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Abstract: The interaction of a sandwich plate with a damped cylindrical wave in the ground has been 
investigated. A sandwich plate is considered as a model of a barrier in the ground, described by a 
system of equations by V. N. Paimushin, placed in the ground dividing it into two parts. The plane 
problem formulation is considered. The boundary conditions correspond to the hinge attachment of the 
barrier, and the initial conditions are zero. A cylindrical damped wave is considered as an external 
influence. To describe the ground movement, the equations of the elasticity theory, the Cauchy relations 
and the physical principle, or equivalent displacements in potentials and the Lame equations are used. 
The problem is solved in a related formulation, where the movement of the plate and its surrounding 
media is considered together. All components of the equations of motion of the plate and media are 
decomposed into trigonometric series and the Laplace transform is applied to them. As the conditions 
for the contact of the plate and the ground, the equality of normal displacements at the boundary of the 
medium and the plate is assumed. It is also assumed that the pressure amplitudes and normal stresses 
coincide. After determining the constants from the contact conditions, the displacement values and the 
values of normal and tangential stresses are found, after which their originals are found. 

Key Words: non-stationary dynamics, cylindrical wave, elastic medium, plate, integral transformations, 
vibration absorption. 

1. INTRODUCTION 
The constant intensification of urban development and the introduction of infrastructure into 
the existing urban environment raises the question of protecting both the population and 
buildings from negative anthropogenic impact. The main source of adverse external influences 
on the foundations of buildings are technology-related vibrations. Such sources include 
engineering equipment, industrial installations, and vehicles (low-depth underground railway, 
heavy trucks, railway trains, trams) that create large dynamic loads during operation [1]. There 
are two types of impacts on the foundations of buildings – a stationary action created by regular 
sources of vibration and impulse excitation. However, these types of impacts and, accordingly, 
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calculations for them are regulated by a much smaller number of specifications [2]. Due to the 
fact that these situations do not often occur in practice, this issue has been studied to a much 
lesser extent. There are two approaches to the organisation of vibration protection of the 
foundations of buildings and structures [3]: vibration protection, which is laid in the design 
and includes vibration damping devices; and an approach based on the creation of vibration-
absorbing barriers [4], [5]. Vibration shields are most fully considered in [6]. 

Nonstationary problems have recently become widespread, and various types of 
interaction between external loads and plates and shells, both homogeneous and anisotropic, 
are studied. One of the methods for solving such problems is the method for determining the 
influence functions, described in [7], [8], [9], [10], [11], [12]. In addition, at the moment, 
inverse problems for nonstationary loads are widely studied, such as problems for a 
Timoshenko-type beam of finite length under the influence of a nonstationary load, and issues 
related to the identification of defects in an elastic rod [8], [9], [10]. The case of a nonstationary 
effect of a rigid indenter on an elastic half-plane is considered [11], [12]. In papers [13], [14], 
[15], the problems of nonstationary dynamics and the features of constructing the influence 
function for anisotropic plates and shells are considered. 

This study deals with the nonstationary interaction of a cylindrical wave induced in the 
ground with a vibration-absorbing barrier in the form of a sandwich plate. Notably, the 
aforementioned studies are mainly focused on the direct impact of the load on the object under 
study, but this study considers a related problem that takes into account the position of the 
wave source in the medium, as well as the vibrations that occur in the ground. An elastic 
medium is used as a ground model, which is acceptable for small oscillation amplitudes. The 
selected plate model allows varying the geometric parameters and material properties of the 
bearing layers and the core, thus obtaining a barrier with optimal vibration-absorbing 
properties. 

2. MATERIALS AND METHODS 
This study investigates the non-stationary effect of a plane pulse on a complex barrier, where 
the design features and the shape of the incoming wave are taken into account. A sandwich 
plate is considered as a model of a barrier in the ground. It is placed in the soil, dividing it into 
two parts – the media “1” and “2”, described by the system of equations by V.N. Paimushin 
[16]. The isotropic elastic medium “1” has a density 𝜌𝜌1, with the speed of sound wave 
propagation – 𝑐𝑐1. The isotropic elastic medium “2” has a density 𝜌𝜌2, with the speed of sound 
wave propagation – 𝑐𝑐2. The plate is located in the Cartesian coordinate system 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, and it is 
assumed that the plane 𝑂𝑂𝑂𝑂𝑂𝑂 for the plate is the median, and the axis 𝑂𝑂𝑂𝑂 is directed to the depth 
of the medium “2”. The plane problem formulation is considered. The boundary conditions 
correspond to the hinge attachment of the barrier, and the initial conditions are zero. The 
incoming wave is a damped cylindrical wave with a pressure amplitude 𝑝𝑝∗ at the front. The 
initial conditions are zero. As a result of its interaction with the plate in the media “1” and “2”, 
the transmitted and reflected waves are induced [17], [18], [19], [20]. 

Movements in media “1” and “2” are defined, as well as movements at any point in the 
medium “2”. To solve this problem, the Fourier series expansion and the Laplace transform 
are used [21], [22], [23], [24], [25]. 

The object of the study is a sandwich plate with a symmetrical structure consisting of two 
bearing layers and a core between them. The bearing layers of the plate are elastic and 
isotropic, with a modulus of elasticity of the first kind 𝐸𝐸 and a Poisson's ratio 𝜈𝜈, and have a 
thickness 2𝑡𝑡1. The core material is orthotropic, of a honeycomb structure, with a elasticity 
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modulus 𝐸𝐸𝑧𝑧 and a Poisson's ratio 𝜈𝜈𝑧𝑧, and has a thickness 2ℎ. The core has a compression 
module 𝐸𝐸3 and transverse shear modules 𝐺𝐺1and 𝐺𝐺2 both in the axes 𝑂𝑂𝑂𝑂 and directions 𝑂𝑂𝑂𝑂, 
respectively. The amplitudes of tangential displacements along the axes 𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂 are 
denoted by 𝑢𝑢1

(𝑘𝑘) and 𝑢𝑢2
(𝑘𝑘), respectively, and by the normal displacement 𝑤𝑤(𝑘𝑘) of the k-th carrier 

layer. 𝑞𝑞1 and 𝑞𝑞2 – the amplitudes of transverse shear stresses of constant thickness in the core, 
directed along the axes 𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂. 

Then the equations of motion of the plate have the form (1)-(7) (the presence of a 
coordinate after the decimal point corresponds to differentiation by it, and the point 
corresponds to differentiation by time 𝜏𝜏) [26], [27], [28], [29]. 

