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Abstract: In the current age of globalization, the development of autopilots is superficial as the standard 
of living is improved through aerial surveillance, defense applications, and door- to-door 
transportation. To design the PID controller, a mathematical model is created to address the system 
identification for estimating longitudinal derivatives and to study the handling qualities of aircraft in 
order to improve piloting performance. This paper exhibits a comparative assessment between the 
classical closed-loop PID tuning methods like ZN, Modified ZN, Tyreus-luyben, Astrom- Hagglund and 
the modern control techniques like pole placement, LQR for the pitch controller design. The simulation 
results are displayed in the time-domain, which demonstrates the effectiveness of the approach used to 
design a robust controller. 

Key Words: System Identification, ZN, Modified ZN, Tyreus- luyben, Astrom- Hagglund, Pole 
placement, LQR 

Nomenclature 

ax, ay, az Linear accelerations along x, y, z body axes (m/s2) 
p, q, r roll, pitch, yaw rates (rad-s-1) 

δa, δe, δr aileron, elevator, rudder deflection angle 
Φ, θ, ψ angle of roll, pitch and yaw (deg) 

α angle of attack  
β slide slip angle 
V Airspeed (m/s) 

u, v, w Longitudinal, lateral, and vertical airspeed 
R Measurement co-variance Matrix 
J Cost Function 
ʘ vector of unknown parameters 
T Thrust 
𝐶𝐶𝐷𝐷0 Coefficient of drag force at zero angle of attack 
𝐶𝐶𝐷𝐷𝛼𝛼 Change in Coefficient of drag force with change in angle of attack 
𝐶𝐶𝐷𝐷𝛿𝛿𝛿𝛿 Change in Coefficient of drag force with change in elevator deflection angle 
𝐶𝐶𝐿𝐿𝑎𝑎 Change in Coefficient of lift force with change in angle of attack 
𝐶𝐶𝐿𝐿0 Coefficient of lift force at zero angle of attack 
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𝐶𝐶𝐿𝐿𝑞𝑞 Change in Coefficient of lift force with change in pitch rate 
𝐶𝐶𝐿𝐿𝛿𝛿𝛿𝛿 Change in Coefficient of lift force with change in elevator deflection angle 
𝐶𝐶𝑚𝑚0 Coefficient of pitching moment at zero angle of attack 
𝐶𝐶𝑚𝑚𝛼𝛼  Change in Coefficient of pitching moment with change in angle of attack 
𝐶𝐶𝑚𝑚𝑞𝑞 Change in Coefficient of pitching moment with change in pitch rate 
𝐶𝐶𝑚𝑚𝛿𝛿𝛿𝛿 Change in Coefficient of pitching moment with change in elevator deflection angle 

uo Perturbed velocity along X 
ρ Air density 
𝑀𝑀𝑞𝑞 Non-dimensional variation of pitching moment with pitch rate 
𝑀𝑀𝛼̇𝛼  Non-dimensional variation of pitching moment with change in angle of attack 
𝑍𝑍𝛼𝛼 Non-dimensional variation of Z force with angle of  attack 
𝑀𝑀𝛼𝛼  Non-dimensional variation of pitching moment with angle of attack 
𝑤𝑤𝑛𝑛𝑠𝑠𝑠𝑠 Frequency of short period 
ξ𝑠𝑠𝑠𝑠 Damping ratio of short period 
PID Proportional Integral Derivative  
LQR Linear Quadratic Regulator 
OEM Output Error Method 
ZN Ziegler Nicholas 

RCTA Research cum trainer aircraft 
UAV Unmanned Aerial Vehicle 

1. INTRODUCTION 
The rapid development of flying machines like multi-rotor drones and hybrid aircraft is 
booming. In this context the automatic control design has played a vital role of a catalyst by 
boosting the interest of researchers in area of application e.g. reconnaissance missions, aerial 
photography, terrain surveillance, flying accidental military troops etc. An autopilot lessens 
the pilot workload during various flight regimes at different altitudes and Mach numbers. It 
also handles unfavourable weather conditions and provides artificial stability. The 
prerequisites of controller design include in-depth knowledge of control theory, parameter 
estimation of provided aircraft model at different altitude, Mach numbers [1], [2], and flying 
handling quality. Khoi Nguyen Dang researched on optimized design of the attitude controller 
of quadrotor using a system Identification approach. LQR (Linear quadratic regulator) theory 
was used to design the linear quality servo’s to improve the performance characteristics[3]. 
Valderrama designed an aircraft pitch controller to improve the stability and performance of 
the UAV(Unmanned aerial vehicle) [4]. ZN (Ziegler Nicholas) methodology was adopted to 
tune the PID (Proportional Integral Derivative) controller. Various time domain characteristics 
to study performance of controller are discussed. G. Sudha [5] optimizes various tuning 
methods for the PID such as Ziegler Nicholas, Tyreus-Luyben, Astrom- Hagglund but the 
simulation results tuned by ZN method shows the optimum result. The Pitch controller of F-
16 aircraft is designed using LQR and linear feedback approach.  Pole placement technique is 
used to determine the value of gain. Simulink block diagram of LQR and linear feedback are 
validated with the aircraft pitch control system by [6]. The optimal control methodology is 
adopted to estimate the parameters of the dynamic model by using the Cost function ‘J’ which 
is derived using OEM(Output error method) by [7] Gottlicher. The present paper focuses on 
designing a PID controller for the pitch control of Hansa-III using various closed-loop tuning 
techniques- ZN, Modified ZN, Tyreus-luyben, Astrom-Hagglund, pole-placement, and LQR 
based on the study of the specialized literature. The maximum likelihood estimation method 
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was implemented to estimate the stability and control derivative of 4 - seater canard aircraft, 
firefly. This statistical method has benefits to measure both process and measurement noise as 
stated by Kim [8]. This technique is widely applicable in time-domain analysis to estimate 
derivatives using the vehicle flight data. D. H. Shim [9] researched by developing the Non-
linear transport aircraft Simulink model applying M. L and EKF. Mathematical modeling is 
developed to design LQR Controller having optimal weighing matrices that be used for 
tracking aircraft trajectory. This approach can handle the noise and make the system robust. 
Maximum Likelihood is a widely used statistical technique to minimize the error and make 
the system dynamically stable as suggested by the researcher [10]. It uses linearized 
perturbation state equation to study the dynamic response characteristics of longitudinal 
motion to assess flight handling [11]. One of the most crucial problem in system identification 
is data compatibility as explained by Grauer [12]. Data compatibility is a part of parameter 
estimation and is used to check the data accuracy by making bias free and error free flight data. 
The transfer function of the pitch controller is calculated using longitudinal state equations. 
The Simulink model is constructed to perform simulations and optimize the performance 
parameters of a PID Controller. 

