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Abstract: In the work, the process of unsteady contact interaction of rigid stamp and elastic half-space 
having a recessed cavity of arbitrary geometry and location with a smooth boundary was investigated. 
Three variants of contact conditions are considered: free slip, rigid coupling, and bonded contact. The 
method for solving the problem is constructed using boundary integral equations. To obtain boundary 
integral equations, the dynamic reciprocal work theorem is used. The kernels of integral operators are 
bulk Green functions for the elastic plane. Because of straight-line approximations of the domain 
boundaries with respect to the spatial variable and straight-line approximations of the boundary values 
of the desired functions with respect to time, the problem is reduced to solving a system of algebraic 
equations with respect to the pivotal values of the desired displacements and stresses at each time 
interval. One of the axes is directed along the regular boundary of half-space, the second - deep into 
half-space. 

Key Words: boundary integral equations, Green functions, dynamic reciprocal work theorem, 
inhomogeneity 

1. INTRODUCTION 
Many important practical problems are related to the study of the dynamic contact interaction 
of bounded bodies with semi-bounded elastic domains of complex structure. These problems 
are connected, inter alia, with the problems of seismic resistance and vibration protection of 
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structures, the calculation of the level and characteristics of the exposure to buildings and 
structures of technogenic vibrations propagating in the soil, seismic exploration of minerals, 
etc. 

In the soil mass, inhomogeneities (structural disturbances) are often present, both natural 
(karst cavities, more rigid inclusions) and artificial (various communications, metro tunnels, 
buried waste storage facilities, etc.) origin. Therefore, the question of the degree of influence 
of such inhomogeneities on the wave fields generated in an array with an inhomogeneity is 
significant. In the tasks of designing earthquake-proof buildings and structures, it is important, 
with a sufficient degree of accuracy, to determine the parameters of unsteady oscillations of 
objects located on the earth's surface. It should be noted that the placement of any sensors in 
the contact zone inevitably gives rise to distortion of the stress-strain state in their local 
neighborhood, which significantly complicates experimental studies of the contact stress 
distributions, and makes them practically impossible in most cases. This leads to the need to 
develop theoretical methods and approaches to solving the class of problems under 
consideration. 

Various aspects of solving stationary and unsteady problems for continuous bodies and 
shells, including taking into account the influence of temperature, were considered in [1], [2], 
[3], [4], [5], [6], [7], [8], [9], [10]. 

In the field of mechanics of contact interactions, the least studied are unsteady contact 
problems. To date, there is only a limited range of works devoted to the study of unsteady 
contact interaction processes for rigid or deformable bodies with elastic half-space [11], [12], 
[13], [14], [15]. 

Unsteady contact problems in which half-space has recessed cavities are even less studied. 
On the other hand, these problems are extremely important for various branches of the national 
economy, such as geophysics, seismology, acoustics, vibroseis works, foundation engineering, 
military industry, etc. 

The relevance of research is determined by the possibility of its wide practical application 
in various fields of mechanics. Dynamic problems for semi-infinite media containing buried 
cavities are currently poorly understood. 

The complexity of their study is because due to the multiplicity of the base, the traditional 
methods for solving unsteady contact problems for simply connected bases, which are usually 
based on the reduction of the original problem to functional and integral boundary equations, 
are not applicable here [16], [17], [18], [19]. In this regard, both research on the class of 
problems in the new formulation and the development of new numerical and analytical 
methods for solving them become relevant. 

2. RESEARCH METHODOLOGY 
Unsteady problems are considered for a homogeneous elastic half-space 𝑦𝑦 ≥ 0, having a 
buried cavity bounded by a smooth curve 𝛾𝛾. To describe the motion of half-space, we use the 
Cartesian coordinate system 𝑂𝑂𝑂𝑂𝑦𝑦𝑂𝑂. 

The 𝑂𝑂𝑂𝑂 axis is directed along the regular boundary of the half-space, and the 𝑂𝑂𝑦𝑦 is directed 
deep into half-space. 

We assume that the problem is plane: all the required and given functions depend only on 
two spatial coordinates 𝑂𝑂, 𝑦𝑦 and time 𝑡𝑡. 

Moreover, the displacement vector 𝒖𝒖 has two nonzero components: 𝑢𝑢(𝑂𝑂,𝑦𝑦, 𝑡𝑡) – along the 
𝑂𝑂𝑂𝑂 axis and 𝑤𝑤(𝑂𝑂,𝑦𝑦, 𝑡𝑡) – along the 𝑂𝑂𝑦𝑦 axis (Fig. 1). 



101 Method for solving plane unsteady contact problems for rigid stamp and elastic half-space 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

 
Fig. 1 - Statement of the problem 

We introduce a system of dimensionless quantities (the dash mark denotes dimensional 
parameters) 

𝑂𝑂 =
𝑂𝑂′

𝐿𝐿
 (1) 

𝑦𝑦 =
𝑦𝑦′

𝐿𝐿
 (2) 

𝜏𝜏 =
𝑐𝑐1𝑡𝑡
𝐿𝐿

 (3) 

𝑢𝑢 =
𝑢𝑢′

𝐿𝐿
 (4) 

𝑤𝑤 =
𝑤𝑤′

𝐿𝐿
 (5) 

𝐹𝐹𝑖𝑖 =
𝐹𝐹𝑖𝑖′𝐿𝐿

𝜆𝜆 + 2𝜇𝜇
 (6) 

𝜂𝜂 =
𝑐𝑐1
𝑐𝑐2

 (7) 

 𝑐𝑐12 =
𝜆𝜆 + 2𝜇𝜇
𝜌𝜌

 (8) 

𝑐𝑐22 =
𝜇𝜇
𝜌𝜌

 (9) 

𝜎𝜎𝑖𝑖𝑖𝑖 =
𝜎𝜎𝑖𝑖𝑖𝑖′

𝜆𝜆 + 2𝜇𝜇
 (10) 

Here 𝐿𝐿 is some characteristic, 𝑐𝑐1 and 𝑐𝑐2 are the propagation velocities of stress-strain and 
shear waves; 𝐹𝐹𝑖𝑖, 𝑖𝑖 = 1,2 – components of mass forces; 𝜆𝜆, 𝜇𝜇 and 𝜌𝜌 are the Lame elastic 
constants and the density of the medium; 𝜏𝜏 is the nondimensional time, 𝜎𝜎𝑖𝑖𝑖𝑖, 𝑖𝑖, 𝑗𝑗 = 1,2 are the 
components of the stress tensor. 

Hereinafter, the “1” index of the quantity corresponds to the 𝑂𝑂 coordinate, and the “2” 
index to the 𝑦𝑦 coordinate. 
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Further, all equations and relations will be written in a dimensionless form, taking into 
account the introduced system of dimensionless quantities (1-10). 

