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Abstract: The main goal of the study is to analyze methods and diagnose mechanical damage to the 
pipeline using functional analysis, neural networks and the finite element method. In the work, 
mathematical formulations of the corresponding geometrical inverse problems of the theory of shells 
on reconstruction of defects of lateral surface are formulated according to measurement data obtained 
from sensors located in a given section of the shell. The statement was given and a method for solving 
inverse geometric problems for a shell of Tymoshenko type was developed. The authors have offered 
methods for solving inverse geometric problems of identifying volumetric and crack-like defects in 
extended underground structures and pipelines based on the analysis of responses to unsteady elastic-
wave perturbations using the mathematical apparatus of wavelet signal transformation, the finite 
element modeling method and intelligent software system based on neural network. 

Key Words: ballistics, inverse problems, regularization method, variation principle, Euler equation 

1. INTRODUCTION 
In order to increase the reliability and safety of engineering structures and constructions, over 
the past few decades, various methods for detecting damage and monitoring systems have been 
intensively developed. In this regard, the development of highly effective, easy-to-use, precise 
and structurally non-destructive diagnostic system that could replace traditional diagnostic 
procedures is of great importance for solving many problems with maintenance of engineering 
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structures. In addition, determining the level of safety of a structure throughout its entire 
service life is important not only for safe operation, but also to decrease maintenance and 
preventive maintenance to prevent damage. 

The development of diagnostic methods was done on the basis of mathematical modeling 
of technical facilities and devices within the linear elasticity theory, and fluid dynamics of the 
acoustic approximation [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]. The research of heat 
propagation problems and development of cracks were provided in [12], [13], [14], [15], [16], 
[17], [18], [19], [20], [21], [22]. 

The problems under consideration were mathematically formulated in the form of 
corresponding initial-boundary value problems. The objectives of searching and identifying 
structural defects can be mathematically formulated as geometric inverse problems of theory 
of elasticity, the solution of which is associated with difficulties in overcoming their 
incorrectness. One of the approaches to solving inverse problems of theory of elasticity, which 
has gained wide popularity recently, is a combination of finite element methods and artificial 
neural networks. 

The highest difficulty in developing a diagnostic system is the creation of a technique for 
recognizing the type, size and intensity of damage [23], [24], [25], [26], [27], [28], [29]. For 
these purposes, the development and creation of an artificial neural network in combination 
with damage database was proposed. 

Using finite element modeling, the initial state of the damage database was formed, which 
contains the structural dynamic responses of the system to some specific forms of damage. 
The created state of the damage database will be used for initial training of artificial neural 
network. In order to reduce the number of initial states without losing the required precision, 
the wavelet transform of responses was used to extract irregularities delivered by defects. 

The first scientific and technical objective in developing a system for detecting structural 
damage using a neural network is the formation of the initial state of the damage database, 
which will be used as input to the learning process of artificial neural network. To perform 
this task, it was proposed to use the finite element modeling method. In this case, the initial 
state of the damage database should contain, as far as possible, the most complete information 
about structural response of the structure to certain damage. For this, a wavelet decomposition 
of the structural response was used. 

Damage to the structure was modeled by decrease in stiffness, which depends on the size 
and location of the damage in the structure. In order to obtain a data set for the initial training 
of artificial neural network, the stiffness reduction coefficients of the elements were assumed 
to be random numbers between 0 and 1. 

The location of the damaged structural element was also assumed to be random. In 
addition, a defect may be modeled using several finite elements. 

After the initial state of the damage database is formed, the training process of the artificial 
neural network was carried out, which continues until the result of artificial neural network 
meets the desired goal or until the work of artificial neural network reaches the expected 
accuracy of the output result. 

This accuracy can be estimated by the least squares error method. A trained network, 
having received new, previously unknown analysis results, shall be able to correctly recognize 
the defect parameters. 

The input for training an artificial neural network may be converted using wavelet 
transform, which improves the reconstruction process. The issues of artificial neural network 
architecture, ways of presenting training information and the influence of defect sizes on the 
accuracy and time of their identification have also been studied. 