2. IDENTIFICATION AND MODELLING OF HANSA-III 
Hansa-III is two-seater trainer aircraft (RCTA) manufactured by NAL, Bangalore, India. Three 
designs were developed by NAL in which Hansa-II was built as prototype and Hansa-III was 
finalized for production. In order to fetch the flight data, multi-variant sensors are instrumented 
in the aircraft for flight data acquisition. The aircraft structure is fully composite having a low 
wing configuration with tricycle landing gear arrangement. It consists of a Rotax-914 F3 
engine coupled with Hoffmann propeller [10] as shown in fig. 1. 

 
Fig. 1 A three-view sketch of Hansa-III research aircraft 

The System Identification is an indispensable tool that identifies parameters of the physical 
system based on observations by developing a mathematical model of the dynamic system. 
Zadeh  stated, “Identification is a tool to identify systems on basis of Inputs, outputs and test 
condition” [13] as explained in fig. 2 The unified concept stated by the German Aerospace 
Centre (DLR) of Quad M to define five elements is a key to define the System Identification 
[14], [15]. 
1. Maneuverers: The control inputs in terms of voltage (3-2-1-1) input, doublet, and pulse 
were fed, in addition converted to respective motion and control variables using an appropriate 
calibration chart to experience the despite output. 
2. Measurement: A high-quality sensor measures the process and measurement noise of the 
system, known as a data compatibility check. 
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3. Model: An algorithm of differential equations derived from Newtonian law of motion in 
terms of acceleration, state and control variable is used for the flight vehicle system 
Identification [16]. 
4. Methodology: The procedure adopted on the Input/output interface to acquire desired 
output of the flight vehicle. 

 
Fig. 2 Concept of System Identification 

Step I. The raw flight data at a low angle of attack is recorded in terms of voltage (3-2-1-1) 
input from flight laboratory of Indian Institute of Technology, Kanpur and converted to 
respective motion. The raw data are calibrated in form of V, p, q, r θ, ψ, δe, δa, δr, φ, ax, ay, az, 
α, and β to locate the sensor position [10]. 
Step II. Recorded data consist of systematic errors like scale factor, bias factor, time delay, 
and zero shifts cause data incompatible so sensors are required to avoid measurement errors. 
The flight path reconstruction, also known as a data compatibility check, ensures the data 
accuracy fetched from the data acquisition system and forms the model consistent and error-
free. 
Step III. Mathematical model of aircraft is formulated by the algorithm of equations of motion 
[17]. The following set of state equations, observation equations estimates aircraft transfer 
function for designing PID Controller. 
Governing Longitudinal Equation in Wind Axis [18], [19] 
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𝐼𝐼𝑌𝑌𝑌𝑌
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In order to analyse the aircraft dynamics, the aircraft is modelled in terms of mathematical 
equations as aerodynamic stability and control derivatives shown below 

𝐶𝐶𝐿𝐿={𝐶𝐶𝐿𝐿0 + 𝐶𝐶𝐿𝐿𝛼𝛼 .𝛼𝛼 + 𝐶𝐶𝐿𝐿𝑞𝑞 . 𝑞𝑞𝑐𝑐̅
2𝑈𝑈1

+  𝐶𝐶𝐿𝐿𝛿𝛿𝑒𝑒 . 𝛿𝛿𝑒𝑒} (5) 

𝐶𝐶𝐷𝐷=�𝐶𝐶𝐷𝐷0 + 𝐶𝐶𝐷𝐷𝛼𝛼 .𝛼𝛼 +  𝐶𝐶𝐷𝐷𝑞𝑞 . 𝑞𝑞𝑐𝑐̅
2𝑈𝑈1

+ 𝐶𝐶𝐷𝐷𝛿𝛿𝑒𝑒 . 𝛿𝛿𝑒𝑒� (6) 