The motion of an elastic medium is described by the Navier equations [20]: 

�̈�𝑢 = (1 − 𝜂𝜂−2)
𝜕𝜕
𝜕𝜕𝑂𝑂

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦
� + 𝜂𝜂−2 �

𝜕𝜕2𝑢𝑢
𝜕𝜕𝑂𝑂2

+
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2�

+ 𝐹𝐹1(𝑂𝑂,𝑦𝑦, 𝜏𝜏) (11) 

�̈�𝑤 = (1 − 𝜂𝜂−2)
𝜕𝜕
𝜕𝜕𝑦𝑦

�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦
� + 𝜂𝜂−2 �

𝜕𝜕2𝑤𝑤
𝜕𝜕𝑂𝑂2

+
𝜕𝜕2𝑤𝑤
𝜕𝜕𝑦𝑦2�

+ 𝐹𝐹3(𝑂𝑂,𝑦𝑦, 𝜏𝜏) (12) 

The dots here and below denote the derivatives with respect to nondimensional time 𝜏𝜏. 
For the system of equations (11, 12), you can use the following index entry: 

�̈�𝑢𝑘𝑘 = (1 − 𝜂𝜂−2)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂𝑘𝑘

+ 𝜂𝜂−2𝛥𝛥𝑢𝑢𝑘𝑘 + 𝐹𝐹𝑘𝑘(𝑂𝑂,𝑦𝑦, 𝜏𝜏),𝑘𝑘 = 1,2 (13) 

where 𝑢𝑢1 = 𝑢𝑢, 𝑢𝑢2 = 𝑤𝑤, 

𝜕𝜕 =
𝜕𝜕𝑢𝑢1
𝜕𝜕𝑂𝑂

+
𝜕𝜕𝑢𝑢2
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

=
𝜕𝜕𝑢𝑢𝑘𝑘
𝜕𝜕𝑂𝑂𝑘𝑘

 (14) 

𝛥𝛥 =
𝜕𝜕2

𝜕𝜕𝑂𝑂2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
 (15) 

𝛥𝛥 is the two-dimensional buckling. Hereinafter, the repeating Latin indices summarize 
from 1 to 2. 

We also introduce the differential operator of elastic equilibrium 

𝐿𝐿𝑘𝑘(𝒖𝒖) = −(1 − 𝜂𝜂−2)
𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂𝑘𝑘

+ 𝜂𝜂−2𝛥𝛥𝑢𝑢𝑘𝑘 (16) 

Then equation (3) can be written in operator form 

�̈�𝑢𝑘𝑘 + 𝐿𝐿𝑘𝑘(𝒖𝒖) = 𝐹𝐹𝑘𝑘(𝑂𝑂,𝑦𝑦, 𝜏𝜏) (17) 

If we introduce the vector operator of elastic equilibrium 

𝑳𝑳 = [𝐿𝐿1(𝒖𝒖),𝐿𝐿2(𝒖𝒖)] (18) 

Then system of equations (5) can be written in vector form 

�̈�𝒖 + 𝑳𝑳(𝒖𝒖) = 𝑭𝑭 (19) 

Nonzero components of the strain tensor 𝜀𝜀𝑥𝑥𝑥𝑥, 𝜀𝜀𝑥𝑥𝑥𝑥 and 𝜀𝜀𝑥𝑥𝑥𝑥 are associated with 
displacements by the Cauchy relations: 

𝜀𝜀𝑥𝑥𝑥𝑥 =
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

, 𝜀𝜀𝑥𝑥𝑥𝑥 =
1
2
�
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦

+
𝜕𝜕𝑤𝑤
𝜕𝜕𝑂𝑂
� , 𝜀𝜀𝑥𝑥𝑥𝑥 =

𝜕𝜕𝑤𝑤
𝜕𝜕𝑦𝑦

 (20) 

Stresses 𝜎𝜎𝑥𝑥𝑥𝑥,𝜎𝜎𝑥𝑥𝑥𝑥 and 𝜎𝜎𝑥𝑥𝑥𝑥 are associated with strains by Hooke's law 

𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑥𝑥𝑥𝑥 + (1 − 2𝜂𝜂−2)𝜀𝜀𝑥𝑥𝑥𝑥,𝜎𝜎𝑥𝑥𝑥𝑥 = 2𝜂𝜂−2𝜀𝜀𝑥𝑥𝑥𝑥,𝜎𝜎𝑥𝑥𝑥𝑥 = 𝜀𝜀𝑥𝑥𝑥𝑥 + (1 − 2𝜂𝜂−2)𝜀𝜀𝑥𝑥𝑥𝑥 (21) 

Hooke's law can be written in index form 

𝜎𝜎𝑖𝑖𝑖𝑖 = (1 − 2𝜂𝜂−2)𝜕𝜕𝛿𝛿𝑖𝑖𝑖𝑖 + 2𝜂𝜂−2𝜀𝜀𝑖𝑖𝑖𝑖 (22) 



103 Method for solving plane unsteady contact problems for rigid stamp and elastic half-space 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

We assume that at the initial instant of time 𝜏𝜏 = 0 the half-space is in the unperturbed 
state, which corresponds to zero initial conditions 

𝑢𝑢(𝑂𝑂, 𝑂𝑂, 0) = �̇�𝑢(𝑂𝑂, 𝑂𝑂, 0) = 𝑤𝑤(𝑂𝑂, 𝑂𝑂, 0) = �̇�𝑤(𝑂𝑂, 𝑂𝑂, 0) = 0 (23) 

On the boundary of the half-space 𝑦𝑦 = 0, the following types of boundary conditions can 
be specified.  

1. Displacement boundary conditions: 

𝑢𝑢(𝑂𝑂, 0, 𝜏𝜏) = 𝑈𝑈(𝑂𝑂, 𝜏𝜏),𝑤𝑤(𝑂𝑂, 0, 𝜏𝜏) = 𝑊𝑊(𝑂𝑂, 𝜏𝜏) (24) 

where 𝑈𝑈(𝑂𝑂, 𝜏𝜏) and 𝑊𝑊(𝑂𝑂, 𝜏𝜏) are given functions characterizing the tangent and normal 
displacements of the half-space boundary. 

2. Stress boundary conditions: 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑂𝑂, 0, 𝜏𝜏) = 𝑝𝑝1(𝑂𝑂, 𝜏𝜏),𝜎𝜎𝑥𝑥𝑥𝑥(𝑂𝑂, 0, 𝜏𝜏) = 𝑝𝑝2(𝑂𝑂, 𝜏𝜏) (25) 

where 𝑝𝑝1(𝑂𝑂, 𝜏𝜏) and 𝑝𝑝2(𝑂𝑂, 𝜏𝜏) are given functions characterizing the tangent and normal stresses 
at the half-space boundary. 

3. Mixed boundary conditions: 

𝑢𝑢(𝑂𝑂, 0, 𝜏𝜏) = 𝑈𝑈(𝑂𝑂, 𝜏𝜏),𝑤𝑤(𝑂𝑂, 0, 𝜏𝜏) = 𝑊𝑊(𝑂𝑂, 𝜏𝜏), 𝑂𝑂 ∈ 𝛤𝛤𝑢𝑢 (26) 

𝜎𝜎𝑥𝑥𝑥𝑥(𝑂𝑂, 0, 𝜏𝜏) = 𝑝𝑝1(𝑂𝑂, 𝜏𝜏),𝜎𝜎𝑥𝑥𝑥𝑥(𝑂𝑂, 0, 𝜏𝜏) = 𝑝𝑝2(𝑂𝑂, 𝜏𝜏), 𝑂𝑂 ∈ 𝛤𝛤𝜎𝜎 (27) 

where 𝛤𝛤𝑢𝑢 is the part of the boundary 𝑦𝑦 = 0, at which displacements are specified, and 𝛤𝛤𝜎𝜎 is the 
part of the boundary 𝑦𝑦 = 0, at which stresses are set. 

At infinity, displacements are assumed to be limited. 

𝑢𝑢|𝑟𝑟→∞ = 𝑂𝑂(1), 𝑤𝑤|𝑟𝑟→∞ = 𝑂𝑂(1),  𝑟𝑟 = �𝑂𝑂2 + 𝑦𝑦2 (28) 

At the boundary of the cavity 𝛾𝛾, it is also possible to specify one of three types of boundary 
conditions. 

