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Abstract: This paper presents a novel approach to address the challenge of self-localization of flying 
vehicles. It utilizes visual cues provided by the map imagery fed to a map-recognition convolution 
neural-network (CNN). This approach is invaluable during the navigation of flying vehicles in scenarios 
where the Global Positioning System (GPS) signal is unavailable. The proposed approach leverages 
the power of convolutional neural networks (CNNs) to imitate the visual perception and navigation 
abilities of homing pigeons, enabling the vehicle to navigate using solely real- time visual data with 
limited or no GPS information. Two pre-trained CNN’s (SqueezeNet and GoogLeNet) are selected and 
re-trained with Google Maps imagery, enabling them to efficiently learn and generalize from the diverse 
visual attributes present in the map. Extensive experimentation and evaluation have demonstrated the 
efficacy and resilience of the vision-based GPS-free navigation system. The resulting system predicts 
position accurately achieving an accuracy of 89.9% and 96.4% for SqueezeNet and GoogLeNet, 
respectively, for images with a resolution of (one km x one km) and reaching an accuracy of 94.7 for 
GoogLeNet for images with a resolution of (374 m x 374 m). Results underscore the potential of this 
approach for overcoming the challenge of GPS unavailability in aerial navigation. 

Key Words: Convolutional Neural Network, CNN, GPS-free Navigation, Visual Perception, Image-
based Navigation 

1. INTRODUCTION 

Navigation systems play a pivotal role in various applications, including autonomous vehicles 
and unmanned aerial systems. However, in certain scenarios, such as indoor environments or 
areas with GPS signal obstruction, relying solely on GPS for navigation becomes impractical. 
To overcome this limitation, this work proposes a vision-based GPS-free navigation system 
that employs a convolutional neural network (CNN) to enable a flying vehicle to navigate 
autonomously using visual information. The proposed system is inspired by homing pigeons 
which have an extraordinary ability to navigate and find their way back to their home lofts 
from distant locations. While the exact mechanisms used by homing pigeons, are not fully 
understood, researchers have identified several factors that contribute to their navigation 
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abilities. Visual Landmarks are one of these factors. Pigeons are adept at recognizing and 
memorizing visual landmarks along their route. They use prominent landmarks such as rivers, 
mountains, or distinctive buildings to orient themselves and stay on track [1]. The proposed 
system leverages CNNs to mimic this capability by extracting high-level features from 
imagery. 
The idea of using a camera in localization has gained publicity in research. Syed-Yaser et al. 
(2023) [2] have combined a monochrome camera and IMU and used Kalman filter to support 
autonomous landing of UAV. This paper focuses on the autonomous landing of a UAV which 
necessitates reliable information for near-ground maneuvers. Karkar et al. (2021) [3] presented 
an indoor navigation mobile-based system based on image processing (matching) techniques. 
It uses multiscale local binary pattern (MSLBP) features to recognize places. The system has 
been compared with existing systems that use rotated robust independent elementary features 
(ORB) and scale invariant feature transform (SIFT) features, but it suffers from the inability 
to differentiate between different locations that look similar. Chang et. al. (2023) [4] surveyed 
different techniques used for UAV autonomous navigation in GPS-denied environments. They 
used CNN-based Distance Estimation in reality-like indoor environments. Elaraby et al. [5] 
used image processing techniques for object detection and distance estimation for improving 
rover navigation and SLAM (Simultaneous Localization and Mapping). A method is described 
to return the aircraft from the GPS-degraded region to its launch point by means of visual 
navigation techniques. Lewis et. al. [6] used a framework for visual return-to-home capability 
in GPS-denied environments. They record a sequence of overlapping key frames, on the 
outbound flight. On the return flight, they use holography between frames to bring the aircraft 
back. Abozied et al. [7] proposed a cascaded neural networks approach for improving 
navigation system efficiency during GPS outage. The networks are used to better estimate 
velocity and position errors to improve navigation accuracy. 
The main function of the proposed approach is visual localization (i.e. finding the Longitude 
and Latitude of a given area using an image of this area). The test case of this system is a 
rectangular area of 450 square km around Cairo University as shown in Figure 1. 