𝜌𝜌𝑐𝑐𝑢̈𝑢1𝑐𝑐 = 𝐿𝐿11(𝑢𝑢1𝑐𝑐) + 𝐿𝐿12(𝑢𝑢2𝑐𝑐),𝜌𝜌𝑐𝑐𝑢̈𝑢2𝑐𝑐 = 𝐿𝐿21(𝑢𝑢1𝑐𝑐) + 𝐿𝐿22(𝑢𝑢2𝑐𝑐), (1) 

𝜌𝜌𝑎𝑎𝑢̈𝑢1𝑎𝑎 = 𝐿𝐿11(𝑢𝑢1𝑎𝑎) + 𝐿𝐿12(𝑢𝑢2𝑎𝑎) + 2𝑞𝑞1, (2) 

𝜌𝜌𝑎𝑎𝑢̈𝑢2𝑎𝑎 = 𝐿𝐿21(𝑢𝑢1𝑎𝑎) + 𝐿𝐿22(𝑢𝑢2𝑎𝑎) + 2𝑞𝑞2 (3) 

𝜌𝜌𝑐𝑐𝑤̈𝑤𝑐𝑐 − 𝑚𝑚𝑐𝑐𝛥𝛥𝑤̈𝑤𝑐𝑐 + 𝜌𝜌𝑤𝑤𝑤𝑤�𝑞̈𝑞,𝑥𝑥
1 + 𝑞̈𝑞,𝑦𝑦

1 � = −𝐷𝐷𝛥𝛥22𝑤𝑤𝑐𝑐 + 2𝑘𝑘1�𝑞𝑞,𝑥𝑥
1 + 𝑞𝑞,𝑦𝑦

1 �+ 𝑝𝑝1 − 𝑝𝑝2, (4) 

𝜌𝜌𝑎𝑎𝑎𝑎𝑤̈𝑤𝑎𝑎 − 𝑚𝑚𝑎𝑎𝛥𝛥𝑤̈𝑤𝑎𝑎 = −𝐷𝐷𝛥𝛥22𝑤𝑤𝑎𝑎 − 2𝑐𝑐3𝑤𝑤𝑎𝑎 + 𝑝𝑝1 + 𝑝𝑝2, (5) 

𝜌𝜌𝑞𝑞1𝑞̈𝑞1 − 𝜌𝜌𝑤𝑤𝑤𝑤1𝑤̈𝑤𝑐𝑐,𝑥𝑥 = 𝑢𝑢1𝑎𝑎 − 𝑘𝑘1𝑤𝑤𝑐𝑐,𝑥𝑥 − 𝑘𝑘2�𝑞𝑞,𝑥𝑥
1 + 𝑞𝑞,𝑦𝑦

2 �
,𝑥𝑥

+ 𝑘𝑘31𝑞𝑞1 (6) 

𝜌𝜌𝑞𝑞2𝑞̈𝑞2 − 𝜌𝜌𝑤𝑤𝑤𝑤2𝑤̈𝑤𝑐𝑐,𝑦𝑦 = 𝑢𝑢2𝑎𝑎 − 𝑘𝑘1𝑤𝑤𝑐𝑐,𝑦𝑦 − 𝑘𝑘2�𝑞𝑞,𝑥𝑥
1 + 𝑞𝑞,𝑦𝑦

2 �
,𝑦𝑦

+ 𝑘𝑘32𝑞𝑞2 (7) 

Since a plane formulation of the problem is considered, the system of equations by V.N. 
Paimushin [16] takes the following form (8)-(11), where: 

𝐵𝐵𝑢𝑢1,𝑥𝑥𝑥𝑥
𝑎𝑎 (𝑥𝑥, 𝑡𝑡) − 𝜌𝜌𝑎𝑎𝑢̈𝑢1𝑎𝑎(𝑥𝑥, 𝑡𝑡) + 2𝑞𝑞1(𝑥𝑥, 𝑡𝑡) = 0 (8) 

−𝐷𝐷𝑤𝑤𝑐𝑐,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) − 𝜌𝜌𝑐𝑐𝑤̈𝑤𝑐𝑐(𝑥𝑥, 𝑡𝑡) + 2𝑘𝑘1𝑞𝑞1,𝑥𝑥(𝑥𝑥, 𝑡𝑡) + 𝑝𝑝1 − 𝑝𝑝2 = 0, (9) 

−𝐷𝐷𝑤𝑤𝑎𝑎,𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) − 𝜌𝜌𝑎𝑎𝑎𝑎𝑤̈𝑤𝑎𝑎(𝑥𝑥, 𝑡𝑡) − 2𝑐𝑐3𝑤𝑤𝑎𝑎(𝑥𝑥, 𝑡𝑡) + 𝑝𝑝1 + 𝑝𝑝2 = 0 (10) 

 𝑢𝑢1𝑎𝑎(𝑥𝑥, 𝑡𝑡) − 𝑘𝑘1𝑤𝑤𝑐𝑐,𝑥𝑥(𝑥𝑥, 𝑡𝑡) − 𝑘𝑘2𝑞𝑞1,𝑥𝑥𝑥𝑥(𝑥𝑥, 𝑡𝑡) + 𝑘𝑘31𝑞𝑞1(𝑥𝑥, 𝑡𝑡) = 0 (11) 

𝐵𝐵 =
2𝐸𝐸𝐸𝐸

1 − 𝜈𝜈2
 (12) 

𝐷𝐷 =
𝐵𝐵𝑡𝑡2

3
 (13) 

𝑢𝑢𝑖𝑖𝑐𝑐 = 𝑢𝑢𝑖𝑖
(1) + 𝑢𝑢𝑖𝑖

(2),𝑢𝑢𝑖𝑖𝑎𝑎 = 𝑢𝑢𝑖𝑖
(1) − 𝑢𝑢𝑖𝑖

(2)(𝑖𝑖 = 1,2),𝑤𝑤𝑐𝑐 = 𝑤𝑤0(1) + 𝑤𝑤0(2),𝑤𝑤𝑎𝑎
= 𝑤𝑤0(1) −𝑤𝑤0(2) 

(14) 

𝑘𝑘1 = 𝑡𝑡 + ℎ,𝑘𝑘2 =
ℎ2

3𝑐𝑐3
,𝑘𝑘3𝑖𝑖 =

2ℎ
𝐺𝐺𝑖𝑖

, (𝑖𝑖 = 1,2), 𝑐𝑐3 =
𝐸𝐸3
2ℎ

. (15) 

Core compression module: 

𝐸𝐸3 =
4𝑑𝑑𝐸𝐸𝑧𝑧

3(1 − 𝜈𝜈𝑧𝑧2)𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑)
 (16) 

The case of a transversally soft core is considered, where the transverse shear modules of 
the core are equal to each other. In this case: 
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𝐺𝐺1 = 𝐺𝐺2 = 𝐺𝐺 (17) 

𝜌𝜌𝑤𝑤𝑤𝑤1 = 𝜌𝜌𝑤𝑤𝑤𝑤2 = 𝜌𝜌𝑤𝑤𝑤𝑤 =
2𝜌𝜌ℎ3

3𝐺𝐺
,𝜌𝜌𝑞𝑞1 = 𝜌𝜌𝑞𝑞2 = 𝜌𝜌𝑞𝑞 =

2𝜌𝜌𝑤𝑤𝑤𝑤
𝐺𝐺

,𝑘𝑘31 = 𝑘𝑘32 = 𝑘𝑘3 =
2ℎ
𝐺𝐺

 (18) 

The transverse shear modulus of the core 𝐺𝐺 and the shear modulus of the core material 𝐺𝐺𝑧𝑧 
are defined as: 