1. Displacement boundary conditions: 

𝑢𝑢𝑠𝑠|𝛾𝛾 = 𝑈𝑈𝑠𝑠(𝑠𝑠, 𝜏𝜏), 𝑢𝑢𝑛𝑛|𝛾𝛾 = 𝑈𝑈𝑛𝑛(𝑠𝑠, 𝜏𝜏) (29) 

where 𝑢𝑢𝑠𝑠 = (𝒖𝒖, 𝒔𝒔) = 𝑢𝑢𝑘𝑘𝜈𝜈𝑘𝑘 and 𝑢𝑢𝑛𝑛 = (𝒖𝒖,𝒏𝒏) = 𝑢𝑢𝑘𝑘𝑛𝑛𝑘𝑘 are the projections of the displacement 
vector on the direction of the tangent and normal to the contour 𝛾𝛾, 𝒏𝒏, 𝒔𝒔 are the unit outer 
normal vectors and unit tangent vectors to the contour 𝛾𝛾. 𝑈𝑈𝑠𝑠(𝑠𝑠, 𝜏𝜏), 𝑈𝑈𝑛𝑛(𝑠𝑠, 𝜏𝜏) are given functions 
of the arc length of the curve 𝛾𝛾 and time characterizing the tangent and normal displacements 
at the boundary of the cavity. 

2. Stress boundary conditions: 

𝜎𝜎𝑠𝑠|𝛾𝛾 = 𝑝𝑝𝑠𝑠(𝑠𝑠, 𝜏𝜏),𝜎𝜎𝑛𝑛|𝛾𝛾 = 𝑝𝑝𝑛𝑛(𝑠𝑠, 𝜏𝜏) (30) 

where 𝜎𝜎𝜈𝜈 and 𝜎𝜎𝑛𝑛 are the tangent and normal stresses on the contour 𝛾𝛾; 𝑝𝑝𝑠𝑠(𝑠𝑠, 𝜏𝜏) and 𝑝𝑝𝑛𝑛(𝑠𝑠, 𝜏𝜏) 
are functions of the arc length of the curve 𝛾𝛾 and time, which characterize the tangent and 
normal load at the boundary of the cavity. 

3. Mixed boundary conditions: 

𝑢𝑢𝑠𝑠|𝛾𝛾𝑢𝑢 = 𝑈𝑈𝑠𝑠(𝑠𝑠, 𝜏𝜏), 𝑢𝑢𝑛𝑛|𝛾𝛾𝑢𝑢 = 𝑈𝑈𝑛𝑛(𝑠𝑠, 𝜏𝜏) (31) 

𝜎𝜎𝑠𝑠|𝛾𝛾𝜎𝜎 = 𝑝𝑝𝑠𝑠(𝑠𝑠, 𝜏𝜏),𝜎𝜎𝑛𝑛|𝛾𝛾𝜎𝜎 = 𝑝𝑝𝑛𝑛(𝑠𝑠, 𝜏𝜏) (32) 
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where 𝛾𝛾𝑢𝑢 is the part of the cavity boundary on which displacements are specified, and 𝛾𝛾𝜎𝜎 is the 
part of the cavity boundary on which loads are specified. 

In the case of contact interaction of the half-space boundary 𝒚𝒚 = 𝟎𝟎 with a rigid stamp with 
a half-width 𝒃𝒃 (Fig. 1), in the contact region 𝒙𝒙 ∈ [−𝒃𝒃,𝒃𝒃], the following contact conditions can 
be realized (𝒘𝒘𝒔𝒔 = 𝒘𝒘𝒔𝒔(𝝉𝝉) – stamp drift, which depends on time). 

1. Free slip conditions. 

𝑤𝑤|𝑥𝑥=0 = 𝑤𝑤𝑠𝑠,𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=0 = 0,𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=0 < 0, 𝑂𝑂 ∈ [−𝑏𝑏, 𝑏𝑏] (33) 

2. Rigid coupling conditions. 

𝑤𝑤|𝑥𝑥=0 = 𝑤𝑤𝑠𝑠,𝑢𝑢|𝑥𝑥=0 = 0,𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=0 < 0, 𝑂𝑂 ∈ [−𝑏𝑏, 𝑏𝑏] (34) 

3. Bonded contact. 

𝑤𝑤|𝑥𝑥=0 = 𝑤𝑤𝑠𝑠,𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=0 = 𝑘𝑘𝑇𝑇𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=0,𝜎𝜎𝑥𝑥𝑥𝑥�𝑥𝑥=0 < 0,𝑂𝑂 ∈ [−𝑏𝑏, 𝑏𝑏] (35) 

where 𝑘𝑘𝑇𝑇 is the coefficient of friction. The law of embedding the stamp 𝑤𝑤𝑠𝑠(𝜏𝜏) is assumed to 
be known. 

3. RESULTS AND DISCUSSIONS 
3.1 Green functions for an elastic plane 

To solve the problems posed, we need the Green functions for the elastic plane 𝑂𝑂𝑦𝑦𝑂𝑂. These 
functions are displacements 𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢 (𝑂𝑂, 𝑂𝑂) and stresses 𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜎𝜎 (𝑂𝑂, 𝑂𝑂) as solutions of problem 
(5) - (11) bounded at infinity for an infinite elastic plane under the action of unit concentrated 
mass forces applied at the origin: 

�̈�𝐺𝑘𝑘𝑘𝑘𝑢𝑢 − 𝐿𝐿(𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢 ) = 𝛿𝛿𝑘𝑘𝑘𝑘𝛿𝛿(𝜏𝜏)𝛿𝛿(𝑂𝑂1, 𝑂𝑂2) (36) 

𝜕𝜕𝑘𝑘 =
𝜕𝜕𝐺𝐺1𝑘𝑘𝑢𝑢

𝜕𝜕𝑂𝑂1
+
𝜕𝜕𝐺𝐺2𝑘𝑘𝑢𝑢

𝜕𝜕𝑂𝑂2
=
𝜕𝜕𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢

𝜕𝜕𝑂𝑂𝑘𝑘
= 𝐺𝐺11𝑘𝑘𝜀𝜀 + 𝐺𝐺22𝑘𝑘𝜀𝜀 = 𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜀𝜀  (37) 

𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜀𝜀 =
1
2�

𝜕𝜕𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢

𝜕𝜕𝑂𝑂𝑘𝑘
+
𝜕𝜕𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢

𝜕𝜕𝑂𝑂𝑘𝑘
� (38) 

𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜎𝜎 = (1 − 𝜂𝜂−2)𝜕𝜕𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘 + 2𝜂𝜂−2𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜀𝜀  (39) 
where 𝛿𝛿𝑘𝑘𝑘𝑘 is the Kronecker symbol, 𝛿𝛿(𝜏𝜏), 𝛿𝛿(𝑂𝑂1,𝑂𝑂2) are the Dirac delta functions [16]. 

