode can be
represented by using formulae discussed below

C Adj (Is—A)B

Is—A

TF= +D (26)
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The transfer function for the pitch angle to the elevator deflection angle is represented as G(s)

—{8.955+16.5313}

o) _
G(s) = 8(s) s3+3.861s2+7.33141s 27
Open loop Transfer function
—6.25 —8.95s — 16.53
. d  s+6.25 s3 + 3.816s2 + 7.3314s 1 I
JR— | ]
Step Input Actuator T.F Short-period Hansa-III dynamics Scope

Fig. 4 Open Loop Control system

The Open loop control system as illustrated in Fig. 4 is independent of response in action of
control. The transfer function estimated for the pitch angle to the elevator deflection angle is
represented as G3(s)

a(s) —{8.955+16.5313}
G3(s) = =2 = &7207 70097 3)
(s) 8(s) s3+3.861s2+7.33141s

(28)

Closed loop Transfer function

_I_ —8.955 — 1653
PID s3 + 3.816s2 + 7.3314s

Step Input Short-period Hansa-III dynamics Scope

Negative Feedback- loop

Fig. 5 Closed Loop Control system

The controller of the closed loop control system shown in fig. 5 depends on the output response
termed as feedback control system. The transfer function G4(s) is the output response of the
input fed to control system

G4(s) = 0(s) {55.945+103.3}
8(s) s*+10.07s3+31.18+101.85s+103.3

(29)

Step Response

Time (seconds)

Fig. 6 Closed loop step response

The Step response of closed loop transfer function G4 interpret the system stability after a
time-span of 8 seconds as shown in figure 6.
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47 Classical and Modern gain estimation approach of PID controller for the pitch control of the RCTA aircraft

3. PID CONTROLLER

PID stands for proportional, integral, and derivative. This controller boosts the system stability
and reduces the steady-state error. It is used in modern industry as automatic process control
for the flight control system. The terms P, I, D effectively control the system dynamics by
calculating the error between the measured value and desired value. The gain is tuned as per
system design requirements of these three terms. The feedback controller is designed to control
the desired output accurately operating a PID controller [17]. Control law u(t) is expressed as

u(t) =Kp e(t) + K, [ e(t)dt +Kp <e(t) (30)

where, Kprefers to proportional gain, K; is the integral gain, and K}, is the derivative gain. The
Laplace transform of above equation in the continuous S-domain is given by equation (31)

UGs) = [Kp + % +Kps] E(s) (31)

The Transfer function of PID Controller is

ues) _

K Kp S+K| + KpS?
Gpip= ﬁ,KP +?I+KDS :[u

Lt DSy (32)
3.1 Closed-loop Tuning Techniques

In this paper the classical and modern tuning techniques of the PID Controller are discussed
independently as two different cases in order to reach the objective as presented in a Table 4.

Table 4: Closed-loop Tuning Techniques

Classical Approach Modern Approach
ZN Modified ZN Pole- placement
Tyreus-luyben Astrom-Haggulund | LQR

Case I: Classical PID Tuning Methods
3.1.1 Ziegler Nicholas

ZN method refers to open-loop and closed-loop control systems. It is first proposed in 1942
based on the system time response [23], [24]. This trial-error method proposed the use of
ultimate gain Kp,, and period of oscillation at ultimate gain Tu when the system is neutrally

stable. The numeric value of Kp, K;, Kpto tune PID Controller is estimated using the following
relationship as discussed in Table 5 [5]

Classical closed loop PID Tuning Methods
TableS: Classical PIDTuning Parameters

SNo Methods Kp K, Kp
1 ZN 0.6K,,, 1.2K,,, /Ty 0.075Kp, Ty,
2. Modified ZN 0.33K,, 0.5T, 0.33T,,
3. Tyreus- Luyben 0.3125K,,, 2.2T, 0.1587T,
4 Astrom- Hagglund 0.32Kp,, 0.94T,, 0
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h

Vs

A d

THO)

T ; numis) I—’ J
deni(s)
;.. An

Fig. 7 Simulink block diagram of PID

The block diagram shown in figure 7 is used to estimate the gain parameters of PID while
adopting various tuning techniques discussed in Table 5 using software SIMULINK. The
procedure applied to determine the value of K, and T;, is discussed below:

Step 1. Initializing K; and Kp to be zero and iterate numeric value of Kp to attain marginal
stability curve in Scope

Step 2. Estimating the value of K,,, and T,, from neutrally stable curve as displayed in figure
8,9

Step 3. The gain of K;, becomes K, when the system achieves neutral oscillation and T,
reflects the time- period of oscillations between one cycle occurs at an ultimate gain.