𝐶𝐶𝑚𝑚=� 𝐶𝐶𝑚𝑚0 +  𝐶𝐶𝑚𝑚𝛼𝛼 .𝛼𝛼 +  𝐶𝐶𝑚𝑚𝑞𝑞 . 𝑞𝑞𝑐𝑐̅
2𝑈𝑈1

+  𝐶𝐶𝑚𝑚𝛿𝛿𝑒𝑒
. 𝛿𝛿𝑒𝑒 � (7) 

A few assumptions are required before modelling the system. 
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1. At cruise state; Thrust setting angle = 0 Flight-path Y = constant. 
2. Elevator control input excites short period dynamics; hence flight velocity is constant. 
Referring longitudinal State Equation (2-4) and applying following assumptions mentioned in 
above section as 

𝛼̇𝛼 =  − �
𝑞𝑞�. 𝑠𝑠
𝑚𝑚. 𝑣𝑣

� 𝐶𝐶𝐿𝐿 + 𝑞𝑞 (8) 

𝜃̇𝜃 = 𝑞𝑞 (9) 

𝑞̇𝑞 = �
𝑞𝑞�. 𝑠𝑠. 𝑐𝑐
𝐼𝐼𝑦𝑦

� .𝐶𝐶𝑚𝑚 (10) 

Applying equation (5-7) to estimate non-dimensional derivatives as longitudinal stability and 
control predominantly excite short period mode, is expressed as 

𝛼̇𝛼 = 𝑞𝑞 −  
𝜌𝜌𝜌𝜌𝑆𝑆𝑤𝑤

2𝑚𝑚
 �𝐶𝐶𝐿𝐿0 + 𝐶𝐶𝐿𝐿𝛼𝛼 .𝛼𝛼 + 𝐶𝐶𝐿𝐿𝑞𝑞 .
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+  𝐶𝐶𝐿𝐿𝛿𝛿𝑒𝑒 . 𝛿𝛿𝑒𝑒� (11) 

𝜃̇𝜃 = 𝑞𝑞 (12) 

𝑞̇𝑞 =
𝜌𝜌𝑉𝑉2𝑆𝑆𝑤𝑤𝑐𝑐̅

2𝐼𝐼𝑦𝑦
 � 𝐶𝐶𝑚𝑚0 + 𝐶𝐶𝑚𝑚𝛼𝛼 .𝛼𝛼 + 𝐶𝐶𝑚𝑚𝑞𝑞 .

𝑞𝑞𝑐𝑐̅
2𝑈𝑈1

+  𝐶𝐶𝑚𝑚𝛿𝛿𝑒𝑒
. 𝛿𝛿𝑒𝑒 � (13) 

Table 1: Geometrical parameters[20] 

Geometrical Parameters Value Geometrical Parameters Value 
Wing Horizontal Tail 

Planform area 12.47(m2) Planform area 2.04(m2) 
Aspect ratio 8.8 Aspect ratio 6.35 
MAC 1.21(m) MAC 0.59(m) 
Root Chord 1.3(m) Root Chord 0.78(m) 
Tip Chord 0.8 Tip Chord 0.354(m) 
Taper ratio 6(deg) Taper ratio 0.454 

Aircraft Aerodynamic derivatives 
Aircraft span 10.47(m) (𝐶𝐶𝐿𝐿𝛼𝛼,𝑤𝑤)ss 4.5 
Mass 750(kg) (𝐶𝐶𝐿𝐿𝛼𝛼𝑡𝑡)ss 1.48 
Velocity 36(m/s) (𝐶𝐶𝑚𝑚𝛼𝛼,𝑓𝑓)ss 0.3 
Moment of Inertia IY 907(kg-m2) (𝐶𝐶𝐿𝐿𝛼𝛼𝑡𝑡

𝑑𝑑€
𝑑𝑑𝑑𝑑

)ss 0.22 

Moment arm  3.624(m)   
Density 0.96(kg/m3)   
Moment of Inertia IY 925(kg-m2)   
Moment arm  3.624(m)   

Step IV. Maximum likelihood is enforced for longitudinal parameter estimation of the 
dynamic model of Hansa-III using real flight data [10]. The statistical technique is applied in 
the time domain to estimate the stability and control derivatives by minimizing the cost 
function J [14], [21] 

J(Θ,R) = L(z│Θ,R) = ½ ∑ [𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑦𝑦(𝑡𝑡𝑡𝑡)]𝑅𝑅−1[𝑁𝑁
𝑘𝑘=1  𝑧𝑧(𝑡𝑡𝑡𝑡) − 𝑦𝑦(𝑡𝑡𝑡𝑡)] +  N/2 ln [det(R)] + 

Nny/2 ln(2∏) 

The unknown parameter vector Θ determines the value of the non-dimensional longitudinal 
derivatives given 