81 Diagnostic of pipe mechanical damage using functional analysis of neural networks 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

2. METHODOLOGY 
A circular cylindrical shell of length 𝐿𝐿 is considered, having a through defect of arbitrary shape 
bounded by curve 𝐺𝐺. A predetermined load 𝑓𝑓(𝜏𝜏)  acts on the left end 𝑧𝑧 = 0  of shell. At the 
initial instant of time, the shell is in unperturbed state and in a certain section of the shell, for 
example, when measuring equipment (signal receiver) is located at 𝑥𝑥 = 𝐿𝐿 (Fig. 1). It is 
required to determine the location and shape of the defect from identified signal data. 

 
Fig. 1 - A shell with defect 

The Tymoshenko equation of motion of the shell has the form [14], Eq. (1): 

𝑊̈𝑊 = 𝐿𝐿𝐿𝐿 + 𝑃𝑃 (1) 

where 𝑊𝑊 = (𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝜒𝜒𝛼𝛼, 𝜒𝜒𝑧𝑧)𝑇𝑇 is displacement vector (𝑢𝑢, 𝑣𝑣, 𝑤𝑤 are angular, axial and normal 
displacements, 𝜒𝜒𝛼𝛼, 𝜒𝜒𝑧𝑧 are angles of rotation of the sections due to shear deformations), 𝑷𝑷 =
(𝑞𝑞𝑢𝑢, 𝑞𝑞𝑣𝑣, 𝑝𝑝, 0,0)𝑇𝑇 is pressure vector, 𝐿𝐿 = �𝐿𝐿𝑖𝑖𝑖𝑖�5×5

  is operator matrix, Eqs. (2-18): 

𝐿𝐿11 =
𝜕𝜕2

𝜕𝜕𝛼𝛼2
+ 𝜂𝜂2 �

𝜕𝜕2

𝜕𝜕𝑧𝑧2
− 𝑘𝑘2� (2) 

𝐿𝐿12 = (1 − 𝜂𝜂2)
𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
= 𝐿𝐿21 (3) 

𝐿𝐿13 = −𝐿𝐿13 = (1 + 𝜂𝜂2𝑘𝑘2)
𝜕𝜕
𝜕𝜕𝜕𝜕

 (4) 

𝐿𝐿14 = −𝛾𝛾2
𝜕𝜕2

𝜕𝜕𝛼𝛼2
+ 𝜂𝜂2𝑘𝑘2 (5) 

𝐿𝐿15 = 𝛾𝛾2(2𝜂𝜂2 − 1)
𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
= 𝛾𝛾2𝐿𝐿51 (6) 

𝐿𝐿22 = 𝜂𝜂2
𝜕𝜕2

𝜕𝜕𝛼𝛼2
+
𝜕𝜕2

𝜕𝜕𝑧𝑧2
 (7) 

𝐿𝐿23 = (1 − 2𝜂𝜂2)
𝜕𝜕
𝜕𝜕𝜕𝜕

= −𝐿𝐿32 (8) 

𝐿𝐿24 = −𝛾𝛾2𝜂𝜂2
𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 (9) 

𝐿𝐿25 = −𝛾𝛾2𝜂𝜂2
𝜕𝜕2

𝜕𝜕𝛼𝛼2
= 𝛾𝛾2𝐿𝐿52 (10) 
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𝐿𝐿33 = 𝜂𝜂2𝑘𝑘2 �
𝜕𝜕2

𝜕𝜕𝛼𝛼2
+
𝜕𝜕2

𝜕𝜕𝑧𝑧2�
− 1 (11) 

𝐿𝐿34 = 𝜂𝜂2𝑘𝑘2
𝜕𝜕
𝜕𝜕𝜕𝜕

 (12) 

𝐿𝐿41 = −
𝜕𝜕2

𝜕𝜕𝛼𝛼2
+ 𝜂𝜂2𝛾𝛾−2 (13) 

𝐿𝐿42 = −𝜂𝜂2
𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
 (14) 

𝐿𝐿43 = −𝜂𝜂2𝑘𝑘2𝛾𝛾−2
𝜕𝜕
𝜕𝜕𝜕𝜕

 (15) 

𝐿𝐿44 =
𝜕𝜕2

𝜕𝜕𝛼𝛼2
+ 𝜂𝜂2

𝜕𝜕2

𝜕𝜕𝑧𝑧2
− 𝜂𝜂2𝑘𝑘2𝛾𝛾−2 (16) 