Step 4. Gain value estimated are K, = 1.3400, T, = 1.5040

Amplitude
Amplitude

Time (sec) Time (sec)

Fig. 8 Neutral Oscillations Fig. 9 Ultimate time period T,

Amplitude

Time (sec)

Fig. 10 Step response of aircraft dynamics with PID Controller
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Table 6: ZN PID tuning parameters

S.No Controller Kp K; Ky
1. Classic PID 0.8040 1.0691 0.1512
2. PD 0.2015 - 1.0720
3. PI 0.6030 48.117 -

The unit step response in fig. 10 shows that the decayed oscillatory motion with damped
amplitude of pitch controller signifies the stability. The gain parameters of PID presented in
Table 6 illustrate that all types of controller have a high value of K; which overall affects the
system performance and leads to good steady-state response.

3.1.2 Modified ZN

Undesirable large overshoot value changes rapidly which can be predicted by using a Modified
version of Ziegler Nicholas. This trial and error closed-loop method is similar to CHR (Chien-
Hrones-Reswick) PID tuning applied to regulate the desired value of overshoot [23], [25],
[26]. Modified gain value using this technique is presented in table 7.

Amplitude

Time (sec)
Fig. 11 Step Input response ot Moditied ZN Method

Table7: Modified ZN PID step response tuning parameters

S.No Ky K, K,
1. 033K, 0.5T, 0.33T,,
2. 0.4422 0.7520 0.4963

The unit step response in fig. 11 shows aperiodic non-oscillatory motion of the pitch controller
with good steady state response and highly stable.

3.1.3 Tyreus-Luyben

This approach is similar to the ZN method and time-consuming but gives better performance
results [27]. It depends on two parameters K, and T;, for tuning of gain value. This technique
only proposes setting for PID and PI Controller [28]

Amplitude

Time (sec)

Fig. 12 Step Input response of Tyreus-Luyben Method
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Table 8: Tyreus-Luyben PID step response tuning parameters

S.No KP KI KD
1. 03125K,,, 20T, 0.1587T,,
2. 0.4188 0.2376 3.3088

The unit step response in fig. 12 shows aperiodic non-oscillatory motion of the pitch controller
with high value of proportional gain that makes overall system to produce constant steady state
error and decreases system sensitivity as discussed in Table 8.

3.1.4 Astrom- Hagglund

This auto-tuning approach recommended by Astrom and Hagglund in 1995 proposes settings
for PID Controller without derivative filter [S]. It controls the system to meet the desired
specification by regulating the value of overshoot.

Amplitude

Time (sec)

Fig. 13 Step Input response of Astrom- Hagglund Method
Table 9: Astrom- Hagglund PID step response tuning parameter

S.No KP KI KD
1. 032K, 0.94T,, 0
2. 0.4422 1.4138 0

The unit step response in fig. 13 presents the oscillatory motion with un-damped amplitude of
pitch controller and states the system instability. The gain parameters of PID presented in
Table 9 illustrate the good steady-state response.

Case II: Modern Control Methods

Recent advancement in technology involves novel approaches to design control systems
termed modern control theory. Classical methods are limited to SISO systems while modern
control theory encompasses the scope of MIMO, time-variant, linear or non-linear systems.
The high-order systems are replaced by first-order differential equations to reduce the system
complexity. Optimization techniques are easily applicable to solve optimal control problems
using this approach [17]. Two methodologies such as pole placement and LQR are proposed
to estimate the gain matrix for designing PID Controller. The block diagram of the state
feedback control system is shown in figure 14.