 𝐺𝐺 = 𝐺𝐺𝑧𝑧
2𝑑𝑑(1 + 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑))

3𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑)
 (19) 

𝐺𝐺𝑧𝑧 =
𝐸𝐸𝑧𝑧

2(1 + 𝜈𝜈𝑧𝑧)
 (20) 

Introducing the following dimensionless quantities: 

𝑤𝑤 =
𝑤𝑤
𝑙𝑙

;𝑢𝑢 =
𝑢𝑢
𝑙𝑙

; 𝜏𝜏 =
𝑐𝑐 ⋅ 𝑡𝑡
𝑙𝑙

; 𝑥𝑥 =
𝑥𝑥
𝑙𝑙

;𝑞𝑞1 =
𝑙𝑙(1 − 𝑣𝑣2)

𝐸𝐸𝑡𝑡1
𝑞𝑞1;𝑝𝑝1 =

𝑙𝑙(1 − 𝜈𝜈2)
𝐸𝐸𝑡𝑡1

𝑝𝑝1;𝑝𝑝2

=
𝑙𝑙(1 − 𝜈𝜈2)
𝐸𝐸𝑡𝑡1

𝑝𝑝2 
(21) 

All the functions included in the system of equations (8)-(11) are decomposed into 
trigonometric series that satisfy the boundary conditions, taking into account (21). (8)-(11) are 
applied to the series expansion (22)-(27) and the Laplace transform in time: 

𝑀𝑀 = �𝑀𝑀𝑛𝑛 𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆𝑛𝑛 𝑥𝑥
∞

𝑛𝑛=1

 (22) 

𝑀𝑀 = (𝑤𝑤𝑐𝑐 ,𝑤𝑤𝑎𝑎,𝑝𝑝1,𝑝𝑝2)𝑇𝑇 (23) 

𝑀𝑀𝑛𝑛 = (𝑤𝑤𝑐𝑐𝑐𝑐,𝑤𝑤𝑎𝑎𝑎𝑎,𝑝𝑝1𝑛𝑛,𝑝𝑝2𝑛𝑛)𝑇𝑇 (24) 

𝑁𝑁 = �𝑁𝑁𝑛𝑛 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑛𝑛 𝑥𝑥
∞

𝑛𝑛=1

 (25) 

𝑁𝑁 = �𝑢𝑢1
(2),𝑞𝑞1�

𝑇𝑇
 (26) 

𝑁𝑁𝑛𝑛 = �𝑢𝑢1т
(2),𝑞𝑞1𝑛𝑛�

𝑇𝑇
 (27) 

2𝜆𝜆𝑛𝑛
2𝑢𝑢1𝑛𝑛

(2)𝐿𝐿 + 2𝑚𝑚6𝑠𝑠2𝑢𝑢1𝑛𝑛
(2)𝐿𝐿 + 𝑞𝑞1𝑛𝑛𝐿𝐿 = 0 (28) 

−𝑚𝑚1𝜆𝜆𝑛𝑛4𝑤𝑤𝑐𝑐𝑐𝑐𝐿𝐿 − (2 + 𝑚𝑚2)𝑚𝑚6𝑠𝑠2𝑤𝑤𝑐𝑐𝑐𝑐𝐿𝐿 − 2𝑚𝑚3𝜆𝜆𝑛𝑛𝑞𝑞1𝑛𝑛𝐿𝐿 + 𝑝𝑝1𝑛𝑛𝐿𝐿 − 𝑝𝑝2𝑛𝑛𝐿𝐿 = 0 (29) 

−𝑚𝑚1𝜆𝜆𝑛𝑛4𝑤𝑤𝑎𝑎𝑎𝑎𝐿𝐿 − �2 +
𝑚𝑚2

3
�𝑚𝑚6𝑠𝑠2𝑤𝑤𝑎𝑎𝑎𝑎𝐿𝐿 −

4
3𝑚𝑚5

𝑤𝑤𝑎𝑎𝑎𝑎𝐿𝐿 + 𝑝𝑝1𝑛𝑛𝐿𝐿 + 𝑝𝑝2𝑛𝑛𝐿𝐿 = 0 (30) 

−2𝑢𝑢1𝑛𝑛
(2)𝐿𝐿 − 𝑚𝑚3𝜆𝜆𝑛𝑛𝑤𝑤𝑐𝑐𝑐𝑐𝐿𝐿 + (𝜆𝜆𝑛𝑛

2𝑚𝑚4 + 𝑚𝑚7)𝑚𝑚5𝑞𝑞1𝑛𝑛𝐿𝐿 = 0 (31) 
The following parameters, including the physical and geometric characteristics of the 

plate in equations (28)-(31) are denoted as: 
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𝑚𝑚1 =
2𝑡𝑡12

3𝑙𝑙2
 (32) 

𝑚𝑚2 =
𝜌𝜌ℎ
𝜌𝜌𝑏𝑏𝑡𝑡1

 (33) 

𝑚𝑚3 =
𝑡𝑡1 + ℎ
𝑙𝑙

 (34) 

𝑚𝑚4 =
ℎ2

2𝑙𝑙2
 (35) 

𝑚𝑚7 = 𝑚𝑚7 =
6

(1 − 𝜈𝜈𝑧𝑧)(1 + 𝑐𝑐𝑐𝑐𝑐𝑐2(𝜑𝜑))
 (36) 

𝑚𝑚5 =
𝐸𝐸
𝐸𝐸𝑧𝑧

(1 − 𝜈𝜈𝑧𝑧2)
(1 − 𝜈𝜈2)

𝑎𝑎𝑡𝑡1ℎ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑)
𝑑𝑑𝑙𝑙2

 (37) 

𝑚𝑚6 = (1 − 𝜈𝜈2) (38) 

From the system of equations (28)-(31), the normal 𝑤𝑤0𝑛𝑛
(1)𝐿𝐿 and 𝑤𝑤0𝑛𝑛

(2)𝐿𝐿, and tangent 𝑢𝑢1𝑛𝑛𝐿𝐿 =
−𝑢𝑢2𝑛𝑛𝐿𝐿  displacements at the boundaries of the plate and layers “1” and “2” are determined: 

𝑤𝑤0𝑛𝑛
(1)𝐿𝐿 =

1
2
�𝑤𝑤𝑐𝑐𝑐𝑐𝐿𝐿 + 𝑤𝑤𝑎𝑎𝑎𝑎𝐿𝐿 �

=
1
2

−�𝑝𝑝2𝑛𝑛𝐿𝐿 − 𝑝𝑝1𝑛𝑛𝐿𝐿 � 𝐼𝐼1(𝑠𝑠2,𝜆𝜆𝑛𝑛4)

𝐼𝐼2(𝑠𝑠2,𝜆𝜆𝑛𝑛2)𝐼𝐼3(𝑠𝑠2, 𝜆𝜆𝑛𝑛6) + 𝐼𝐼4(𝑠𝑠2,𝜆𝜆𝑛𝑛4)
+

1
2

3𝑚𝑚5 �𝑝𝑝1𝑛𝑛𝐿𝐿 + 𝑝𝑝2𝑛𝑛𝐿𝐿 �

𝐼𝐼5(𝑠𝑠2,𝜆𝜆𝑛𝑛4)
 