𝐿𝐿45 = (1 − 𝜂𝜂2)
𝜕𝜕2

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
= 𝐿𝐿54 (17) 

𝐿𝐿55 = 𝜂𝜂2
𝜕𝜕2

𝜕𝜕𝛼𝛼2
+
𝜕𝜕2

𝜕𝜕𝑧𝑧2
− 𝜂𝜂2𝑘𝑘2𝛾𝛾−2 (18) 

The system of dimensionless quantities (bar denotes dimensional parameters), Eqs. (19-36) 

𝑧𝑧 =
𝑧𝑧
𝑅𝑅

 (19) 

𝜏𝜏 =
𝑐𝑐1𝑡𝑡
𝑅𝑅

 (20) 

𝑢𝑢 =
𝑢𝑢′

𝑅𝑅
 (21) 

𝑣𝑣 =
𝑣𝑣′

𝑅𝑅
 (22) 

𝑤𝑤 =
𝑤𝑤′

𝑅𝑅
 (23) 

𝑐𝑐12 =
𝜆𝜆 + 2𝜇𝜇
𝜌𝜌

 (24) 

𝑐𝑐22 =
𝜇𝜇
𝜌𝜌

 (25) 

𝜂𝜂2 =
𝑐𝑐22

𝑐𝑐12
 (26) 

𝑝𝑝 =
𝑝𝑝′

𝜎𝜎
 (27) 

𝑞𝑞𝛼𝛼 =
𝑞𝑞𝛼𝛼′

𝜎𝜎
 (28) 
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𝑞𝑞𝑧𝑧 =
𝑞𝑞𝑧𝑧′

𝜎𝜎
 (29) 

𝜎𝜎 =
𝜌𝜌ℎ𝑐𝑐12

𝑅𝑅
 (30) 

𝛾𝛾2 =
ℎ2

12𝑅𝑅2
 (31) 

𝐿𝐿 =
𝐿𝐿′

𝑅𝑅
 (32) 

𝜅𝜅𝜉𝜉𝜉𝜉 = 𝑅𝑅𝜅𝜅𝜉𝜉𝜉𝜉
′  (33) 

𝑇𝑇𝜉𝜉𝜉𝜉 =
𝑇𝑇𝜉𝜉𝜉𝜉
′

ℎ(𝜆𝜆 + 2𝜇𝜇) (34) 

𝑀𝑀𝜉𝜉𝜉𝜉 =
𝑀𝑀𝜉𝜉𝜉𝜉
′ 𝑅𝑅

𝐼𝐼(𝜆𝜆 + 2𝜇𝜇) (35) 

𝑄𝑄𝜉𝜉 =
𝑄𝑄𝜉𝜉
′

𝜇𝜇ℎ𝑘𝑘2
 (𝜉𝜉, 𝜁𝜁 = 𝛼𝛼, 𝑧𝑧) (36) 

where, 𝑅𝑅 is the radius and thickness of the shell; 𝜏𝜏 ia dimensionless time; 𝑐𝑐1, 𝑐𝑐2  are the 
velocities of waves of tension-compression and shear in the shell material; 𝜆𝜆, 𝜇𝜇, 𝜌𝜌 are Lame 
elastic parameters, and the density of the shell material; 𝑇𝑇𝜉𝜉𝜉𝜉, 𝑀𝑀𝜉𝜉𝜉𝜉  and 𝑄𝑄𝜉𝜉 are tangential forces, 
moments and cutting forces. 

Physical relationships, Eqs. (37-45): 

𝑇𝑇𝛼𝛼𝛼𝛼 = 𝜀𝜀𝛼𝛼𝛼𝛼 − 𝜅𝜅𝛼𝛼𝛼𝛼 + (1 − 2𝜂𝜂2)(𝜀𝜀𝑧𝑧𝑧𝑧 − 𝜅𝜅𝑧𝑧𝑧𝑧) (37) 

𝑇𝑇𝑧𝑧𝑧𝑧 = 2𝜂𝜂2𝜀𝜀𝑧𝑧𝑧𝑧 (38) 