Xrer(®) G 3(t) y(t) _Output Pitch angle
X = Ax(t) + Bu(t)
Ref. I/P - y = Cx(1) +Du(1)
Gain K
x(t)

Fig. 14 Feedback Control Design
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3.1.5 Pole placement

It is a State-space model approach that calculates gain matrix K to obtain the system stability
as shown in fig. 15. Specific eigenvalues/ pole location is the desired feature of the state
feedback design. This methodology positions closed-loop poles in the desired location by
meeting the design requirements through a state feedback gain matrix [29], [6].The controller
modifies matrix A to change the plant dynamics as eigenvalues of matrix A signify poles of
the system and its location governs the system stability. The methodology adopted in pole
placement to choose closed-loop poles using the Butterworth polynomial equation is shown
below

Reference — + u ) y
N x=A x(t) + Bu(t) S
Y = Cx(t) +Du(t)
Scaling Term Plant
x|
Gain Matrix

Fig. 15 Pole Placement and LQR

n+1

. (S \_ n+1 [, j@k+Dn] 2n

Butterworth Filter = (W—O)— (D2 [ - ] (33)
where k =0, 1, 2--------- , Wo= natural frequency, n= system order (no of closed loop poles)
now substitutingwy = 2.70,n=3 and k =0, 1, 2, 3, 4, 5 and simplifying Butterworth filter
equation to estimate desired closed loop poles sq, S5, 53 = -1.35 + 2.338j, -1.3.The value of
gain K is determined using Matlab function ‘acker’ thus Gain K = acker (A, B, S); K = [-

0.2612 0.0157 0.572].

Step Response Closed-Loop Step Response: pole placement

Amplitude
o
%]
Amp”tude
>

0 1 2 3 4 B L < 3 4
Time (seconds)

Time (seconds)

Fig. 16 Pitch angle step response: Pole placement

The pitch angle response using pole assignment technique presented in fig. 16 represents zero
steady state error while applying scale factorN = 0.5728 to compensate the steady state error
from 0.349 to 0.01.
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3.1.6 Linear Quadratic Regulator (LQR)

LQR is an optimal modern control approach that solves the optimization problem by keeping
the cost function minimal subjected to a given set of constraint [30]. This regulator has good
set point tracking performance [31]. This approach is similar to pole placement as the
implementation of gain K is similar as per fig. 15 but the procedure of choosing value of gain
K is different. Optimal gain K is estimated by choosing closed-loop characteristics using the
cost function [6] [32].

AOA
= Terminatorl

i=Ar+ Bu &

Theta_des % Pitch
»( ) s
yo=Ox 4 Du — Terminator2
¢ - Thet;
Pilot Step Response error Signal State-Space

Demux  geope

Gain K using LQR
Fig. 17 LQR Simulink Block diagram

The block diagram shown in fig. 17 estimates the pitch angle response by evaluating the gain
matrix K using the LQR approach.

In designing the LQR Controller, two parameters Q and R are required to determine the value
of gain K. Q and R weighing square matrices are associated with state and control input of the
system. In SISO systems, R is left unity and Q weighs the most important state of the system
response [33]. The LQR control problem is solved by minimizing the cost function “J”

T=["{X"Qx + UTRu} dt (34)

where, X(t) =nX 1 state vector, u(t) =mx 1 control vector, Q =nXn symmetric positive semi-
definite matrix, R = mXm symmetric positive semi-definite matrix henceforth J will be
positive Initializing x= 400, Q = x*C™*C
C=[0 0 1]Q=[000;000;00x] R=[1]

The optimal control law is given by by n = - k! x where k' = R'BS thus substituting the value
of B, Q, and R to solve the algebraic Ricatti equation for S as K refers to R'B'S. Gain K is
also obtained using Iqr Matlab function as [K] = Iqr (A, B, Q, R) thus the estimated value of
optimal gain K =[-0.4717 1.88 20.00].

Closed-Loop Step Response: LQR

pitch angle {rad)
) & P

a 01 02 03 04 05
Time (seconds)

Fig. 18 pitch angle step response: LQR

The pitch angle response using LQR presented in fig. 18 shows that the gain value founds
unity which concludes that K itself stabilizes the system and steady-state error approaches 0.01
as per design requirement.
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4. RESULTS AND DISCUSSIONS

The study incorporates the implementation of classical and modern PID controller techniques
to optimize PID parameters for the pitch control of Hansa-III aircraft.