(39) 

𝑤𝑤0𝑛𝑛
(2)𝐿𝐿 =

1
2
�𝑤𝑤𝑐𝑐𝑐𝑐𝐿𝐿 − 𝑤𝑤𝑎𝑎𝑎𝑎𝐿𝐿 �

=
1
2

−�𝑝𝑝2𝑛𝑛𝐿𝐿 − 𝑝𝑝1𝑛𝑛𝐿𝐿 � 𝐼𝐼1(𝑠𝑠2,𝜆𝜆𝑛𝑛4)

𝐼𝐼2(𝑠𝑠2,𝜆𝜆𝑛𝑛4)𝐼𝐼3(𝑠𝑠2, 𝜆𝜆𝑛𝑛4) + 𝐼𝐼4(𝑠𝑠2,𝜆𝜆𝑛𝑛4)
−

1
2

3𝑚𝑚5 �𝑝𝑝1𝑛𝑛𝐿𝐿 + 𝑝𝑝2𝑛𝑛𝐿𝐿 �

𝐼𝐼5(𝑠𝑠2,𝜆𝜆𝑛𝑛4)
 

(40) 

𝑢𝑢1𝑛𝑛𝐿𝐿  =
𝑚𝑚3𝜆𝜆𝑛𝑛 �𝑝𝑝2𝑛𝑛𝐿𝐿 − 𝑝𝑝1𝑛𝑛𝐿𝐿 �

𝑄𝑄1(𝑠𝑠2, 𝜆𝜆𝑛𝑛8) + 𝑄𝑄2(𝑠𝑠4,𝜆𝜆𝑛𝑛2) + 𝑄𝑄3(𝑠𝑠4, 𝜆𝜆𝑛𝑛0)
 (41) 

where the following notation is introduced: 

𝐼𝐼1(𝑠𝑠2,𝜆𝜆𝑛𝑛4) = �𝑚𝑚5�𝑚𝑚6𝑠𝑠2 + 𝜆𝜆𝑛𝑛
2��𝜆𝜆𝑛𝑛

2𝑚𝑚4 + 𝑚𝑚7�+ 1� (42) 

𝐼𝐼2(𝑠𝑠2,𝜆𝜆𝑛𝑛2) = �𝑚𝑚6𝑠𝑠2 + 𝜆𝜆𝑛𝑛
2� (43) 

𝐼𝐼3(𝑠𝑠2, 𝜆𝜆𝑛𝑛6) = �𝑚𝑚1𝜆𝜆𝑛𝑛
4 + (2 + 𝑚𝑚2)𝑚𝑚6𝑠𝑠2��𝜆𝜆𝑛𝑛

2𝑚𝑚4 + 𝑚𝑚7�𝑚𝑚5 (44) 

𝐼𝐼4(𝑠𝑠2, 𝜆𝜆𝑛𝑛4) = (2𝑚𝑚3
2 + 𝑚𝑚1)𝜆𝜆𝑛𝑛

4 + 2𝑚𝑚3
2𝑚𝑚6𝜆𝜆𝑛𝑛

2𝑠𝑠2 + (2 + 𝑚𝑚2)𝑚𝑚6𝑠𝑠2 (45) 

𝐼𝐼5(𝑠𝑠2,𝜆𝜆𝑛𝑛4) = (6 + 𝑚𝑚2)𝑚𝑚5𝑚𝑚6𝑠𝑠2 + 3𝑚𝑚5𝑚𝑚1𝜆𝜆𝑛𝑛4 + 4 (46) 

𝑄𝑄3(𝑠𝑠4, 𝜆𝜆𝑛𝑛0) = 2𝑠𝑠2𝑚𝑚6(1 + 𝑠𝑠2𝑚𝑚7𝑚𝑚5𝑚𝑚6)(2 + 𝑚𝑚2) (47) 
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𝑄𝑄2(𝑠𝑠4, 𝜆𝜆𝑛𝑛2) = 2𝑚𝑚6𝑠𝑠2�2𝑚𝑚3
2

+ (𝑚𝑚4𝑚𝑚5𝑚𝑚6𝑠𝑠2(2 + 𝑚𝑚2) + (2 + 𝑚𝑚2)𝑚𝑚5𝑚𝑚7 + 𝑚𝑚1𝑚𝑚7)�𝜆𝜆𝑛𝑛
2 

(48) 

𝑄𝑄1(𝑠𝑠2,𝜆𝜆𝑛𝑛8) = 2𝑚𝑚1𝑚𝑚4𝑚𝑚5𝜆𝜆𝑛𝑛
8 + 2𝑚𝑚1𝑚𝑚5(𝑚𝑚7 + 𝑚𝑚4𝑚𝑚6𝑠𝑠2)𝜆𝜆𝑛𝑛

6 + 

+(2𝑚𝑚5𝑚𝑚6𝑠𝑠2((2 + 𝑚𝑚2)𝑚𝑚4 + 𝑚𝑚1𝑚𝑚7) + 2𝑚𝑚3
2 + 𝑚𝑚1)𝜆𝜆𝑛𝑛

4 
(49) 

The model of the ground is an isotropic elastic medium, described by the equations of the 
elasticity theory. The closed system of equations describing its plane motion has the form (the 
forces of gravity are omitted) [30], [31]: 

- equations of motion: 

𝜌𝜌𝑢̈𝑢1 =
𝜕𝜕𝜎𝜎11
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎12
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎13
𝜕𝜕𝜕𝜕

 (50) 

𝜌𝜌𝑢̈𝑢2 =
𝜕𝜕𝜎𝜎21
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎22
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎23
𝜕𝜕𝜕𝜕

 (51) 

𝜌𝜌𝑤̈𝑤 =
𝜕𝜕𝜎𝜎31
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎32
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜎𝜎33
𝜕𝜕𝜕𝜕

 (52) 

- Cauchy relations: 

𝜀𝜀11 =
𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

, (53) 

𝜀𝜀13 =
1
2
�
𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� (54) 

𝜀𝜀33 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (55) 

𝜀𝜀22 =
𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

, (56) 

𝜀𝜀23 =
1
2
�
𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� , (57) 

𝜀𝜀12 =
1
2
�
𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

� , (58) 

𝜃𝜃 =
𝜕𝜕𝑢𝑢1
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝑢𝑢2
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

, (59) 

- physical principle: 

𝜎𝜎11 = 𝜆𝜆𝜆𝜆 + 2𝜇𝜇𝜀𝜀11, (60) 

𝜎𝜎13 = 2𝜇𝜇𝜀𝜀13 (61) 

𝜎𝜎33 = 𝜆𝜆𝜆𝜆 + 2𝜇𝜇𝜀𝜀33 (62) 

𝜎𝜎22 = 𝜆𝜆𝜆𝜆 + 2𝜇𝜇𝜀𝜀22 (63) 