𝑇𝑇𝑧𝑧𝑧𝑧 = 𝜀𝜀𝑧𝑧𝑧𝑧 + (1 − 2𝜂𝜂2)𝜀𝜀𝛼𝛼𝛼𝛼 (39) 

𝑇𝑇𝛼𝛼𝛼𝛼 = 2𝜂𝜂2(𝜀𝜀𝛼𝛼𝛼𝛼 − 𝜅𝜅𝛼𝛼𝛼𝛼) (40) 

𝑀𝑀𝛼𝛼𝛼𝛼 = 𝜅𝜅𝛼𝛼𝛼𝛼 + (1 − 2𝜂𝜂2)𝜅𝜅𝑧𝑧𝑧𝑧 (41) 

𝑀𝑀𝑧𝑧𝑧𝑧 = 𝜅𝜅𝑧𝑧𝑧𝑧 + (1 − 2𝜂𝜂2)𝜅𝜅𝛼𝛼𝛼𝛼 (42) 

𝑀𝑀𝛼𝛼𝛼𝛼 = 2𝜂𝜂2𝜅𝜅𝛼𝛼𝛼𝛼 (43) 

𝑄𝑄𝛼𝛼 = 𝜃𝜃𝛼𝛼 (44) 

𝑄𝑄𝑧𝑧 = 𝜃𝜃𝑧𝑧 (45) 

Kinematic relationships, Eqs. (46-53): 

𝜀𝜀𝛼𝛼𝛼𝛼 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑤𝑤 (46) 
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𝜀𝜀𝑧𝑧𝑧𝑧 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (47) 

𝜀𝜀𝛼𝛼𝛼𝛼 =
1
2
�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (48) 

𝜅𝜅𝛼𝛼𝛼𝛼 =
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜒𝜒𝛼𝛼 − 𝑢𝑢) − 𝑤𝑤 (49) 

𝜅𝜅𝑧𝑧𝑧𝑧 =
𝜕𝜕𝜒𝜒𝑧𝑧
𝜕𝜕𝜕𝜕

 (50) 

𝜅𝜅𝛼𝛼𝛼𝛼 =
1
2 �

𝜕𝜕
𝜕𝜕𝜕𝜕

(𝜒𝜒𝑧𝑧 − 𝑣𝑣) +
𝜕𝜕𝜒𝜒𝛼𝛼
𝜕𝜕𝜕𝜕 �

 (51) 

𝜃𝜃𝛼𝛼 = 𝜒𝜒𝛼𝛼 − 𝑢𝑢 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (52) 

𝜃𝜃𝑧𝑧 = 𝜒𝜒𝑧𝑧 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (53) 

where 𝜀𝜀𝜉𝜉𝜉𝜉, 𝜅𝜅𝜉𝜉𝜉𝜉  are components of the strain tensors and changes in curvature. Initial 
conditions, Eq. (54): 

𝑢𝑢|𝜏𝜏=0 = 𝑢̇𝑢|𝜏𝜏=0 = 𝑣𝑣|𝜏𝜏=0 = 𝑣̇𝑣|𝜏𝜏=0 = 𝑤𝑤|𝜏𝜏=0 = 𝑤̇𝑤|𝜏𝜏=0 = 𝜒𝜒𝛼𝛼|𝜏𝜏=0 = 𝜒̇𝜒𝛼𝛼|𝜏𝜏=0 = 𝜒𝜒𝑧𝑧|𝜏𝜏=0
= 𝜒̇𝜒𝑧𝑧|𝜏𝜏=0 = 0 (54) 

It can be assumed that the defect is end-to-end, then the conditions of the free edge are 
satisfied on the defect contour, Eq. (55): 

𝑇𝑇𝛼𝛼𝛼𝛼|𝛤𝛤 = 𝑇𝑇𝑧𝑧𝑧𝑧|𝛤𝛤 = 𝑇𝑇𝛼𝛼𝛼𝛼|𝛤𝛤 = 𝑇𝑇𝑧𝑧𝑧𝑧|𝛤𝛤 = 𝑀𝑀𝛼𝛼𝛼𝛼|𝛤𝛤 = 𝑀𝑀𝑧𝑧𝑧𝑧|𝛤𝛤 = 𝑀𝑀𝑧𝑧𝑧𝑧|𝛤𝛤 =  𝑄𝑄𝛼𝛼|𝛤𝛤 =  𝑄𝑄𝑧𝑧|𝛤𝛤 = 0 (55) 