Θ = [𝐶𝐶𝐿𝐿0  𝐶𝐶𝐿𝐿𝑎𝑎𝐶𝐶𝐿𝐿𝑞𝑞𝐶𝐶𝐿𝐿𝛿𝛿𝛿𝛿𝐶𝐶𝐷𝐷0  𝐶𝐶𝐷𝐷𝛼𝛼𝐶𝐶𝐷𝐷𝛿𝛿𝛿𝛿𝐶𝐶𝑚𝑚0𝐶𝐶𝑚𝑚𝛼𝛼𝐶𝐶𝑚𝑚𝑞𝑞𝐶𝐶𝑚𝑚𝛿𝛿𝛿𝛿  ]
T (14) 
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Table 2: Longitudinal Parameters Value using ML Technique[22] 

S. No Derivatives Value 
1. 𝐶𝐶𝐿𝐿0 0.2254 
2. 𝐶𝐶𝐿𝐿𝛼𝛼 6.45 
3. 𝐶𝐶𝐿𝐿𝑞𝑞 37.2 
4. 𝐶𝐶𝐿𝐿𝛿𝛿𝑒𝑒  0.0196 
5. 𝐶𝐶𝑚𝑚0  0.078 
6. 𝐶𝐶𝑚𝑚𝛼𝛼  -0.4259 
7. 𝐶𝐶𝑚𝑚𝑞𝑞 -11.61 
8. 𝐶𝐶𝑚𝑚𝛿𝛿𝑒𝑒

 -0.8665 
The simplifying longitudinal state equation by substituting geometrical and longitudinal 
parameters as presented in Table 1, 2 is represented as 

𝛼̇𝛼 = 0.8207 . 𝑞𝑞 −  1.851 .𝛼𝛼 +  0.00562 . 𝛿𝛿𝑒𝑒 − 0.0646 (15) 

𝑞̇𝑞 = − 2.01 . 𝑞𝑞 −  4.403 .𝛼𝛼 − 8.95 . 𝛿𝛿𝑒𝑒 + 0.806 (16) 

𝜃̇𝜃 = 𝑞𝑞 (17) 
The generalized State equation in Matrix form can be written as: 

𝑥̇𝑥 = Ax + Bu (18) 

y = Cx +Du (19) 
The state space matrices A, B, C, and D from equation (18-19) are compared with equation 
(15-17) to define the plant matrix A, the control matrix B, the output matrix C, and the null 
matrix D as reflected in equation (20-21) 

�
𝛼̇𝛼
𝑞̇𝑞
𝜃̇𝜃
� =  �

−1.851 0.8207 0
−4.403 −2.01 0

0 1 0
� �
𝛼𝛼
𝑞𝑞
𝜃𝜃
�+ �

−0.0056 −8.95
−0.0646 −0.806

0 0
�  [δ] (20) 

[𝜃𝜃] = [0 0 1] �
𝛼𝛼
𝑞𝑞
𝜃𝜃
� + [0][δ] (21) 

The flight control designer has the formidable task to design the controller of an airplane of 
good dynamic qualities as flying handling qualities are directly linked to the dynamic response 
of the aircraft [11]. The damping and frequency of both short period and long period plays a 
vital role while studying the pilot handling hence, an approximation of short period mode can 
be obtained by dropping the X-force equation and reducing the state matrix. 

A =�−1.851 0.8207
−4.403 −2.01 �. 

The eigenvalues of the state matrix A can be obtained by solving 
|𝜆𝜆𝜆𝜆 − 𝐴𝐴| = 0 (22) 

The characteristic equation for the determinant is 

𝜆𝜆2 − �𝑀𝑀𝑞𝑞 + 𝑀𝑀𝛼̇𝛼 + 𝑍𝑍𝛼𝛼
𝑢𝑢0
�𝛌𝛌 +𝑀𝑀𝑞𝑞 𝑍𝑍𝛼𝛼

𝑢𝑢0
  - 𝑀𝑀𝛼𝛼 =0 (23) 

Short period roots in term of damping and natural frequency are calculated using equation (22-
23) 
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𝑤𝑤𝑛𝑛𝑠𝑠𝑠𝑠  = �
𝑍𝑍𝛼𝛼𝑀𝑀𝑞𝑞
𝑢𝑢0

−𝑀𝑀𝛼𝛼  = √7.333 = 2.70, 𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠= 0.429 (24) 

ξ𝑠𝑠𝑠𝑠=  −
�𝑀𝑀𝑞𝑞+𝑀𝑀𝛼̇𝛼+

𝑍𝑍𝛼𝛼
𝑢𝑢0
�

2𝑤𝑤𝑛𝑛𝑠𝑠𝑠𝑠
 = 0.71 (25) 

The damping and natural frequency of short-period mode can be determined in terms of 
derivatives. The flying handling quality of an airplane can be defined by stability and control 
characteristics. The handling quality is experienced by pilot depending on the category and 
class of aircraft. The flight phase is classified into three categories A, B, and C as displayed in 
Table 3. The information mentioned in table3 illustrate that Hansa-III is B category, Class-I 
Aircraft [17]. The value of ξ and𝑓𝑓𝑛𝑛 calculated using equation (22-23) provides information 
about handling quality as per Cooper-Harper Scale rating as discussed in fig. 3 

Table3: Short period mode flying quality  

 Category A and C Category B  
Class ξ𝑠𝑠𝑠𝑠 (min) ξ𝑠𝑠𝑠𝑠(max) ξ𝑠𝑠𝑠𝑠 (min) ξ𝑠𝑠𝑠𝑠 (max) 
I 0.35 1.30 0.3 2.0 
II 0.25 2.00 0.2 2.0 
III 0.15 - 0.15 - 