 
Figure 1. Test area Cairo City [31.09130859375 ,30.10711788709] [31.30004882812, 29.89780561015]  

(Google maps) 
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2. METHODOLOGY 
Convolutional Neural Network Architecture 

A Convolutional Neural Network (CNN) is a specialized deep learning architecture designed 
to process structured grid data, such as images, and is widely used in tasks like image 
classification, object detection, and segmentation [8]. CNNs automatically extract hierarchical 
features from raw input data, reducing the need for manual feature engineering. The 
architecture typically consists of convolutional layers that apply filters to the input to detect 
patterns, pooling layers that reduce spatial dimensions while retaining essential features, and 
fully connected layers that aggregate the extracted features for final predictions. Convolutional 
layers preserve spatial relationships and learn local dependencies, while activation functions 
like ReLU introduce non-linearity to model complex data patterns. Pooling layers, such as 
max pooling, help reduce computational costs and control overfitting by summarizing feature 
maps. CNNs often include normalization layers, such as batch normalization, to stabilize 
training, and dropout layers to prevent overfitting. The output layer, tailored to the task, uses 
activation functions like SoftMax for classification or linear for regression. CNNs excel at 
feature extraction and hierarchical learning, capturing both low-level and high-level patterns 
in images. Their advantages include parameter sharing, translation invariance, and robust 
performance across varying visual data. Applications range from image classification and 
medical imaging to autonomous vehicles and object detection, making CNNs a cornerstone of 
modern computer vision. Two CNN`s were used in this work: GoogLeNet and SqueezeNet. 

SqueezeNet 

Introduced by Iandola et al. (2016) [9], SqueezeNet typically consists of 18 layers, including 
convolutional layers, pooling layers, and fully connected layers. These layers are organized 
into fire modules, which are the building blocks of the architecture. The number of layers in 
each fire module can vary, but the overall network depth remains shallow compared to other 
deep neural network architectures. The compactness of SqueezeNet is achieved by reducing 
the number of parameters while maintaining competitive performance on image classification 
tasks. It is a compact and lightweight deep neural network architecture designed for efficient 
inference on resource-constrained devices, such as mobile phones and embedded systems. It 
was developed to address the need for smaller and faster models without compromising on 
accuracy. The Matlab implementation of SqueezeNet is given in Figure 2. 
 

SqueezeNet 
 

Fire module 

Figure 2. SqueezeNet graphical representation 
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The basic elements of SqueezeNet are explained in Table 1. 
Table 1. Explanation of SqueezeNet elements 

Element 
Description 

imageInputLayer 
Specifies the dimensions of the images fed into the network 
 (e.g., 256×256 ×3 for out test case).  

convolution2dLayer 
Applies a set of convolutional filters to extract low-level features  

reLULayer 
Rectified Linear Unit (ReLU) activation function 

Fire Module 
A building block of SqueezeNet 

maxPooling2dLayer 

Down samples feature maps by retaining the most important features, 
reducing spatial dimensions and computational complexity. 

dropoutLayer 

Introduces regularization by randomly deactivating neurons during 
training, helping to prevent overfitting. 

globalAveragePoolingLayer 

Replaces fully connected layers by computing the average of each 
feature map, reducing model size and preventing overfitting. 

softmaxLayer 

Converts the feature vector into class probabilities by applying the 
softmax function. 

classificationLayer 

Assigns a label to the input image based on the output probabilities 
from the softmax layer. 