Applying to (39) the direct two-dimensional integral Fourier transformation in the spatial 
coordinates 𝑂𝑂 and 𝑦𝑦 and the Laplace integral transformation in time, and then sequentially 
inverting the Fourier and Laplace integral transformations using the tables [21], [22], [23] we 
find the inverse Green functions: 

𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢 (𝑂𝑂,𝑦𝑦, 𝜏𝜏) =
𝛿𝛿𝑘𝑘𝑘𝑘

2𝜋𝜋𝑟𝑟2
�𝜏𝜏2(𝜏𝜏2 − 𝜂𝜂2𝑟𝑟2)+

−1
2 − (𝜏𝜏2 − 𝑟𝑟2)+

1
2 �

−
𝑂𝑂𝑘𝑘𝑂𝑂𝑘𝑘
2𝜋𝜋𝑟𝑟4

�(−1)𝑖𝑖�2𝜏𝜏2 − 𝜂𝜂𝑖𝑖2𝑟𝑟2��𝜏𝜏2 − 𝜂𝜂𝑖𝑖2𝑟𝑟2�+
−1
2

2

𝑖𝑖=1

 
(40) 



105 Method for solving plane unsteady contact problems for rigid stamp and elastic half-space 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜀𝜀 (𝑂𝑂,𝑦𝑦, 𝜏𝜏) =
𝜂𝜂4

4𝜋𝜋
(𝑂𝑂𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑂𝑂𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘)(𝜏𝜏2 − 𝜂𝜂2𝑟𝑟2)+

−3
2

+
1

2𝜋𝜋𝑟𝑟4
�(−1)𝑖𝑖
2

𝑖𝑖=1

�
𝑂𝑂𝑘𝑘𝑂𝑂𝑘𝑘𝑂𝑂𝑘𝑘
𝑟𝑟2 �8𝜏𝜏4 − 12𝜂𝜂𝑖𝑖2𝑟𝑟2𝜏𝜏2

+ 3𝜂𝜂4𝑟𝑟4��𝜏𝜏2 − 𝜂𝜂𝑖𝑖2𝑟𝑟2�+
−3
2

− − (𝑂𝑂𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑂𝑂𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘 + 𝑂𝑂𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘)�2𝜏𝜏2 − 𝜂𝜂𝑖𝑖2𝑟𝑟2��𝜏𝜏2 − 𝜂𝜂𝑖𝑖2𝑟𝑟2�+
−1
2 � 

(41) 

𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜎𝜎 = (1 − 𝜂𝜂−2)𝜕𝜕𝑘𝑘𝛿𝛿𝑘𝑘𝑘𝑘 + 2𝜂𝜂−2𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜀𝜀  (42) 
Hereinafter: 

𝑓𝑓(𝑂𝑂)+ = �𝑓𝑓(𝑂𝑂), 𝑂𝑂 ≥ 0;
0, 𝑂𝑂 < 0.  (43) 

Obviously, the dominant functions 𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢  and 𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜀𝜀  (therefore, 𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜎𝜎 ) are symmetric in the 
indices 𝑘𝑘,𝑚𝑚 and 𝑘𝑘, 𝑙𝑙: 𝐺𝐺𝑘𝑘𝑘𝑘𝑢𝑢 = 𝐺𝐺𝑘𝑘𝑘𝑘

𝑢𝑢 ,𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜎𝜎 = 𝐺𝐺𝑘𝑘𝑘𝑘𝑘𝑘𝜎𝜎  

3.2 An analysis of the reciprocal work theorem of the two-dimensional unsteady 
theory of elasticity and the main resolving boundary integral equation 

Let’s consider a certain two-dimensional domain 𝐷𝐷, finite (bounded by the curve 𝛤𝛤) or infinite. 
Domain 𝐷𝐷 can also be semirestricted, for example, be a half-plane. Consider in the domain 𝐷𝐷 
two displacement fields defined by the vectors 𝒖𝒖 and 𝒗𝒗, respectively. For them, the dynamic 
reciprocal work theorem holds [8] 

�𝑭𝑭(𝒖𝒖) ∗ 𝒗𝒗𝑑𝑑𝑑𝑑
𝐷𝐷

+�𝒑𝒑(𝒖𝒖) ∗ 𝒗𝒗𝑑𝑑𝑠𝑠
𝛤𝛤

= �𝑭𝑭(𝒗𝒗) ∗ 𝒖𝒖𝑑𝑑𝑑𝑑
𝐷𝐷

+ �𝒑𝒑(𝒗𝒗) ∗ 𝒖𝒖𝑑𝑑𝑠𝑠
𝛤𝛤

 (44) 

where 𝒑𝒑 is the stress vector on the contour 𝛤𝛤, the symbol "*" means the convolution operation 
in time (𝒙𝒙 = (𝑂𝑂1,𝑂𝑂2)): 

𝑭𝑭(𝒖𝒖) ∗ 𝒗𝒗 = � 𝑭𝑭[𝒖𝒖(𝒙𝒙, 𝜏𝜏 − 𝑡𝑡)]𝒗𝒗(𝒙𝒙, 𝑡𝑡)𝑑𝑑𝑡𝑡
𝜏𝜏

0
 (45) 

In the absence of mass forces 𝑭𝑭(𝒖𝒖) ≡ 0 in formula (44), two-dimensional integrals will 
be equal to zero. Further, we will assume that there are no mass forces. Thus, having some 
trial state 𝒗𝒗, 𝒑𝒑(𝒗𝒗), for the desired solution 𝒖𝒖, 𝒑𝒑(𝒖𝒖) we obtain the boundary integral equation 
of the plane unsteady problem 

�𝒗𝒗1 ∗ 𝒑𝒑(𝒖𝒖)𝑑𝑑𝑠𝑠
𝛤𝛤

= �𝒑𝒑(𝒗𝒗1) ∗ 𝒖𝒖𝑑𝑑𝑠𝑠
𝛤𝛤

 (46) 

Equation (27) is conveniently represented in the component notation. As follows from the 
formulations of the initial boundary value problems, in the boundary conditions that are set on 
the contour 𝛤𝛤, the normal and tangent components of the displacement vectors 𝑈𝑈𝑛𝑛(𝑠𝑠, 𝜏𝜏), 
𝑈𝑈𝑠𝑠(𝑠𝑠, 𝜏𝜏) and forces 𝑝𝑝𝑛𝑛(𝑠𝑠, 𝜏𝜏), 𝑝𝑝𝑠𝑠(𝑠𝑠, 𝜏𝜏) are presented. Therefore, it is convenient to take the 
tangent and normal to the displacement contour 𝑢𝑢𝑠𝑠, 𝑢𝑢𝑛𝑛 and the tangent and normal stresses 𝜎𝜎𝑠𝑠, 
𝜎𝜎𝑛𝑛 as the desired displacements and stresses. Similarly, other normal to the displacement 
contour 𝑢𝑢𝑠𝑠′ , 𝑢𝑢𝑛𝑛′  are used as the trial state. Then, obviously, equation (27) takes the form 
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�𝜎𝜎𝑠𝑠 ∗ 𝑢𝑢𝑠𝑠′ + 𝜎𝜎𝑛𝑛 ∗ 𝑢𝑢𝑛𝑛′ 𝑑𝑑𝑠𝑠
𝛤𝛤

= �𝜎𝜎𝑠𝑠′ ∗ 𝑢𝑢𝑠𝑠 + 𝜎𝜎𝑛𝑛′ ∗ 𝑢𝑢𝑛𝑛𝑑𝑑𝑠𝑠
𝛤𝛤

 (47) 

Equation (47) is the main one and will be used to solve initial boundary value problems. 

3.3 Features of the discrete analog of the boundary integral equation 

Let’s consider a certain domain 𝐷𝐷, bounded by the contour 𝛤𝛤 and filled with an elastic medium. 
With each point 𝝃𝝃 of the contour 𝛤𝛤 we associate the tangent and normal displacements 𝑢𝑢𝑠𝑠, 𝑢𝑢𝑛𝑛 
and the tangent and normal stresses (or forces) 𝜎𝜎𝑠𝑠, 𝜎𝜎𝑛𝑛. These quantities are specified relative 
to the local coordinate system 𝑠𝑠, 𝑛𝑛 of the point 𝝃𝝃 (Fig. 2). 