 

  
𝛏𝛏 ( damping ratio) 

Fig. 3 Relationship between ξ𝑠𝑠𝑠𝑠, 𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠 and level of flying qualities of short period mode [17] 

𝑓𝑓𝑛𝑛𝑠𝑠𝑠𝑠= 0.429; ξ𝑠𝑠𝑠𝑠 = 0.71  

The value of  ξ and 𝑓𝑓𝑛𝑛 demonstrates that Hansa-III has a good flying quality and has a pilot-
scale rating of 2. Thus, a minimum pilot effort is required to attain the desired performance. 
The above explanation provides the information that the automatic controllers can be designed 
as the aircraft satisfy all criteria to attain stability. The methodology followed to design a PID 
Controller requires the transfer function. The transfer function of short period mode can be 
represented by using formulae discussed below 

T.F = �𝐶𝐶 𝐴𝐴𝐴𝐴𝐴𝐴 (𝐼𝐼𝐼𝐼−𝐴𝐴)𝐵𝐵
𝐼𝐼𝐼𝐼−𝐴𝐴

� + D (26) 

𝑓𝑓𝑛𝑛 ⬚
 (c

ps
) 
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The transfer function for the pitch angle to the elevator deflection angle is represented as G(s) 

G(s) = θ(s)
δ(s)

 = −{8.95s+16.5313}
s3+3.861s2+7.33141s

 (27) 

Open loop Transfer function 

 
 
  Step Input                        Actuator T.F               Short-period Hansa-III dynamics                  Scope 

Fig. 4 Open Loop Control system 

The Open loop control system as illustrated in Fig. 4 is independent of response in action of 
control. The transfer function estimated for the pitch angle to the elevator deflection angle is 
represented as G3(s) 

G3(s) = θ(s)
δ(s)

 = −{8.95s+16.5313}
s3+3.861s2+7.33141s

 (28) 

Closed loop Transfer function 
 

                                              

     Step Input                                                        Short-period Hansa-III dynamics                    Scope   

 

                                                                      Negative Feedback- loop 

Fig. 5 Closed Loop Control system 

The controller of the closed loop control system shown in fig. 5 depends on the output response 
termed as feedback control system. The transfer function G4(s) is the output response of the 
input fed to control system 

G4(s) = θ(s)
δ(s)

 = {55.94s+103.3}
s4+10.07s3+31.18+101.8s+103.3

 (29) 

 

 

Fig. 6 Closed loop step response  

The Step response of closed loop transfer function G4 interpret the system stability after a 
time-span of 8 seconds as shown in figure 6. 

 
    −6.25

𝑠𝑠+6.25
 

−8.95𝑠𝑠 − 16.53
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  PID 
−8.95𝑠𝑠 − 16.53
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3. PID CONTROLLER 
PID stands for proportional, integral, and derivative. This controller boosts the system stability 
and reduces the steady-state error. It is used in modern industry as automatic process control 
for the flight control system. The terms P, I, D effectively control the system dynamics by 
calculating the error between the measured value and desired value. The gain is tuned as per 
system design requirements of these three terms. The feedback controller is designed to control 
the desired output accurately operating a PID controller [17]. Control law u(t) is expressed as 

u(t)  = 𝐾𝐾𝑃𝑃 e(t) + 𝐾𝐾𝐼𝐼 ∫ 𝑒𝑒(𝑡𝑡)𝑑𝑑𝑑𝑑 +𝐾𝐾𝐷𝐷 𝑑𝑑
𝑑𝑑𝑑𝑑

e(t) (30) 

where, 𝐾𝐾𝑃𝑃refers to proportional gain, 𝐾𝐾𝐼𝐼 is the integral gain, and 𝐾𝐾𝐷𝐷 is the derivative gain. The 
Laplace transform of above equation in the continuous S-domain is given by equation (31) 

U(s) = [𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
𝑠𝑠

 +𝐾𝐾𝐷𝐷𝑠𝑠] E(s) (31) 

The Transfer function of PID Controller is 

𝐺𝐺𝑃𝑃𝑃𝑃𝑃𝑃=  U(s)
E(s)

 = 𝐾𝐾𝑃𝑃 + 𝐾𝐾𝐼𝐼
𝑠𝑠

 + 𝐾𝐾𝐷𝐷𝑠𝑠  =[𝐾𝐾𝑃𝑃 S+𝐾𝐾𝐼𝐼 + 𝐾𝐾𝐷𝐷𝑆𝑆2

𝑆𝑆
] (32) 

3.1 Closed-loop Tuning Techniques 

In this paper the classical and modern tuning techniques of the PID Controller are discussed 
independently as two different cases in order to reach the objective as presented in a Table 4.  