GoogLeNet 

Introduced by C. Szegedy et al. (2015) [8], the GoogLeNet architecture consists of 22 layers, 
including convolutional layers, pooling layers, and fully connected layers.  One of the key 
innovations introduced in GoogLeNet is the concept of the Inception module. The Inception 
module employs multiple parallel convolutional operations of different filter sizes within a 
single layer, allowing the network to capture features at various scales and abstraction levels. 
This parallelization helps the network learn a diverse set of features, enhancing its ability to 
recognize complex patterns in images. 
The Matlab implementation of GoogLeNet is given in Figure 3. 

 
GoogLeNet 

 
 

 
Inception Module 

Figure 3. GoogLeNet graphical representation 
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The basic elements of GoogLeNet are explained in in Table 2 
Table 2. Explanation of GoogLeNet elements 

Element 
Description 

imageInputLayer 
Specifies the dimensions of the images fed into the network 
 (e.g., 256×256 ×3 for out test case). 

convolution2dLayer 
Applies convolutional filters to extract low-level features  

reluLayer 
The Rectified Linear Unit (ReLU) activation function. 

maxPooling2dLayer 

Down samples feature maps by selecting the maximum value in 
each region, reducing spatial dimensions and computational cost 
while retaining key features. 

crossChannelNormalizationLayer 
Normalizes feature maps across channels to stabilize training and 
improve convergence, often used after ReLU activations. 

Inception Module 
A core innovation of GoogLeNet, enabling multi-scale feature  

- 1x1 Convolutions 
Reduce feature map dimensions, acting as bottleneck layers to 
limit computational cost. 

- 3x3 and 5x5 Convolutions 
Capture features at different spatial scales, enabling the network 
to learn diverse representations. 

- maxPooling2dLayer (within module) 
Extracts dominant features at a broader scale and feeds them into 
the depth concatenation layer. 

- depthConcatenationLayer 
Combines outputs from parallel convolutions and pooling into a 
unified feature map for the next layer. 

globalAveragePoolingLayer 
Replaces fully connected layers by computing the average of each 
feature map, reducing model size and preventing overfitting. 

dropoutLayer 
Introduces regularization by randomly deactivating a fraction of 
neurons during training to improve generalization. 

fullyConnectedLayer 
A dense layer that aggregates all extracted features into a single 
vector for classification. 

softmaxLayer 
Converts the feature vector into class probabilities by applying the 
softmax function. 

classificationLayer 
Assigns a label to the input image based on the output 
probabilities from the softmax layer. 

Data Preparation 

The images for the specified area around Cairo University were extracted from Google Maps 
with two spatial resolutions. Each image was tagged by its longitude and latitude to represent 
a separated class. 
For spatial resolution 1 (case one), we have 22x19 image/ area which approximately equivalent 
to images with spatial resolution of (1 km × 1 km) per image. 
For special resolution 2 (case two) we have 86 × 73 image/ area which approximately 
equivalent to images with spatial resolution of (374 m × 374 m) per image. 
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For each case three different image resolutions were collected (512x512 pixels, 768x768 
pixels, and 1024x1204 pixels). For the first spatial resolution, each image represents a class 
which we would like our network to identify. 
This sums us to 22x19 = 418 classes. To prepare enough images for training and testing, the 
collected images (512x512 pixels, 768x768 pixels, and 1024x1204 pixels) are scaled to 
256x256 and rotated at different angles and some noise was introduced. 
This sums up to 216 images per location for each of the 418 locations (classes) making the 
total images used for training 90,288 images. An additional 108 images for each location 
(class), produced with different rotation angles than the one used for training, were used for 
the testing of the final network. 
Samples of training images are shown in Figure 4. 

 
Original 

 
With Noise 

 
90o rotation 

 
180o rotation 

Figure 4. A sample of used images for training at spatial resolution 1 (1 km x 1 km) (Google maps) 

For the second spatial resolution, each image represents a class which we would like our 
network to identify. 
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This sums us to 86×73 = 6278 classes. The same procedure was used to produce enough 
images for training (216 images per class which sums up to a total of 1356048 training images) 
and for testing (108 images per class which sums up to a total of 678024 testing images). 
 