 
Fig. 2 - Local coordinate systems and directions of traversal of the contour 𝛤𝛤 in the case of internal and external 

domains with respect to 𝛤𝛤. 

Moreover, at each point of the contour, the tangent stress 𝜎𝜎𝑠𝑠 or the tangent displacement 
𝑢𝑢𝑠𝑠 and the normal stress 𝜎𝜎𝑛𝑛 or the normal displacement 𝑢𝑢𝑛𝑛 are specified, i.e., two of the four 
quantities 𝑢𝑢𝑠𝑠, 𝑢𝑢𝑛𝑛, 𝜎𝜎𝑠𝑠 and 𝜎𝜎𝑛𝑛 are known in advance from the boundary conditions. The 
remaining two quantities should be found from the solution of the problem. For this, we use 
equation (28). We choose some trial state characterized by displacements 𝑢𝑢𝑠𝑠′ , 𝑢𝑢𝑛𝑛′  and stresses 
𝜎𝜎𝑠𝑠′, 𝜎𝜎𝑛𝑛′ . 

To solve equation (47) numerically, we apply time sampling. To do this, divide the time 
interval [0, 𝜏𝜏] into 𝑁𝑁, equal intervals of duration: 

𝛥𝛥𝑡𝑡: 𝑡𝑡𝑘𝑘 = 𝑘𝑘𝛥𝛥𝑡𝑡 (48) 

𝑘𝑘 = 1,2, . . . ,𝑁𝑁 (49) 

𝜏𝜏 = 𝑁𝑁𝛥𝛥𝑡𝑡 (50) 
The displacements and stresses in the initial problem are approximated linearly in time: 

𝑢𝑢𝑛𝑛(𝑠𝑠, 𝑡𝑡) = 𝑢𝑢𝑛𝑛𝑘𝑘(𝑠𝑠)𝑚𝑚1(𝑡𝑡) + 𝑢𝑢𝑛𝑛𝑘𝑘−1(𝑠𝑠)𝑚𝑚2(𝑡𝑡),𝑢𝑢𝑠𝑠 = 𝑢𝑢𝑠𝑠𝑘𝑘(𝑠𝑠)𝑚𝑚1(𝑡𝑡) + 𝑢𝑢𝑠𝑠𝑘𝑘−1(𝑠𝑠)𝑚𝑚2(𝑡𝑡) (51) 

𝜎𝜎𝑛𝑛 = 𝜎𝜎𝑛𝑛𝑘𝑘(𝑠𝑠)𝑚𝑚1(𝑡𝑡) + 𝜎𝜎𝑛𝑛𝑘𝑘−1(𝑠𝑠)𝑚𝑚2(𝑡𝑡) (52) 

𝜎𝜎𝑠𝑠 = 𝜎𝜎𝑠𝑠𝑘𝑘(𝑠𝑠)𝑚𝑚1(𝑡𝑡) + 𝜎𝜎𝑠𝑠𝑘𝑘−1(𝑠𝑠)𝑚𝑚2(𝑡𝑡) (53) 

𝑢𝑢𝑛𝑛𝑘𝑘(𝑠𝑠) = 𝑢𝑢𝑛𝑛(𝑠𝑠, 𝑡𝑡𝑘𝑘) (54) 

𝑢𝑢𝑠𝑠𝑘𝑘(𝑠𝑠) = 𝑢𝑢𝑠𝑠(𝑠𝑠, 𝑡𝑡𝑘𝑘) (55) 

𝜎𝜎𝑛𝑛𝑘𝑘(𝑠𝑠) = 𝜎𝜎𝑛𝑛(𝑠𝑠, 𝑡𝑡𝑘𝑘) (56) 
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𝜎𝜎𝑠𝑠𝑘𝑘(𝑠𝑠) = 𝜎𝜎𝑠𝑠(𝑠𝑠, 𝑡𝑡𝑘𝑘) (57) 
Substitution of (29) into (28) brings the latter to the form: 

��𝜎𝜎𝑠𝑠𝑘𝑘𝑢𝑢′𝑠𝑠1
𝑘𝑘 + 𝜎𝜎𝑠𝑠𝑘𝑘−1𝑢𝑢′𝑠𝑠2

𝑘𝑘 𝑑𝑑𝑠𝑠 + 𝜎𝜎𝑛𝑛𝑘𝑘𝑢𝑢′𝑛𝑛1
𝑘𝑘 + 𝜎𝜎𝑛𝑛𝑘𝑘−1𝑢𝑢′𝑛𝑛2

𝑘𝑘 𝑑𝑑𝑠𝑠
𝛤𝛤

𝑁𝑁

𝑘𝑘=1

= ��𝑢𝑢𝑠𝑠𝑘𝑘𝜎𝜎′𝑠𝑠1
𝑘𝑘 + 𝑢𝑢𝑠𝑠𝑘𝑘−1𝜎𝜎′𝑠𝑠2

𝑘𝑘 + 𝑢𝑢𝑛𝑛𝑘𝑘𝜎𝜎′𝑛𝑛1
𝑘𝑘 + 𝑢𝑢𝑛𝑛𝑘𝑘−1𝜎𝜎′𝑛𝑛2

𝑘𝑘 𝑑𝑑𝑠𝑠
𝛤𝛤

𝑁𝑁

𝑘𝑘=1

 

(58) 

We approximate the contour 𝛤𝛤 using 𝑀𝑀 rectilinear segments adjoining each other (Fig. 3): 

𝛤𝛤 ≈�𝛾𝛾𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (59) 

 

Fig. 3 - Approximation of the contour 𝛤𝛤 

Now we assume that the displacements and stresses at the boundary of the contour 𝛤𝛤 
within each segment 𝛾𝛾𝑖𝑖 are constant, and then equation (30) takes the form: 

��𝜎𝜎𝑠𝑠
𝑘𝑘,𝑖𝑖 � 𝑢𝑢′𝑠𝑠1

𝑘𝑘 𝑑𝑑𝑠𝑠 +
𝛾𝛾𝑗𝑗

𝑀𝑀

𝑖𝑖=1

𝑁𝑁

𝑘𝑘=1

𝜎𝜎𝑠𝑠
𝑘𝑘−1,𝑖𝑖 � 𝑢𝑢′𝑠𝑠2

𝑘𝑘 𝑑𝑑𝑠𝑠 + 𝜎𝜎𝑛𝑛
𝑘𝑘,𝑖𝑖

𝛾𝛾𝑗𝑗
� 𝑢𝑢′𝑛𝑛1

𝑘𝑘 𝑑𝑑𝑠𝑠 +
𝛾𝛾𝑗𝑗

𝜎𝜎𝑛𝑛
𝑘𝑘−1,𝑖𝑖 � 𝑢𝑢′𝑛𝑛2

𝑘𝑘 𝑑𝑑𝑠𝑠
𝛾𝛾𝑗𝑗

= ��𝑢𝑢𝑠𝑠
𝑘𝑘,𝑖𝑖 � 𝜎𝜎′𝑠𝑠1

𝑘𝑘 𝑑𝑑𝑠𝑠 +
𝛾𝛾𝑗𝑗

𝑀𝑀

𝑖𝑖=1

𝑁𝑁

𝑘𝑘=1

𝑢𝑢𝑠𝑠
𝑘𝑘−1,𝑖𝑖 � 𝜎𝜎′𝑠𝑠2

𝑘𝑘 𝑑𝑑𝑠𝑠 + 𝑢𝑢𝑛𝑛
𝑘𝑘,𝑖𝑖

𝛾𝛾𝑗𝑗
� 𝜎𝜎′𝑛𝑛1

𝑘𝑘 𝑑𝑑𝑠𝑠
𝛾𝛾𝑗𝑗

+𝑢𝑢𝑛𝑛
𝑘𝑘−1,𝑖𝑖 � 𝜎𝜎′𝑛𝑛2

𝑘𝑘 𝑑𝑑𝑠𝑠
𝛾𝛾𝑗𝑗

 