Table 4: Closed-loop Tuning Techniques 

Classical Approach Modern Approach 
ZN Modified ZN Pole- placement 
Tyreus-luyben Astrom-Haggulund LQR 

Case I: Classical PID Tuning Methods 

3.1.1 Ziegler Nicholas  

ZN method refers to open-loop and closed-loop control systems. It is first proposed in 1942 
based on the system time response [23], [24]. This trial-error method proposed the use of 
ultimate gain 𝐾𝐾𝑝𝑝𝑝𝑝 and period of oscillation at ultimate gain Tu when the system is neutrally 
stable. The numeric value of 𝐾𝐾𝑃𝑃, 𝐾𝐾𝐼𝐼, 𝐾𝐾𝐷𝐷to tune PID Controller is estimated using the following 
relationship as discussed in Table 5 [5] 

Classical closed loop PID Tuning Methods 
Table5: Classical PIDTuning Parameters 

SNo Methods 𝑲𝑲𝑷𝑷 𝑲𝑲𝑰𝑰 𝑲𝑲𝑫𝑫 
1. ZN 0.6𝐾𝐾𝑝𝑝𝑝𝑝 1.2𝐾𝐾𝑝𝑝𝑝𝑝/𝑇𝑇𝑢𝑢 0.075𝐾𝐾𝑝𝑝𝑝𝑝𝑇𝑇𝑢𝑢 

2. Modified ZN 0.33𝐾𝐾𝑝𝑝𝑝𝑝 0.5𝑇𝑇𝑢𝑢 0.33𝑇𝑇𝑢𝑢 
3. Tyreus- Luyben 0.3125𝐾𝐾𝑝𝑝𝑝𝑝 2.2𝑇𝑇𝑢𝑢 0.1587𝑇𝑇𝑢𝑢 
4. Astrom- Hagglund 0.32𝐾𝐾𝑝𝑝𝑝𝑝 0.94𝑇𝑇𝑢𝑢 0 
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Fig. 7 Simulink block diagram of PID 

The block diagram shown in figure 7 is used to estimate the gain parameters of PID while 
adopting various tuning techniques discussed in Table 5 using software SIMULINK. The 
procedure applied to determine the value of 𝐾𝐾𝑝𝑝𝑝𝑝 and 𝑇𝑇𝑢𝑢 is discussed below: 
Step 1. Initializing KI and  KD to be zero and iterate numeric value of KP to attain marginal 
stability curve in Scope 
Step 2. Estimating the value of 𝐾𝐾𝑝𝑝𝑝𝑝 and 𝑇𝑇𝑢𝑢 from neutrally stable curve as displayed in figure 
8,9 
Step 3. The gain of 𝐾𝐾𝑝𝑝 becomes 𝐾𝐾𝑝𝑝𝑝𝑝 when the system achieves neutral oscillation and 𝑇𝑇𝑢𝑢 
reflects the time- period of oscillations between one cycle occurs at an ultimate gain. 
Step 4. Gain value estimated are  𝐾𝐾𝑝𝑝𝑝𝑝 = 1.3400, 𝑇𝑇𝑢𝑢 = 1.5040 

                    
                 
                  

                     Fig. 8 Neutral Oscillations                                    Fig. 9 Ultimate time period 𝑇𝑇𝑢𝑢 

 
 
 

Fig. 10 Step response of aircraft dynamics with PID Controller 
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Table 6: ZN PID tuning parameters 

S.No Controller 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼  𝐾𝐾𝐷𝐷 
1. Classic PID 0.8040 1.0691 0.1512 
2. PD 0.2015 - 1.0720 
3. PI 0.6030 48.117 - 

The unit step response in fig. 10 shows that the decayed oscillatory motion with damped 
amplitude of pitch controller signifies the stability. The gain parameters of PID presented in 
Table 6 illustrate that all types of controller have a high value of KI which overall affects the 
system performance and leads to good steady-state response. 

3.1.2 Modified ZN 

Undesirable large overshoot value changes rapidly which can be predicted by using a Modified 
version of Ziegler Nicholas. This trial and error closed-loop method is similar to CHR (Chien-
Hrones-Reswick) PID tuning applied to regulate the desired value of overshoot [23], [25], 
[26]. Modified gain value using this technique is presented in table 7. 

 
 

Fig. 11 Step Input response of Modified ZN Method 

Table7: Modified ZN PID step response tuning parameters 

S.No 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼  𝐾𝐾𝐷𝐷 
1. 0.33𝐾𝐾𝑝𝑝𝑝𝑝 0.5𝑇𝑇𝑢𝑢 0.33𝑇𝑇𝑢𝑢 
2. 0.4422 0.7520 0.4963 

The unit step response in fig. 11 shows aperiodic non-oscillatory motion of the pitch controller 
with good steady state response and highly stable. 

3.1.3 Tyreus-Luyben  

This approach is similar to the ZN method and time-consuming but gives better performance 
results [27]. It depends on two parameters 𝐾𝐾𝑝𝑝𝑝𝑝 and 𝑇𝑇𝑢𝑢 for tuning of gain value. This technique 
only proposes setting for PID and PI Controller [28] 

 
 

Fig. 12 Step Input response of Tyreus-Luyben Method 
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Table 8: Tyreus-Luyben PID step response tuning parameters 

S.No 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼 𝐾𝐾𝐷𝐷 
1. 0.3125𝐾𝐾𝑝𝑝𝑝𝑝 2.2𝑇𝑇𝑢𝑢 0.1587𝑇𝑇𝑢𝑢 
2. 0.4188 0.2376 3.3088 

The unit step response in fig. 12 shows aperiodic non-oscillatory motion of the pitch controller 
with high value of proportional gain that makes overall system to produce constant steady state 
error and decreases system sensitivity as discussed in Table 8. 