𝜎𝜎23 = 2𝜇𝜇𝜀𝜀23 (64) 
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where: 𝑢𝑢 and 𝑤𝑤 – the displacements along the axes 𝑂𝑂𝑂𝑂 and 𝑂𝑂𝑂𝑂, respectively; 𝜎𝜎𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑖𝑖 – the 
components of the stress and strain tensors; 𝜃𝜃 – the volume expansion coefficient; 𝜌𝜌and 𝜆𝜆, 𝜇𝜇 – 
the density and elastic constants of the Lame ground; the points here and further denote the 
time derivatives 𝑡𝑡. The system (50)-(64) is equivalent to the equations in displacements (Lame 
equations): 

𝜌𝜌𝑢̈𝑢1 = (𝜆𝜆 + 𝜇𝜇)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝜇𝜇𝑢𝑢1 (65) 

𝜌𝜌𝑢̈𝑢2 = (𝜆𝜆 + 𝜇𝜇)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝜇𝜇𝑢𝑢2 (66) 

𝜌𝜌𝑤̈𝑤 = (𝜆𝜆 + 𝜇𝜇)
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜇𝜇𝜇𝜇𝜇𝜇 (67) 

𝛥𝛥 =
𝜕𝜕2

𝜕𝜕𝑥𝑥2
+

𝜕𝜕2

𝜕𝜕𝑦𝑦2
+
𝜕𝜕2

𝜕𝜕𝑧𝑧2
 (68) 

Another variant of the equivalent system with respect to the scalar potential 𝜑𝜑 and the 
components 𝜓𝜓 of the vector potential of displacements, where: 𝑐𝑐1 and 𝑐𝑐2 – the propagation 
velocities of the waves of tension-compression and shear): 

𝜑̈𝜑 = 𝑐𝑐12𝛥𝛥𝛥𝛥,⥄⥄ 𝜓̈𝜓 = 𝑐𝑐22𝛥𝛥𝛥𝛥,⥄⥄ (69) 

𝑐𝑐12 =
𝜆𝜆 + 2𝜇𝜇
𝜌𝜌

 (70) 

𝑐𝑐22 =
𝜇𝜇
𝜌𝜌

 (71) 

𝑢𝑢1 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (72) 

𝑢𝑢2 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (73) 

𝑤𝑤 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

 (74) 

Introducing the following dimensionless quantities: 

𝑢𝑢1 = 𝑢𝑢1
𝑙𝑙

;𝑤𝑤 = 𝑤𝑤
𝑙𝑙

; 𝑥𝑥 = 𝑥𝑥
𝑙𝑙

; 𝑧𝑧 = 𝑧𝑧
𝑙𝑙

; 𝜏𝜏 = 𝑐𝑐⋅𝑡𝑡
𝑙𝑙

;𝜎𝜎11 = 𝜎𝜎11
𝐸𝐸𝑔𝑔𝑔𝑔

;𝜎𝜎13 = 𝜎𝜎13
𝐸𝐸𝑔𝑔𝑔𝑔

; 𝜎𝜎33 = 𝜎𝜎33
𝐸𝐸𝑔𝑔𝑔𝑔

; 𝜓̄𝜓 =
𝜓𝜓
𝑙𝑙2

;𝜑𝜑 = 𝜑𝜑
𝑙𝑙2

 
(75) 

All functions included in the equations of ground movement are decomposed into 
trigonometric series [32]: 

- potentials: 

𝐿𝐿 = �𝐿𝐿𝑛𝑛

∞

𝑛𝑛=1

𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆𝑛𝑛 𝑥𝑥 (76) 

𝐿𝐿 = �𝜑𝜑(𝑖𝑖), 𝜀𝜀11
(𝑖𝑖),𝜎𝜎11

(𝑖𝑖),𝜎𝜎33
(𝑖𝑖)�

𝑇𝑇
 (77) 
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𝐿𝐿𝑛𝑛 = �𝜑𝜑𝑛𝑛
(𝑖𝑖), 𝜀𝜀11𝑛𝑛

(𝑖𝑖) ,𝜎𝜎11𝑛𝑛
(𝑖𝑖) ,𝜎𝜎33𝑛𝑛

(𝑖𝑖) �
𝑇𝑇

 (78) 

𝐾𝐾 = �𝐾𝐾𝑛𝑛

∞

𝑛𝑛=0

𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑛𝑛 𝑥𝑥, (79) 

𝐾𝐾 = �𝜓𝜓
(𝑖𝑖)

, 𝜀𝜀13
(𝑖𝑖), 𝜀𝜀33

(𝑖𝑖),𝜃𝜃(𝑖𝑖),𝜎𝜎13
(𝑖𝑖)�

𝑇𝑇
 (80) 

𝐾𝐾𝑛𝑛 = �𝜓𝜓𝑛𝑛
(𝑖𝑖)

, 𝜀𝜀13𝑛𝑛
(𝑙𝑙) , 𝜀𝜀33𝑛𝑛

(𝑙𝑙) ,𝜃𝜃𝑛𝑛
(𝑙𝑙),𝜎𝜎13𝑛𝑛

(𝑖𝑖) �
𝑇𝑇

 (81) 

Taking into account the expansions into trigonometric series that satisfy the boundary 
conditions and the Laplace transform performed, the equations of ground movement, Cauchy 
relations, and the physical principle in the coefficients of the series are written as follows: 

- equations of motion: 

𝑠𝑠2𝑢𝑢1𝑛𝑛
(𝑗𝑗)𝐿𝐿 = 𝜆𝜆𝑛𝑛𝜎𝜎11𝑛𝑛

(𝑗𝑗)𝐿𝐿 +
𝜕𝜕𝜎𝜎13𝑛𝑛

(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧
 (82) 

𝑠𝑠2𝑤𝑤𝑛𝑛
(𝑗𝑗)𝐿𝐿 = 𝜆𝜆𝑛𝑛𝜎𝜎13𝑛𝑛

(𝑗𝑗)𝐿𝐿 +
𝜕𝜕𝜎𝜎33𝑛𝑛

(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧
 (83) 

- Cauchy relations: 

𝜀𝜀11𝑛𝑛
(𝑗𝑗)𝐿𝐿 = −𝜆𝜆𝑛𝑛𝑢𝑢1𝑛𝑛

(𝑖𝑖)𝐿𝐿 (84) 

𝜀𝜀33𝑛𝑛
(𝑗𝑗)𝐿𝐿 =

𝜕𝜕𝑤𝑤𝑛𝑛
(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧
 (85) 

𝜀𝜀13𝑛𝑛
(𝑗𝑗)𝐿𝐿 =;𝜃𝜃𝑛𝑛

(𝑗𝑗)𝐿𝐿
=
𝜕𝜕𝜑𝜑𝑛𝑛

(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑥𝑥
+
𝜕𝜕𝑤𝑤𝑛𝑛

(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧
 (86) 

- physical principle: 

𝜎𝜎11𝑛𝑛
(𝑗𝑗)𝐿𝐿 = 𝜆𝜆

𝜕𝜕𝑤𝑤𝑛𝑛
(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧
;𝜎𝜎13𝑛𝑛

(𝑗𝑗)𝐿𝐿 = 𝜇𝜇𝜆𝜆𝑛𝑛𝑤𝑤𝑛𝑛
(𝑗𝑗)𝐿𝐿 (87) 