(60) 

By rearranging the terms taking into account zero initial conditions, equation (60) can be 
rewritten as follows: 

��𝑢𝑢𝑠𝑠
𝑁𝑁,𝑖𝑖𝜎𝜎′𝑠𝑠,𝑖𝑖

𝑁𝑁 + 𝑢𝑢𝑛𝑛
𝑁𝑁,𝑖𝑖𝜎𝜎′𝑛𝑛,𝑖𝑖

𝑁𝑁 − 𝜎𝜎𝑠𝑠
𝑁𝑁,𝑖𝑖𝑢𝑢′𝑠𝑠,𝑖𝑖

𝑁𝑁 − 𝜎𝜎𝑛𝑛
𝑁𝑁,𝑖𝑖𝑢𝑢′𝑛𝑛,𝑖𝑖

𝑁𝑁 �
𝑀𝑀

𝑖𝑖=1

= 𝐹𝐹𝑁𝑁 (61) 
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𝜎𝜎′𝑠𝑠,𝑖𝑖
𝑁𝑁 = � 𝜎𝜎′𝑠𝑠1

𝑁𝑁 𝑑𝑑𝑠𝑠
𝛾𝛾𝑗𝑗

,𝜎𝜎′𝑛𝑛,𝑖𝑖
𝑁𝑁 = � 𝜎𝜎′𝑛𝑛1

𝑁𝑁 𝑑𝑑𝑠𝑠
𝛾𝛾𝑗𝑗

,𝑢𝑢′𝑠𝑠,𝑖𝑖
𝑁𝑁 = � 𝑢𝑢′𝑠𝑠1

𝑁𝑁 𝑑𝑑𝑠𝑠
𝛾𝛾𝑗𝑗

, 𝑢𝑢′𝑛𝑛,𝑖𝑖
𝑁𝑁 = � 𝑢𝑢′𝑛𝑛1

𝑁𝑁 𝑑𝑑𝑠𝑠
𝛾𝛾𝑗𝑗

 (62) 

𝐹𝐹𝑁𝑁 = ��𝜎𝜎𝑠𝑠
𝑘𝑘,𝑖𝑖 � �𝑢𝑢′𝑠𝑠1

𝑘𝑘 + 𝑢𝑢′𝑠𝑠2
𝑘𝑘+1�𝑑𝑑𝑠𝑠

𝛾𝛾𝑗𝑗

𝑀𝑀

𝑖𝑖=1

𝑁𝑁−1

𝑘𝑘=1

+ 𝜎𝜎𝑛𝑛
𝑘𝑘,𝑖𝑖 � �𝑢𝑢′𝑛𝑛1

𝑘𝑘 + 𝑢𝑢′𝑛𝑛2
𝑘𝑘+1�𝑑𝑑𝑠𝑠

𝛾𝛾𝑗𝑗

− ��𝑢𝑢𝑠𝑠
𝑘𝑘,𝑖𝑖 � �𝜎𝜎′𝑠𝑠1

𝑘𝑘 + 𝜎𝜎′𝑠𝑠2
𝑘𝑘+1�𝑑𝑑𝑠𝑠

𝛾𝛾𝑗𝑗

𝑀𝑀

𝑖𝑖=1

𝑁𝑁−1

𝑘𝑘=1

+ 𝑢𝑢𝑛𝑛
𝑘𝑘,𝑖𝑖 � �𝜎𝜎′𝑛𝑛1

𝑘𝑘 + 𝜎𝜎′𝑛𝑛2
𝑘𝑘+1�𝑑𝑑𝑠𝑠

𝛾𝛾𝑗𝑗
 

(63) 

In equations (61-63), the right-hand side 𝐹𝐹𝑁𝑁 is known, because it contains the required 
functions at the preceding current time steps (𝑘𝑘 = 1,2, . . . ,𝑁𝑁 − 1). In accordance with the 
given boundary conditions, the left-hand side of equations (61-63) contains 2𝑀𝑀 unknown 
pivotal values of displacements or stresses. 

The remaining 2𝑀𝑀 pivotal values are given by the boundary conditions (29), (30) or (31), 
(32). In addition, in the case of contact problems, the corresponding contact conditions (33), 
(34), or (21) are specified on a part of the boundary 𝛤𝛤. 

Therefore, the 2𝑀𝑀 terms on the left-hand side of equations (61-63) are also known in each 
case. We also note that in order to obtain a closed system of resolving equations for 2𝑀𝑀 of the 
required pivotal values of displacements or stresses, it is necessary to form 2𝑀𝑀 equations of 
the form (61-63). For this, it is necessary to provide a sufficient number, namely, 2𝑀𝑀 trial 
solutions (states) 𝑢𝑢𝑠𝑠′ , 𝑢𝑢𝑛𝑛′ , 𝜎𝜎𝑠𝑠′, 𝜎𝜎𝑛𝑛′ . 

3.4 The choice of trial solutions and the formation of a closed system of resolving 
equations 

As indicated in the previous paragraph, for the formation of a closed system of resolving 
equations, it is necessary to have 2𝑀𝑀 trial solutions. We assume that in the unbounded elastic 
plane filled with the elastic medium there is a “fictitious” contour 𝛤𝛤�, the position of which 
coincides with the position of the contour 𝛤𝛤. 

The contour 𝛤𝛤� is approximately replaced by a piecewise linear approximation, as 
indicated in Fig. 3: 

𝛤𝛤� ≈�𝛾𝛾𝑖𝑖

𝑀𝑀

𝑖𝑖=1

 (64) 

Further, since in the domain 𝐷𝐷�, bounded by the contour 𝛤𝛤� and the corresponding domain 
𝐷𝐷, the constructed solution will coincide with the required one, we will not distinguish between 
the contour 𝛤𝛤 and the fictitious contour 𝛤𝛤�, as well as between the domains 𝐷𝐷 and 𝐷𝐷�. 

As trial solutions, we take solutions to the problems of the action of normal 𝑃𝑃𝑠𝑠𝑖𝑖 
concentrated along coordinates and time and unit forces tangent 𝑃𝑃𝑛𝑛𝑖𝑖, applied to the points 𝜉𝜉𝑖𝑖, 
which are the midpoints of the segments 𝛾𝛾𝑖𝑖, 𝑖𝑖 = 1,2, . . . ,𝑀𝑀 from outside the domain 𝐷𝐷, 
bounded by the contour 𝛤𝛤. 