3.1.4 Astrom- Hagglund 
This auto-tuning approach recommended by Astrom and Hagglund in 1995 proposes settings 
for PID Controller without derivative filter [5]. It controls the system to meet the desired 
specification by regulating the value of overshoot. 

 
 

Fig. 13 Step Input response of Astrom- Hagglund Method 
Table 9: Astrom- Hagglund PID step response tuning parameter 

S.No 𝐾𝐾𝑃𝑃 𝐾𝐾𝐼𝐼 𝐾𝐾𝐷𝐷 
1. 0.32𝐾𝐾𝑝𝑝𝑝𝑝 0.94𝑇𝑇𝑢𝑢 0 
2. 0.4422 1.4138 0 

The unit step response in fig. 13 presents the oscillatory motion with un-damped amplitude of 
pitch controller and states the system instability. The gain parameters of PID presented in 
Table 9 illustrate the good steady-state response. 

Case II: Modern Control Methods 
Recent advancement in technology involves novel approaches to design control systems 
termed modern control theory. Classical methods are limited to SISO systems while modern 
control theory encompasses the scope of MIMO, time-variant, linear or non-linear systems. 
The high-order systems are replaced by first-order differential equations to reduce the system 
complexity. Optimization techniques are easily applicable to solve optimal control problems 
using this approach [17]. Two methodologies such as pole placement and LQR are proposed 
to estimate the gain matrix for designing PID Controller. The block diagram of the state 
feedback control system is shown in figure 14. 
                            𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡)     +          δ(t)                                                       y(t)      Output Pitch angle 

                           Ref. I/P    -                            A/c dynamics    

 

                                                                                                                  x(t) 
Fig. 14 Feedback Control Design 

 𝑥̇𝑥 = Ax(t) + Bu(t) 
  y = Cx(t) +Du(t) 

  Gain K 
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3.1.5 Pole placement 

It is a State-space model approach that calculates gain matrix K to obtain the system stability 
as shown in fig. 15. Specific eigenvalues/ pole location is the desired feature of the state 
feedback design. This methodology positions closed-loop poles in the desired location by 
meeting the design requirements through a state feedback gain matrix [29], [6].The controller 
modifies matrix A to change the plant dynamics as eigenvalues of matrix A signify poles of 
the system and its location governs the system stability. The methodology adopted in pole 
placement to choose closed-loop poles using the Butterworth polynomial equation is shown 
below 
     Reference                                  +                u                                                             y 

 

                              Scaling Term                                  Plant 

 

 

                                                                          Gain Matrix 

Fig. 15 Pole Placement and LQR 

Butterworth Filter = � 𝑆𝑆
𝑊𝑊𝑂𝑂
�= (−1)

𝑛𝑛+1
2𝑛𝑛 �𝑒𝑒

𝑗𝑗(2𝑘𝑘+1)𝜋𝜋

−1
�
𝑛𝑛+1
2𝑛𝑛  (33) 

where k = 0, 1, 2---------, 𝑤𝑤𝑂𝑂= natural frequency, n= system order (no of closed loop poles) 
now substituting 𝑤𝑤𝑂𝑂 = 2.70, n = 3 and k = 0, 1, 2, 3, 4, 5 and simplifying Butterworth filter 
equation to estimate desired closed loop poles 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3 = -1.35 ± 2.338j, -1.3.The value of 
gain K is determined using Matlab function ‘acker’ thus Gain K = acker (A, B, S); K = [-
0.2612 0.0157 0.572].  

    
Fig. 16 Pitch angle step response: Pole placement 

The pitch angle response using pole assignment technique presented in fig. 16 represents zero 
steady state error while applying scale factor𝑁𝑁� = 0.5728 to compensate the steady state error 
from 0.349 to 0.01. 

𝑁𝑁� 𝑥̇𝑥 = A x(t) + Bu(t) 

  Y = Cx(t) +Du(t) 

 

   K 
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3.1.6 Linear Quadratic Regulator (LQR) 

LQR is an optimal modern control approach that solves the optimization problem by keeping 
the cost function minimal subjected to a given set of constraint [30]. This regulator has good 
set point tracking performance [31]. This approach is similar to pole placement as the 
implementation of gain K is similar as per fig. 15 but the procedure of choosing value of gain 
K is different. Optimal gain K is estimated by choosing closed-loop characteristics using the 
cost function [6] [32]. 

 
Fig. 17 LQR Simulink Block diagram  

The block diagram shown in fig. 17 estimates the pitch angle response by evaluating the gain 
matrix K using the LQR approach. 
In designing the LQR Controller, two parameters Q and R are required to determine the value 
of gain K. Q and R weighing square matrices are associated with state and control input of the 
system. In SISO systems, R is left unity and Q weighs the most important state of the system 
response [33]. The LQR control problem is solved by minimizing the cost function “J” 

J =∫ {𝑋𝑋𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑈𝑈𝑇𝑇𝑅𝑅𝑅𝑅∞
0 } dt (34) 

where, X(t) = n× 1 state vector, u(t) = m× 1 control vector, Q = n×n symmetric positive semi-
definite matrix, R = m×m symmetric positive semi-definite matrix henceforth J will be 
positive Initializing x= 400, Q = x*CT*C 

C= [0 0 1] Q = [0 0 0;0 0 0;0 0 x]   R= [1] 
The optimal control law is given by by η = - kT x where kT = R-1BTS thus substituting the value 
of B, Q, and R to solve the algebraic Ricatti equation for S as K refers to R-1BTS. Gain K is 
also obtained using lqr Matlab function as [K] = lqr (A, B, Q, R) thus the estimated value of 
optimal gain K = [-0.4717 1.88 20.00].  