𝜎𝜎33
(𝑗𝑗)𝐿𝐿 = 𝜆𝜆

𝜕𝜕𝑢𝑢1
(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑥𝑥
+ (𝜆𝜆 + 2𝜇𝜇)

𝜕𝜕𝑤𝑤 
(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧

=
𝜈𝜈𝑔𝑔𝑔𝑔

�1 + 𝜈𝜈𝑔𝑔𝑔𝑔��1 − 2𝜈𝜈𝑔𝑔𝑔𝑔�
𝜕𝜕𝑢𝑢1

(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑥𝑥
+

�1 − 𝜈𝜈𝑔𝑔𝑔𝑔�
�1 + 𝜈𝜈𝑔𝑔𝑔𝑔��1 − 2𝜈𝜈𝑔𝑔𝑔𝑔�

𝜕𝜕𝑤𝑤 
(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧
= 

= −𝛼𝛼𝜆𝜆𝑛𝑛𝑢𝑢1𝑛𝑛
(𝑗𝑗)𝐿𝐿 + 𝛾𝛾

𝜕𝜕𝑤𝑤𝑛𝑛
(𝑗𝑗)𝐿𝐿

𝜕𝜕𝑧𝑧
;𝛼𝛼 =

𝜈𝜈𝑔𝑔𝑔𝑔
�1 + 𝜈𝜈𝑔𝑔𝑔𝑔��1 − 2𝜈𝜈𝑔𝑔𝑔𝑔�

; 𝛾𝛾 =
�1 − 𝜈𝜈𝑔𝑔𝑔𝑔�

�1 + 𝜈𝜈𝑔𝑔𝑟𝑟��1 − 2𝜈𝜈𝑔𝑔𝑔𝑔�
 

(88) 

Equations of motion in potentials: 
𝜕𝜕2𝜑𝜑𝑛𝑛

𝐿𝐿

𝜕𝜕𝑧𝑧2
− 𝛽𝛽1𝑛𝑛

2𝜑𝜑𝑛𝑛
𝐿𝐿 = 0;𝛽𝛽1𝑛𝑛

2 = 𝜆𝜆𝑛𝑛
2 + 𝑠𝑠2 (89) 
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𝜕𝜕2𝜓𝜓𝑛𝑛
𝐿𝐿

𝜕𝜕𝑧𝑧2
− 𝛽𝛽2𝑛𝑛

2𝜓𝜓𝑛𝑛
𝐿𝐿

= 0;𝛽𝛽2𝑛𝑛
2 = 𝜆𝜆𝑛𝑛

2 +
𝑠𝑠2

𝜂𝜂
 (90) 

𝑢𝑢1𝑛𝑛 = 𝜆𝜆𝑛𝑛𝜑𝜑𝑛𝑛 −
𝜕𝜕𝜓𝜓𝑛𝑛
𝜕𝜕𝑧𝑧

 (91) 

𝑤𝑤𝑛𝑛 =
𝜕𝜕𝜑𝜑𝑛𝑛
𝜕𝜕𝑧𝑧

− 𝜆𝜆𝑛𝑛𝜓𝜓𝑛𝑛 (92) 

The obtained equations (82)-(92) determine the values of displacements, stresses, and 
deformations in any of the media at known potential values. 

3. RESULTS AND DISCUSSIONS 
To find the dynamic and kinematic parameters of the medium, it is necessary to determine the 
values of the vector and scalar potentials. The equations of motion of the medium with respect 
to the scalar potential 𝜑𝜑 and the components 𝜓𝜓 [32] of the vector potential of displacements 
after the corresponding expansion into series and the application of the Laplace transform will 
take the form (89), (90). The organic condition for the ground at infinity can be written as 
follows. The solutions of equations (93) satisfying the condition (89), (90) have the form: 

𝜑𝜑𝑛𝑛
𝐿𝐿(𝑧𝑧, 𝑠𝑠) = 𝑂𝑂(1);  for  𝑧𝑧 → +∞  (93) 

𝜑𝜑𝑛𝑛
(𝑗𝑗)𝐿𝐿 = 𝐶𝐶1𝑗𝑗𝑒𝑒−𝛽𝛽1𝑛𝑛𝑧𝑧 (94) 

 𝜓𝜓𝑛𝑛
(𝑗𝑗)𝐿𝐿

= 𝐶𝐶2𝑗𝑗𝑒𝑒−𝛽𝛽2𝑛𝑛𝑧𝑧 (95) 

where: C1j, C2j – integration constants; j=1, 2. Therefore, the values of the scalar and vector 
potentials for the media “1” and “2” are found: 

𝜑𝜑𝑛𝑛
(1)𝐿𝐿 = 𝐶𝐶11𝑒𝑒−𝛽𝛽𝑛𝑛𝑧𝑧 (96) 

𝜑𝜑𝑛𝑛
(2)𝐿𝐿 = 𝐶𝐶12𝑒𝑒−𝛽𝛽𝑛𝑛𝑧𝑧 (97) 

𝜓𝜓𝑛𝑛
(1)𝐿𝐿 = 𝐶𝐶21𝑒𝑒−𝛽𝛽𝑛𝑛𝑧𝑧 (98) 

𝜓𝜓𝑛𝑛
(2)𝐿𝐿 = 𝐶𝐶22𝑒𝑒−𝛽𝛽𝑛𝑛𝑧𝑧 (99) 

To solve this problem, it is necessary to set the incoming wave, which is a cylindrical 
damping wave. 

The equation of motion of the medium in potentials is written in the same way as (89), 
(90), and the boundedness condition (93). A cylindrical wave propagating from a source 
located at a point 𝑂𝑂1(0,0,− 𝑑𝑑). A cylindrical coordinate system with centre in 𝑂𝑂1, parallel axis 
𝑂𝑂𝑂𝑂, and radius is introduced: 

𝑟𝑟1 = �𝑥𝑥2 + (𝑧𝑧 + 𝑑𝑑)2, 𝑟𝑟1 =
𝑟𝑟1
𝑙𝑙

 (100) 

Assuming that 𝜑𝜑𝑎𝑎 = 𝜑𝜑𝑎𝑎(𝑟𝑟1), from (90), (91) the following equation is obtained with respect 
to this function (the strokes denote the derivative by 𝑟𝑟1): 
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1
𝑟𝑟1

𝜕𝜕
𝜕𝜕𝑟𝑟1

�𝑟𝑟1
𝜕𝜕
𝜕𝜕𝑟𝑟1

𝜑𝜑𝑎𝑎� + 𝑘𝑘12𝜑𝜑𝑎𝑎 = 0 (101) 

Its general solution has the form: 