The solutions to these problems are the dominant functions (see § 1.4). 
To calculate the coefficients and the right-hand side of equations (61-63), it is convenient 

to introduce a local coordinate system with 𝑂𝑂� (𝑠𝑠𝑖𝑖) and 𝑦𝑦� (𝑛𝑛𝑖𝑖) axes on each 𝛾𝛾𝑖𝑖 segment, and 
the 𝑦𝑦� (𝑛𝑛𝑖𝑖) coincides with the direction of the external normal to the contour 𝛤𝛤, and the axis 
𝑦𝑦� (𝑛𝑛𝑖𝑖) is directed in the direction of the contour 𝛤𝛤 (Fig. 4). 
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Fig. 4 - Trial states 

Let the unit normal force 𝑃𝑃𝑛𝑛𝑖𝑖 and the unit tangent force 𝑃𝑃𝑠𝑠𝑖𝑖 be applied at the point 𝝃𝝃𝑖𝑖 of the 
segment 𝛾𝛾𝑖𝑖. Then, in the local coordinate system 𝑂𝑂� (𝑠𝑠𝑖𝑖) and 𝑦𝑦� (𝑛𝑛𝑖𝑖) the total projections of 
these forces on the coordinate axes will be determined by the following expressions: 

𝑃𝑃𝑥𝑥�
𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑠𝑠𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑛𝑛𝑖𝑖 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖,𝑃𝑃𝑥𝑥�

𝑖𝑖𝑖𝑖 = 𝑃𝑃𝑠𝑠𝑖𝑖 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑛𝑛𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 (65) 

where 

𝛼𝛼𝑖𝑖𝑖𝑖 = 𝛽𝛽𝑖𝑖 − 𝛽𝛽𝑖𝑖 (66) 

𝛽𝛽𝑖𝑖 and 𝛽𝛽𝑖𝑖 are the angles between the vectors 𝒔𝒔𝑖𝑖, 𝒔𝒔𝑖𝑖 with the 𝑂𝑂𝑂𝑂 axis of the global Cartesian 
coordinate system 𝑂𝑂𝑂𝑂𝑦𝑦. Moreover, trial solutions in the local coordinate system, according to 
paragraph 2, have the form: 

𝜎𝜎𝑥𝑥у′ = 𝜎𝜎𝑠𝑠′ = 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺121𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺121𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖
+ 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺122𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖
+ 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺122𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 

(67) 

𝜎𝜎уу′ = 𝜎𝜎𝑛𝑛′ = 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺221𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺221𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖
+ 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺222𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖
+ 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺222𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 

(68) 

𝑢𝑢𝑥𝑥�′ = 𝑢𝑢𝑠𝑠′ = 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺11𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺11𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖
+ 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺12𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺12𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 

(69) 

𝑢𝑢𝑥𝑥�′ = 𝑢𝑢𝑛𝑛′ = 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺21𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 − 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺21𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖
+ 𝑃𝑃𝑠𝑠𝑖𝑖𝐺𝐺22𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝑃𝑃𝑛𝑛𝑖𝑖𝐺𝐺22𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 

(70) 

Note that formulas (67-70) essentially contain two trial solutions: one due to the action of 
the unit force 𝑃𝑃𝑠𝑠𝑖𝑖, and the other due to the action of the unit force 𝑃𝑃𝑛𝑛𝑖𝑖. Assuming in (67-70) 
𝑃𝑃𝑠𝑠𝑖𝑖 = 1, 𝑃𝑃𝑛𝑛𝑖𝑖 = 0, we obtain the first trial solution for the element 𝛾𝛾𝑖𝑖: 
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𝜎𝜎𝑠𝑠1,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏�

= 𝐺𝐺121𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺122𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 
(71) 

𝜎𝜎𝑛𝑛1,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏�

= 𝐺𝐺221𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺222𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 
(72) 

𝑢𝑢𝑠𝑠1,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏�

= 𝐺𝐺11𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺12𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 
(73) 

𝑢𝑢𝑛𝑛1,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏�

= 𝐺𝐺21𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺22𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 
(74) 

Similarly, assuming in (67-70) 𝑃𝑃𝑠𝑠𝑖𝑖 = 0, 𝑃𝑃𝑛𝑛𝑖𝑖 = 1, we obtain the second trial solution for the 
element 𝛾𝛾𝑖𝑖: 

𝜎𝜎𝑠𝑠2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏�

= −𝐺𝐺121𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺122𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 
(75) 

𝜎𝜎𝑛𝑛2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏�

= −𝐺𝐺221𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺222𝜎𝜎 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖, 
(76) 

𝑢𝑢𝑠𝑠2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏�

= −𝐺𝐺11𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺12𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖 
(77) 

𝑢𝑢𝑛𝑛2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏�

= −𝐺𝐺21𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑠𝑠𝑖𝑖𝑛𝑛 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝐺𝐺22𝑢𝑢 �𝑂𝑂� − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏� 𝑐𝑐𝑐𝑐𝑠𝑠 𝛼𝛼𝑖𝑖𝑖𝑖  
(78) 

Since the number of elements 𝛾𝛾𝑖𝑖 is equal to 𝑀𝑀, repeating the same steps for each element, 
we get 2𝑀𝑀 of necessary trial solutions. For each pair of these solutions from (61-63) we obtain 
two equations: 

��𝑢𝑢𝑠𝑠
𝑁𝑁,𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 + 𝑢𝑢𝑛𝑛
𝑁𝑁,𝑖𝑖𝑎𝑎𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 − 𝜎𝜎𝑠𝑠
𝑁𝑁,𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 − 𝜎𝜎𝑛𝑛
𝑁𝑁,𝑖𝑖𝑏𝑏𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 �
𝑀𝑀

𝑖𝑖=1

= 𝐹𝐹𝑠𝑠𝑖𝑖𝑁𝑁 (79) 

𝐹𝐹𝑠𝑠𝑖𝑖𝑁𝑁 = ��𝜎𝜎𝑠𝑠
𝑘𝑘,𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘 + 𝜎𝜎𝑛𝑛
𝑘𝑘,𝑖𝑖𝑏𝑏𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘 − 𝑢𝑢𝑠𝑠
𝑘𝑘,𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘
𝑀𝑀

𝑖𝑖=1

𝑁𝑁−1

𝑘𝑘=1

− 𝑢𝑢𝑛𝑛
𝑘𝑘,𝑖𝑖𝑎𝑎𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘  (80) 

��𝑢𝑢𝑠𝑠
𝑁𝑁,𝑖𝑖𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 + 𝑢𝑢𝑛𝑛
𝑁𝑁,𝑖𝑖𝑎𝑎𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 − 𝜎𝜎𝑠𝑠
𝑁𝑁,𝑖𝑖𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 − 𝜎𝜎𝑛𝑛
𝑁𝑁,𝑖𝑖𝑏𝑏𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 �
𝑀𝑀

𝑖𝑖=1

= 𝐹𝐹𝑛𝑛𝑖𝑖𝑁𝑁  (81) 

𝐹𝐹𝑛𝑛𝑖𝑖𝑁𝑁 = ��𝜎𝜎𝑠𝑠
𝑘𝑘,𝑖𝑖𝑏𝑏𝑠𝑠𝑛𝑛𝑘𝑘 + 𝜎𝜎𝑛𝑛

𝑘𝑘,𝑖𝑖𝑏𝑏𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 − 𝑢𝑢𝑠𝑠

𝑘𝑘,𝑖𝑖𝑎𝑎𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘

𝑀𝑀

𝑖𝑖=1

𝑁𝑁−1

𝑘𝑘=1

− 𝑢𝑢𝑛𝑛
𝑘𝑘,𝑖𝑖𝑎𝑎𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖

𝑘𝑘  (82) 
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𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖
𝑁𝑁 = � 𝛴𝛴𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 𝑑𝑑𝑂𝑂
0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
,𝑎𝑎𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 = � 𝛴𝛴𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖
𝑁𝑁 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
, 𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 = � 𝑈𝑈𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖
𝑁𝑁 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
, 𝑏𝑏𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁

= � 𝛴𝛴𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖
𝑁𝑁 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
 

(83) 

𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖
𝑘𝑘 = � 𝑈𝑈𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘 𝑑𝑑𝑂𝑂
0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
, 𝑏𝑏𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘 = � 𝑈𝑈𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖
𝑘𝑘 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
,𝑎𝑎𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘 = � 𝛴𝛴𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖
𝑘𝑘 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
,𝑎𝑎𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖

𝑘𝑘

= � 𝛴𝛴𝑛𝑛𝑠𝑠,𝑖𝑖𝑖𝑖
𝑘𝑘 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
 

(84) 

𝑎𝑎𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖
𝑁𝑁 = � 𝛴𝛴𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖

𝑁𝑁 𝑑𝑑𝑂𝑂
0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
,𝑎𝑎𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖

𝑁𝑁 = � 𝛴𝛴𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖
𝑁𝑁 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
, 𝑏𝑏𝑠𝑠𝑠𝑠,𝑖𝑖𝑖𝑖

𝑁𝑁 = � 𝑈𝑈𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖
𝑁𝑁 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
, 𝑏𝑏𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖

𝑁𝑁

= � 𝛴𝛴𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖
𝑁𝑁 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
 

(85) 

𝑏𝑏𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 = � 𝑈𝑈𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖

𝑘𝑘 𝑑𝑑𝑂𝑂
0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
, 𝑏𝑏𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖

𝑘𝑘 = � 𝑈𝑈𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
,𝑎𝑎𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖

𝑘𝑘 = � 𝛴𝛴𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
,𝑎𝑎𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖

𝑘𝑘

= � 𝛴𝛴𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 𝑑𝑑𝑂𝑂

0.5𝛥𝛥𝑗𝑗

−0.5𝛥𝛥𝑗𝑗
 

(86) 

𝑈𝑈𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 = � 𝑢𝑢𝑠𝑠2,𝑖𝑖𝑖𝑖

′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏 − 𝑡𝑡�𝑚𝑚1(𝑡𝑡)
𝜏𝜏𝑘𝑘

𝜏𝜏𝑘𝑘−1
𝑑𝑑𝑡𝑡

+ � 𝑢𝑢𝑠𝑠2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏 − 𝑡𝑡�𝑚𝑚2(𝑡𝑡)

𝜏𝜏𝑘𝑘+1

𝜏𝜏𝑘𝑘
𝑑𝑑𝑡𝑡 

(87) 

𝑈𝑈𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 = � 𝑢𝑢𝑛𝑛2,𝑖𝑖𝑖𝑖

′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏 − 𝑡𝑡�𝑚𝑚1(𝑡𝑡)
𝜏𝜏𝑘𝑘

𝜏𝜏𝑘𝑘−1
𝑑𝑑𝑡𝑡

+ � 𝑢𝑢𝑛𝑛2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏 − 𝑡𝑡�𝑚𝑚2(𝑡𝑡)

𝜏𝜏𝑘𝑘+1

𝜏𝜏𝑘𝑘
𝑑𝑑𝑡𝑡 

(88) 

𝛴𝛴𝑠𝑠𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 = � 𝜎𝜎𝑠𝑠2,𝑖𝑖𝑖𝑖

′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏 − 𝑡𝑡�𝑚𝑚1(𝑡𝑡)
𝜏𝜏𝑘𝑘

𝜏𝜏𝑘𝑘−1
𝑑𝑑𝑡𝑡

+ � 𝜎𝜎𝑠𝑠2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖,−𝑑𝑑𝑖𝑖𝑖𝑖 , 𝜏𝜏 − 𝑡𝑡�𝑚𝑚2(𝑡𝑡)

𝜏𝜏𝑘𝑘+1

𝜏𝜏𝑘𝑘
𝑑𝑑𝑡𝑡 

(89) 

𝛴𝛴𝑛𝑛𝑛𝑛,𝑖𝑖𝑖𝑖
𝑘𝑘 = � 𝜎𝜎𝑛𝑛2,𝑖𝑖𝑖𝑖

′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏 − 𝑡𝑡�𝑚𝑚1(𝑡𝑡)
𝜏𝜏𝑘𝑘

𝜏𝜏𝑘𝑘−1
𝑑𝑑𝑡𝑡

+ � 𝜎𝜎𝑛𝑛2,𝑖𝑖𝑖𝑖
′ �𝑂𝑂 − 𝑐𝑐𝑖𝑖𝑖𝑖 ,−𝑑𝑑𝑖𝑖𝑖𝑖, 𝜏𝜏 − 𝑡𝑡�𝑚𝑚2(𝑡𝑡)

𝜏𝜏𝑘𝑘+1

𝜏𝜏𝑘𝑘
𝑑𝑑𝑡𝑡 

(90) 

Note that the coefficients of systems of equations (39), (40), which are the corresponding 
integrals of the dominant functions of the elastic plane, can contain singularities of order 𝑂𝑂−𝛼𝛼, 
𝛼𝛼 > 0. In the case when 𝛼𝛼 ≤ 1

2
, the corresponding feature will be weak, in the sense that the 

integral of a function with such a feature exists as an improper integral of the second kind. 
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In the case when 𝛼𝛼 > 1
2
, the singularity is strong, and the corresponding integral is singular 

and is understood in the sense of the main value: 

�
𝑓𝑓(𝑂𝑂)
𝑂𝑂𝛼𝛼

𝑎𝑎

−𝑎𝑎
= �

𝑓𝑓(𝑂𝑂) − 𝑓𝑓(0) −∑ 𝑓𝑓(𝑘𝑘)(0)
𝑚𝑚! 𝑂𝑂𝑘𝑘[𝛼𝛼]

𝑘𝑘=1

𝑂𝑂𝛼𝛼
𝑑𝑑𝑂𝑂

𝑎𝑎

−𝑎𝑎
+ �

𝑓𝑓(𝑘𝑘)(0)
𝑚𝑚!

�
𝑑𝑑𝑂𝑂
𝑂𝑂𝛼𝛼−𝑘𝑘

𝑎𝑎

−𝑎𝑎

[𝛼𝛼]

𝑘𝑘=1

 (91) 

�
𝑑𝑑𝑂𝑂
𝑂𝑂𝛼𝛼−𝑘𝑘

𝑎𝑎

−𝑎𝑎
= −

𝑎𝑎𝑘𝑘−𝛼𝛼−1

𝛼𝛼 −𝑚𝑚 + 1
[1 + (−1)𝑘𝑘−𝛼𝛼−1] (92) 

where [𝛼𝛼] means the integer part of the number 𝛼𝛼. 

4. CONCLUSIONS 
A statement is given and a method for solving new plane unsteady contact problems for rigid 
stamps and an elastic half-space containing a buried cavity with a smooth boundary of arbitrary 
geometry is developed. The motion of the elastic half-space is described by the Navier 
equations in displacements. The statement of the problem also includes Cauchy relations and 
Hooke's law. At the initial time, the half-space with the cavity is at rest, which leads to zero 
initial conditions. Outside the contact zone, the surface of the half-space is assumed to be free 
of stresses, and in the contact domain, conditions of free slip, rigid coupling, or bonded contact 
can be specified. The solution method is based on the dynamic reciprocal work theorem. 
Application of the reciprocal work theorem leads to two-dimensional boundary integral 
equations whose kernels are dominant functions. To solve the resulting system of equations, 
the direct method of boundary elements with time sampling is used. 

As fundamental solutions, the dominant functions for the elastic space are used taking 
into account the plane formulation of the problem. They determine displacements and stresses 
in the elastic plane from the applied unit instantaneous concentrated force and act as kernels 
that resolve boundary integral equations. The integral operators of the resolving system of 
equations are replaced by discrete analogs in the spatial variable and in time. As a result, at 
each time interval, the problem reduces to solving a system of algebraic equations. The 
developed method and solution algorithm allow us to study the processes of unsteady contact 
interaction of rigid bodies with an elastic half-space having buried cavities of arbitrary 
geometry and location. 
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