We assume that the source of force disturbances is specified in the shell section, Eq. (56): 
𝑞𝑞𝑧𝑧|𝑧𝑧=0 = 𝑓𝑓(𝜏𝜏) (56) 

We also assume that the displacements and rotation angles in section 𝑧𝑧 = 𝐿𝐿 are known, 
Eqs. (57-61): 

𝑢𝑢|𝑧𝑧=𝐿𝐿 = 𝑈𝑈(𝜏𝜏) (57) 

𝑣𝑣|𝑧𝑧=𝐿𝐿 = 𝑉𝑉(𝛼𝛼, 𝜏𝜏) (58) 

𝑤𝑤|𝑧𝑧=𝐿𝐿 = 𝑊𝑊(𝛼𝛼, 𝜏𝜏) (59) 

𝜒𝜒𝛼𝛼|𝑧𝑧=𝐿𝐿 = 𝛸𝛸𝛼𝛼(𝛼𝛼, 𝜏𝜏) (60) 

𝜒𝜒𝑧𝑧|𝑧𝑧=𝐿𝐿 = 𝛸𝛸𝑧𝑧(𝛼𝛼, 𝜏𝜏) (61) 

3. RESULTS AND DISCUSSIONS 
It may be assumed that the solution of the direct problem for a shell having some “standard” 
defect is known. 

As such a defect, we take a curved square centered at a point (𝛼𝛼∗, 𝑧𝑧∗)  and with sides 𝛥𝛥𝛥𝛥 =
𝛥𝛥𝛥𝛥. Furthermore, the values 𝛼𝛼∗, 𝑧𝑧∗, 𝛥𝛥𝛥𝛥 are the defect parameters (Fig. 2). 
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Fig. 2 - “Standard defect” 

Let us denote 𝑊𝑊∗(𝛼𝛼, 𝜏𝜏; 𝛼𝛼∗, 𝑧𝑧∗, 𝛥𝛥𝛥𝛥) = 𝑊𝑊|𝑧𝑧=𝐿𝐿  as the displacement vector in the section 𝑧𝑧 =
𝐿𝐿. It is dependent on the angular coordinate, time and defect parameters. Let us introduce the 
residual functional, which for a fixed time 𝜏𝜏 is the functional defined on a finite-dimensional 
set of defect parameters ( 𝑊𝑊� (𝛼𝛼, 𝑡𝑡)  is the displacement vector in the shell section 𝑧𝑧 = 𝐿𝐿 with 
desired defect), Eq. (62): 

𝛷𝛷0(𝛼𝛼∗, 𝑧𝑧∗, 𝛥𝛥𝛥𝛥) = � � �𝑊𝑊� (𝛼𝛼, 𝑡𝑡) −𝑊𝑊∗(𝛼𝛼, 𝑡𝑡; 𝛼𝛼∗, 𝑧𝑧∗, 𝛥𝛥𝛥𝛥)�2
2𝜋𝜋

0

𝜏𝜏

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (62) 

We shall formulate the problem of determining the approximate position and shape of 
defect as follows. 

In the first stage (iteration zero) by minimizing the residual functional (62) set by 
parameters 𝛼𝛼∗, 𝑧𝑧∗, 𝛥𝛥𝛥𝛥, that characterize the defect in zero approximation (Fig. 3). 

 
Fig. 3 - Zero iteration 

The next step is represented by the procedure for clarifying the defect contour. For this, 
the method of regularizing functional on finite-dimensional sets is used. 

The defect contour is approximately replaced by broken line with a given number of nodes 
(Fig. 4). 