 
Fig. 18 pitch angle step response: LQR  

The pitch angle response using LQR presented in fig. 18 shows that the gain value founds 
unity which concludes that K itself stabilizes the system and steady-state error approaches 0.01 
as per design requirement. 
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4. RESULTS AND DISCUSSIONS 
The study incorporates the implementation of classical and modern PID controller techniques 
to optimize PID parameters for the pitch control of Hansa-III aircraft. 
Case I: The result of distinct types of classical PID tuning methods are compared in form of 
gains and displayed in Table 10. All gains have a specific function like Kp improves steady-
state tracking accuracy, decreases system sensitivity on parameter variation, and produces the 
constant steady-state error. Kd leads to the system stability but has a poor steady-state response 
whereas Ki has a good steady-state response and leads to un-stability. T.F of PID contains two 
zeros in the numerator and one pole at origin in the denominator which makes the overall 
system highly stable. As per the Table 10, Astrum -Hagglund methodology does not have a 
derivative filter which leads to the aircraft instability. Thus the response of the system is an 
undamped oscillatory motion. 

Table 10: Comparison of PID Tuning Methods 

S. No Tuning Methods 𝑲𝑲𝑷𝑷 𝑲𝑲𝑰𝑰 𝑲𝑲𝑫𝑫 
1. Ziegler Nicholas 0.8040 1.0691 0.1512 
2. Modified ZN 0.4422 0.7520 0.4963 
3. Tyreus- Luyben 0.4188 0.2376 3.3088 
4. Astrom- Hagglund 0.4422 1.4138 0 

 

 
 
 

Fig. 19 Comparison ZN, Modified ZN, TL for step input  

  
Fig. 20 Bar representation of ZN, Modified ZN, Tyreus- Luyben for Step Input 
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Tyreus- Luyben exhibit a large value of gain Kd which influences the overall system 
parameters by increasing the aircraft stability but difficult to attain steady-state value. This 
method is unable to accomplish the time-domain design requirements so does not display the 
optimum result. ZN and Modified ZN while comparing gain values as illustrated in fig. 19, 20 
show that both controllers have the characteristic of stability and approaches S.S.E rapidly but 
modified ZN shows the best optimal result as this tuning controller satisfies the controller 
design requirements by approaching the steady state value close to zero. 
Case II: Modern control methodologies such as pole-placement, LQR controllers are designed 
successfully. The results obtained using the pole-placement and LQR are presented in Table11. 
They are analyzed showing that LQR controller settles rapidly as settling time which is 0.44s 
as compared to pole-placement with excellent property of eliminating steady-state error to zero 
without using scale effect. The value of peak overshoot provides information about the 
deviation of the response in peak time with respect to final response is 0.332 for LQR as 
compared with pole placement which illustrates that LQR deviates with less amount and 
provides stability. This controller is robust-free, has good performance characteristics, and is 
highly efficient against disturbances. 

Table 11: Time domain Performance characteristics 

S. No Closed loop Time-
domain response 

Design 
Specification 

Pole-placement 
without Scaling effect 

LQR 
without Scaling effect 

1. Steady state error <1% 0.349 0.01 
2. Peak overshoot <5% 4.59 0.332 
3. Settling Time <5sec 3.08 0.44 
4. Rise Time <2sec 0.793 0.16 

5. CONCLUSIONS 
The main objective of this paper is to do a comparative study of the classical and modern 
control techniques for the pitch control of Hansa-III. In this paper, the design and optimization 
of gain parameters of the PID using ZN, Modified ZN, Tyreus- Luyben, Astrom- Hagglund, 
Pole-placement, LQR is presented. Classical tuning techniques and modern control approaches 
are analyzed and compared independently. Modified ZN shows the best optimal result for Case 
I as this tuning controller meets the design requirements. Case II concluded that among modern 
control approaches the best transient and steady-state response for the pitch control is obtained 
for the PID Controller when tuned using LQR. Tuned gain values of the PID eliminate the 
disturbances, oscillations and provide stability to the aircraft. 

FUTURE PROSPECTS 

The high value of steady-state error affects the final value of the plant during operation, which 
is compensated by the use of compensators [33]. The addition of poles, zeros, and a 
combination of both modifies the transient response of the system and drives steady-state error 
as zero. It is suggested to use compensators while designing a controller for eliminating the 
large steady-state errors. 
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	Hansa-III is two-seater trainer aircraft (RCTA) manufactured by NAL, Bangalore, India. Three designs were developed by NAL in which Hansa-II was built as prototype and Hansa-III was finalized for production. In order to fetch the flight data, multi-va...