 
Original 

 
90o rotation 

Figure 5. A sample of used images for training at spatial resolution 2 (374 m x 374 m) (Google maps) 

Training Process 

The training process involves feeding the two CNNs (SqueezeNet and GoogLeNet) with 
labeled images and running the training engine in Matlab deep neural network designer. The 
computer used is i5 generation 12 with 8 cores, two 12 Gig. 
Nvidia 3060 GPUs and 40 Gig. DDR4 ram. Case 1 was run first, and the resulting networks 
parameters were used as initial guess for training case 2. 
Extensive experiments, using different number of images per class for training and validation, 
were conducted to assess the performance of the system in terms of accuracy, robustness, and 
speed. 

3. RESULTS 
For case 1, the neural network can identify the longitude and latitude for given images with 
high accuracy. 
SqueezeNet Training accuracy is 98.4 %, Validation accuracy is 98.4 and the test accuracy is 
89.9 %. GoogLeNet training accuracy is100 %, Validation accuracy is 99.7 and the test 
accuracy is 96.4 %. 
The training and validation processes are shown for both networks in Figure 6 and Figure 7, 
respectively. 
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Figure 6. Training and validation accuracy data for SqueezeNet (Case 1) 

 
Figure 7. Training and validation accuracy data for GoogLeNet (Case 1) 

GoogLeNet gives better accuracy for testing compared to SqueezeNet (96.4 % compared to 
89.9) which means better generalization. GoogLeNet is used for training the second spatial 
resolution images (Case 2). The number of classes is modified from 418 to 6278 classes. With 
some experiments with the number of training images per class, I was found that the network 
requires only 48 images per class and the training iterations drops from nearly 10000 iterations 
in case one to about 1100 iteration. The resulting training accuracy is 98 % and Validation 
accuracy is 97.4 and the test accuracy is 94.7 %. The training and validation processes are 
shown in Figure 8. 
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Figure 8. Training and validation accuracy data for GoogLeNet (Case 2) 

The results demonstrated the effectiveness and accuracy of the vision-based navigation system 
in successfully guiding the flying vehicle in GPS-denied environments. It also shows that we 
can build on trained neural networks to improve spatial accuracy without requiring excessive 
computational power due to increasing the number of classes. In case 2, although the number 
of classes increase from 418 to 6278, we could reduce the number of images per class from 
216 to 48 and the training iterations from nearly 10000 to about 1100 iterations. 

4. CONCLUSIONS 
This study demonstrates the potential of a Convolutional Neural Network (CNN) trained on 
Google Maps imagery to enable accurate image-based, GPS-free navigation.  The proposed 
approach effectively learns and interprets diverse visual cues from map images, allowing it to 
estimate location with a high degree of accuracy. Specifically, using a GoogLeNet 
architecture, the system achieved location prediction accuracies of 96.4% and 94.7% for case 
1 and case 2, respectively. This translates to a spatial accuracy of approximately 1 kilometer 
for case 1 and more precise 374 meters for case 2.  Importantly, the research suggests that 
further improvements in accuracy, particularly in reducing the location error, can be achieved 
by training the CNN with a dataset of more zoomed-in or higher-resolution map images.  This 
refined training process would likely allow the network to detect finer visual details, leading 
to more precise location predictions. Overall, the findings presented in this paper strongly 
support the viability of the CNN-based system for reliable GPS-free navigation using only 
map images.  This technology holds significant promise for applications in environments 
where GPS signals are unreliable or completely absent, offering a crucial alternative for 
navigation.  Furthermore, the practical implications of this research are substantial, as the 
trained neural network allows for seamless integration onto a flight computer and coupling 
with an imaging system. This integration paves the way for the development of a robust and 
effective support/standalone navigation system for various platforms, including unmanned 
aerial vehicles (UAVs) or other applications where GPS-denied environments are a challenge. 
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