 
Fig. 4 - Defect approximation 
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The approximation of the contour 2𝑛𝑛 is determined by spatial coordinates of its nodal 
points. Again, we construct the residual functional, depending on 2𝑛𝑛 of desired parameters of 
the contour, Eq. (63): 

𝛷𝛷𝑘𝑘(𝛼𝛼1, 𝛼𝛼2, . . . , 𝛼𝛼𝑛𝑛, 𝑧𝑧1, 𝑧𝑧2, . . . , 𝑧𝑧𝑛𝑛)

= � � �𝑊𝑊� (𝛼𝛼, 𝑡𝑡) −𝑊𝑊𝑘𝑘(𝛼𝛼, 𝑡𝑡; 𝛼𝛼1, 𝛼𝛼2, . . . , 𝛼𝛼𝑛𝑛, 𝑧𝑧1, 𝑧𝑧2, . . . , 𝑧𝑧𝑛𝑛)�2
2𝜋𝜋

0

𝜏𝜏

0
𝑑𝑑𝛼𝛼𝑑𝑑𝑑𝑑 (63) 

At zero iteration, we place the unknown nodes of approximation of the defect on sides of 
the curved square (Fig. 5). 

 
Fig. 5 - Approximation Nodes at Zero Iteration 

Then, an iterative procedure of the Newton-Gauss method is organized, at each step of 
which we obtain the next approximate positions of the nodes. The procedure is repeated until 
the specified accuracy 𝜀𝜀 will be achieved, Eq. (64): 

𝛷𝛷𝑘𝑘(𝛼𝛼1, 𝛼𝛼2, . . . , 𝛼𝛼𝑛𝑛, 𝑧𝑧1, 𝑧𝑧2, . . . , 𝑧𝑧𝑛𝑛) ≤ 𝜀𝜀 (64) 

Second iteration process (Fig. 6): 

 
Fig. 6 - Iteration process of defect contour refinement 
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To effectively resolve the complex problems of diagnosis and identification, the urgent 
task is to develop a universal method suitable for recognizing defects in complex piping 
systems (heating mains, heating and gas supply lines for communal facilities, etc.). 

A universal approach based on the finite element method, wavelet transform, and artificial 
neural network has been suggested to solve these important problems. 

The general scheme of the method is: 
1. Creation of finite element models with damage, solving direct problems for pipelines 

with defects, and organizing database containing structural responses (speeds of longitudinal 
displacements) at the points of fixing of virtual sensors. 

2. Processing the results of virtual experiments by means of discrete wavelet analysis. In 
this case, feature vectors are formed corresponding to the signal from some type of defect. 

3. Development of the structure of artificial neural network. The choice of its type, number 
of layers, number of neurons for each layer. 

4. Organizing database of training samples. 
5. Implementation of artificial neural network model and computer learning algorithm. 
6. Development of training algorithms for artificial neural network. 
7. Neural network training. 
8. Verification of work and testing of neural network for correct recognition of defects of 

some type. 
When forming the signal base, defects such as metal loss were considered with their 

geometric parameters changed in a wide range: 
• depth of the defect; 
• length (size in the axial direction); 
• disclosure (size in circumferential direction); 
• position on pipe (external/internal). 
The velocities of longitudinal displacements of shell surface in the fixing zone of the 

virtual sensor were taken as recognizable signal. 
As an exciting signal, a triangular pulse of longitudinal pressure of unit amplitude was 

used in the same section of pipeline, where a sensor for measuring the velocity of longitudinal 
displacements was fixed (Figs. 7-8). 

 
Fig. 7 - The virtual experiment diagram 
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Fig. 8 - The finite-element model of pipeline with complex geometry 

 
Fig. 9 - Registration of signals from various defects 

Figure 9 depicts time dependences of the main stresses obtained from virtual strain sensor 
for two defects of the same size but different depths. Visually there is a significant difference 
in results, which allows us to classify them. 

4. CONCLUSIONS 
With the purpose of solving the inverse geometric problems of defect identification in 
pipelines, two approaches were developed. The first is a phenomenological approach based on 
rigorous description of the mechanics of interaction of generated unsteady wave fields and the 
object with the defect. It consists in development of mathematical formulations and methods 
for solving unsteady geometrically inverse problems based on theory of Timoshenko type 
shell, functional analysis, and numerical methods. 

The second approach is based on methods for classifying structural responses of the 
studied object to effects of unsteady disturbances. Hence, the geometrically inverse problem 
can be formulated as the problem of recognizing defect by its characteristic features, which 
are extracted from the corresponding signal (structural response) recorded by measuring 
sensors. To solve the classification problem, it was proposed to use artificial neural network 
with learning process based on the algorithm of backpropagation of error. 
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