𝜑𝜑𝑎𝑎 = 𝐴𝐴𝜑𝜑𝐻𝐻0
(2)(𝑘𝑘1𝑟𝑟1) + 𝐵𝐵𝜑𝜑𝐻𝐻0

(1)(𝑘𝑘1𝑟𝑟1),𝑘𝑘1 = 𝑖𝑖 (102) 

where: 𝐻𝐻𝜈𝜈
(1)(𝜁𝜁) and 𝐻𝐻𝜈𝜈

(2)(𝜁𝜁) – Hankel functions of order 𝜈𝜈; 𝐴𝐴𝜑𝜑 and 𝐵𝐵𝜑𝜑 are arbitrary constants. 
The radiation condition (82), (83), where should be put satisfies the solution: 

𝜑𝜑𝑎𝑎 = 𝐴𝐴𝜑𝜑𝐻𝐻0
(1)(𝑘𝑘1𝑟𝑟1) (103) 

Then the following equation for the potential is obtained: 

𝜑𝜑 = 𝐴𝐴𝜑𝜑𝐻𝐻0
(1)(𝑘𝑘1𝑟𝑟1) ⋅ 𝑒𝑒−𝜏𝜏 (104) 

Substituting this result in (82)-(92) and applying the Laplace transform, the following 
equations for displacements and stresses on the plate surface are obtained: 

𝑢𝑢∗𝐿𝐿|𝑧𝑧=0 =
𝑝𝑝∗𝑥𝑥𝑑𝑑
𝑁𝑁

1
𝑟𝑟10

𝐻𝐻1
(1)(𝑘𝑘1𝑟𝑟10)

1
𝑠𝑠 + 1

 (105) 

𝑤𝑤∗𝐿𝐿|𝑧𝑧=0 =
𝑝𝑝∗𝑑𝑑

2

𝑁𝑁
1
𝑟𝑟10

𝐻𝐻1
(1)(𝑘𝑘1𝑟𝑟10)

1
𝑠𝑠 + 1

 (106) 

𝜎𝜎11∗|𝑧𝑧=0 =
𝑝𝑝∗𝑑𝑑
𝑟𝑟102 𝑁𝑁

�(𝛾𝛾 − 𝛼𝛼)𝑟𝑟10𝐻𝐻1
(1)(𝑘𝑘1𝑟𝑟10)− 𝑘𝑘1𝑟𝑟1102 𝐻𝐻2

(1)(𝑘𝑘1𝑟𝑟10)�
1

𝑠𝑠 + 1
 (107) 

𝑟𝑟110 = �𝛾𝛾𝑥𝑥2 + 𝛼𝛼𝑑𝑑
2

 (108) 

𝜎𝜎13∗|𝑧𝑧=0 =
𝑖𝑖𝑝𝑝∗𝑑𝑑

𝑁𝑁�1 + 𝜈𝜈𝑔𝑔𝑔𝑔�
𝑥𝑥𝑑𝑑
𝑟𝑟102

𝐻𝐻2
(1)(𝑘𝑘1𝑟𝑟10)

1
𝑠𝑠 + 1

 (109) 

𝑟𝑟10 = �𝑥𝑥2 + 𝑑𝑑
2

 (110) 

𝑘𝑘1 = 𝑖𝑖 (111) 

𝜎𝜎33∗|𝑧𝑧=0 =
𝑝𝑝∗𝑑𝑑
𝑟𝑟102 𝑁𝑁

�(𝛼𝛼 + 𝛾𝛾)𝑟𝑟10𝐻𝐻1
(1)(𝑘𝑘1𝑟𝑟10)− 𝑘𝑘1𝑟𝑟3302 𝐻𝐻2

(1)(𝑘𝑘1𝑟𝑟10)�
1

𝑠𝑠 + 1
 (112) 

𝑟𝑟330 = �𝛼𝛼𝑥𝑥2 + 𝛾𝛾𝑑𝑑
2

 (113) 

𝑟𝑟330 = �𝛼𝛼𝑥𝑥2 + 𝛾𝛾𝑑𝑑
2

 (114) 

𝑟𝑟10 = �𝑥𝑥2 + 𝑑𝑑
2

 (115) 
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𝑟𝑟110 = �𝛾𝛾𝑥𝑥2 + 𝛼𝛼𝑑𝑑
2

 (116) 

To determine the integration constants in (96)-(99), it is necessary to write down the 
contact conditions of the plate and the ground, similarly to [33]: 

- pressures and stresses at the boundaries with media “1” and “2”: 

𝑝𝑝1𝑛𝑛𝐿𝐿 (𝑧𝑧, 𝑠𝑠) = �−𝜎𝜎33𝑛𝑛
(1)𝐿𝐿(𝑧𝑧, 𝑠𝑠) + 𝑝𝑝∗𝑛𝑛(𝑧𝑧, 𝑠𝑠)��

𝑧𝑧=0
 (117) 

𝜎𝜎33∗|𝑧𝑧=0 = 𝑝𝑝∗𝑛𝑛 (118) 

𝑝𝑝2𝑛𝑛𝐿𝐿 (𝑧𝑧, 𝑠𝑠) = −𝜎𝜎33𝑛𝑛
(2)𝐿𝐿(𝑧𝑧, 𝑠𝑠)�

𝑧𝑧=0
 (119) 

𝜎̄𝜎13𝑛𝑛
(1) (𝑧𝑧, 𝑠𝑠)�

𝑧𝑧=0
= 𝜎̄𝜎13∗𝑛𝑛(𝑧𝑧, 𝑠𝑠)|𝑧𝑧=0 (120) 

- normal displacements: 

𝑤𝑤0𝑛𝑛
(1)𝐿𝐿(𝑧𝑧, 𝑠𝑠) = �−𝑤𝑤𝑛𝑛

(1)𝐿𝐿(𝑧𝑧, 𝑠𝑠) + 𝑤𝑤𝑛𝑛∗𝐿𝐿 (𝑧𝑧, 𝑠𝑠)��
𝑧𝑧=0

 (121) 

𝑤𝑤0𝑛𝑛
(2)𝐿𝐿(𝑧𝑧, 𝑠𝑠) = 𝑤𝑤𝑛𝑛

(2)𝐿𝐿(𝑧𝑧, 𝑠𝑠)�
𝑧𝑧=0

 (122) 

𝑢𝑢0𝑛𝑛
(1)𝐿𝐿(𝑧𝑧, 𝑠𝑠) = �−𝑢𝑢𝑛𝑛

(1)𝐿𝐿(𝑧𝑧, 𝑠𝑠) + 𝑢𝑢∗(𝑧𝑧, 𝑠𝑠)��
𝑧𝑧=0

 (123) 

Taking into account the integration constants obtained in (60)-(64), the values of normal 
and tangential displacements, as well as stresses in the media “1” and “2”, will take the form: 

- stresses in media “1” and “2”: 

𝜎𝜎33𝑛𝑛
(1)𝐿𝐿 = �−𝛼𝛼𝜆𝜆𝑛𝑛

2 + 𝛾𝛾𝛽𝛽1𝑛𝑛
2�𝐶𝐶11 ⋅ 𝑒𝑒𝛽𝛽1𝑛𝑛𝑧𝑧 + (𝛼𝛼 − 𝛾𝛾)𝜆𝜆𝑛𝑛𝛽𝛽2𝑛𝑛𝐶𝐶21 ⋅ 𝑒𝑒𝛽𝛽2𝑛𝑛𝑧𝑧 (124) 