Case I: The result of distinct types of classical PID tuning methods are compared in form of
gains and displayed in Table 10. All gains have a specific function like K, improves steady-
state tracking accuracy, decreases system sensitivity on parameter variation, and produces the
constant steady-state error. Kq leads to the system stability but has a poor steady-state response
whereas K; has a good steady-state response and leads to un-stability. T.F of PID contains two
zeros in the numerator and one pole at origin in the denominator which makes the overall
system highly stable. As per the Table 10, Astrum -Hagglund methodology does not have a
derivative filter which leads to the aircraft instability. Thus the response of the system is an
undamped oscillatory motion.

Table 10: Comparison of PID Tuning Methods

S. No Tuning Methods Kp K, Kp
1. Ziegler Nicholas 0.8040 1.0691 0.1512
2. Modified ZN 0.4422 0.7520 0.4963
3. Tyreus- Luyben 0.4188 0.2376 3.3088
4. Astrom- Hagglund 0.4422 1.4138 0

.
)
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Fig. 19 Comparison ZN, Modified ZN, TL for step input

3,5
3
2,5
2
1,5

EKP

EKl

0;_:'_ - IKD
0 - _||I ._ l

Ziegler Modified Tyreus- Astrom-
Nicholas ZN Luyben Hagglund

Fig. 20 Bar representation of ZN, Modified ZN, Tyreus- Luyben for Step Input
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Tyreus- Luyben exhibit a large value of gain Ky which influences the overall system
parameters by increasing the aircraft stability but difficult to attain steady-state value. This
method is unable to accomplish the time-domain design requirements so does not display the
optimum result. ZN and Modified ZN while comparing gain values as illustrated in fig. 19, 20
show that both controllers have the characteristic of stability and approaches S.S.E rapidly but
modified ZN shows the best optimal result as this tuning controller satisfies the controller
design requirements by approaching the steady state value close to zero.

Case II: Modern control methodologies such as pole-placement, LQR controllers are designed
successfully. The results obtained using the pole-placement and LQR are presented in Table11.
They are analyzed showing that LQR controller settles rapidly as settling time which is 0.44s
as compared to pole-placement with excellent property of eliminating steady-state error to zero
without using scale effect. The value of peak overshoot provides information about the
deviation of the response in peak time with respect to final response is 0.332 for LQR as
compared with pole placement which illustrates that LQR deviates with less amount and
provides stability. This controller is robust-free, has good performance characteristics, and is
highly efficient against disturbances.

Table 11: Time domain Performance characteristics

S.No | Closed loop Time- Design Pole-placement LQR
domain response Specification without Scaling effect | without Scaling effect
1. Steady state error <1% 0.349 0.01
2. Peak overshoot <5% 4.59 0.332
3. Settling Time <Ssec 3.08 0.44
4. Rise Time <2sec 0.793 0.16

5. CONCLUSIONS

The main objective of this paper is to do a comparative study of the classical and modern
control techniques for the pitch control of Hansa-III. In this paper, the design and optimization
of gain parameters of the PID using ZN, Modified ZN, Tyreus- Luyben, Astrom- Hagglund,
Pole-placement, LQR is presented. Classical tuning techniques and modern control approaches
are analyzed and compared independently. Modified ZN shows the best optimal result for Case
I as this tuning controller meets the design requirements. Case II concluded that among modern
control approaches the best transient and steady-state response for the pitch control is obtained
for the PID Controller when tuned using LQR. Tuned gain values of the PID eliminate the
disturbances, oscillations and provide stability to the aircraft.

FUTURE PROSPECTS

The high value of steady-state error affects the final value of the plant during operation, which
is compensated by the use of compensators [33]. The addition of poles, zeros, and a
combination of both modifies the transient response of the system and drives steady-state error
as zero. It is suggested to use compensators while designing a controller for eliminating the
large steady-state errors.
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	Hansa-III is two-seater trainer aircraft (RCTA) manufactured by NAL, Bangalore, India. Three designs were developed by NAL in which Hansa-II was built as prototype and Hansa-III was finalized for production. In order to fetch the flight data, multi-va...