𝜎𝜎33𝑛𝑛
(2)𝐿𝐿 = �−𝛼𝛼𝜆𝜆𝑛𝑛

2 + 𝛾𝛾𝛽𝛽1𝑛𝑛
2�𝐶𝐶12 ⋅ 𝑒𝑒−𝛽𝛽1𝑛𝑛𝑧𝑧 + (𝛾𝛾 − 𝛼𝛼)𝜆𝜆𝑛𝑛𝛽𝛽2𝑛𝑛𝐶𝐶22 ⋅ 𝑒𝑒−𝛽𝛽2𝑛𝑛𝑧𝑧 (125) 

𝜎𝜎13𝑛𝑛
(1) =

1
�1 + 𝜈𝜈𝑔𝑔𝑔𝑔�

�2𝜆𝜆𝑛𝑛𝛽𝛽1𝑛𝑛𝐶𝐶11𝑒𝑒𝛽𝛽1𝑛𝑛𝑧𝑧 − 𝐶𝐶21�𝛽𝛽22𝑛𝑛 + 𝜆𝜆2𝑛𝑛�𝑒𝑒𝛽𝛽2𝑛𝑛𝑧𝑧� (126) 

𝜎𝜎13𝑛𝑛
(2) = −

1
�1 + 𝜈𝜈𝑔𝑔𝑔𝑔�

�2𝜆𝜆𝑛𝑛𝛽𝛽1𝑛𝑛𝐶𝐶12𝑒𝑒−𝛽𝛽1𝑛𝑛𝑧𝑧 + 𝐶𝐶22�𝛽𝛽22𝑛𝑛 + 𝜆𝜆2𝑛𝑛�𝑒𝑒−𝛽𝛽2𝑛𝑛𝑧𝑧� (127) 

- stresses in media “1” and “2”: 

𝑤𝑤𝑛𝑛
(1)𝐿𝐿 = 𝛽𝛽1𝑛𝑛𝐶𝐶11 ⋅ 𝑒𝑒𝛽𝛽1𝑛𝑛𝑧𝑧 − 𝜆𝜆𝑛𝑛𝐶𝐶21 ⋅ 𝑒𝑒𝛽𝛽2𝑛𝑛𝑧𝑧 (128) 

𝑤𝑤𝑛𝑛
(2)𝐿𝐿 = −𝛽𝛽1𝑛𝑛𝐶𝐶12 ⋅ 𝑒𝑒−𝛽𝛽1𝑛𝑛𝑧𝑧 − 𝜆𝜆𝑛𝑛𝐶𝐶22 ⋅ 𝑒𝑒−𝛽𝛽2𝑛𝑛𝑧𝑧 (129) 

𝑢𝑢1𝑛𝑛
(1)𝐿𝐿 = 𝜆𝜆𝑛𝑛𝐶𝐶11 ⋅ 𝑒𝑒𝛽𝛽1𝑛𝑛𝑧𝑧 − 𝛽𝛽2𝑛𝑛𝐶𝐶21 ⋅ 𝑒𝑒𝛽𝛽2𝑛𝑛𝑧𝑧 (130) 
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𝑢𝑢1𝑛𝑛
(2)𝐿𝐿 = 𝜆𝜆𝑛𝑛𝐶𝐶12 ⋅ 𝑒𝑒−𝛽𝛽1𝑛𝑛𝑧𝑧 + 𝛽𝛽2𝑛𝑛𝐶𝐶22 ⋅ 𝑒𝑒−𝛽𝛽2𝑛𝑛𝑧𝑧 (131) 

Substituting in the contact conditions (102) and (103) the values of the displacements of 
the bearing layers of the plate (39)-(41) and the displacements and stresses in the media “1” 
and “2” (104)-(116), the values of the constants are obtained: 

𝐶𝐶11 =
𝑅𝑅1(𝑠𝑠8)
𝑅𝑅2(𝑠𝑠11) (132) 

𝐶𝐶21 =
𝑅𝑅3(𝑠𝑠7)
𝑅𝑅4(𝑠𝑠11) (133) 

𝐶𝐶12 =
𝑅𝑅5(𝑠𝑠24)
𝑅𝑅6(𝑠𝑠25) (134) 

𝐶𝐶22 =
𝑅𝑅7(𝑠𝑠13)
𝑅𝑅8(𝑠𝑠14) ; (135) 

𝜆𝜆𝑛𝑛 = 𝜋𝜋𝜋𝜋;𝛽𝛽1𝑛𝑛2 = 𝜆𝜆𝑛𝑛2 + 𝑠𝑠2;𝛽𝛽2𝑛𝑛2 = 𝜆𝜆𝑛𝑛2 +
𝑠𝑠2

𝜂𝜂2
 (136) 

Substituting (132)-(136) in (128)-(131), the values of normal and tangent displacements 
in the medium “2” are obtained: 

𝑤𝑤𝑛𝑛
(2)𝐿𝐿 = −𝛽𝛽1𝑛𝑛(𝑠𝑠)

𝑅𝑅5(𝑠𝑠24)
𝑅𝑅6(𝑠𝑠25) ⋅ 𝑒𝑒

−𝛽𝛽1𝑛𝑛𝑧𝑧 − 𝜆𝜆𝑛𝑛
𝑅𝑅7(𝑠𝑠13)
𝑅𝑅8(𝑠𝑠14) ⋅ 𝑒𝑒

−𝛽𝛽2𝑛𝑛𝑧𝑧 (137) 

𝑢𝑢1𝑛𝑛
(1)𝐿𝐿 = 𝜆𝜆𝑛𝑛

𝑅𝑅1(𝑠𝑠8)
𝑅𝑅2(𝑠𝑠11) ⋅ 𝑒𝑒

𝛽𝛽1𝑛𝑛𝑧𝑧 − 𝛽𝛽2𝑛𝑛(𝑠𝑠)
𝑅𝑅3(𝑠𝑠7)
𝑅𝑅4(𝑠𝑠11) ⋅ 𝑒𝑒

𝛽𝛽2𝑛𝑛𝑧𝑧 (138) 

𝑢𝑢1𝑛𝑛
(2)𝐿𝐿 = 𝜆𝜆𝑛𝑛

𝑅𝑅5(𝑠𝑠24)
𝑅𝑅6(𝑠𝑠25)

⋅ 𝑒𝑒−𝛽𝛽1𝑛𝑛𝑧𝑧 + 𝛽𝛽2𝑛𝑛(𝑠𝑠)
𝑅𝑅7(𝑠𝑠13)
𝑅𝑅8(𝑠𝑠14)

⋅ 𝑒𝑒−𝛽𝛽2𝑛𝑛𝑧𝑧 (139) 

Since the solution turns out to be extremely cumbersome, a tracking notation is adopted. 
𝑅𝑅𝑖𝑖�𝑠𝑠𝑘𝑘� – the polynomials that arise when finding the values of the displacements. This form 
of writing would allow evaluating the structure of the resulting equations. 

The inverse Laplace transform must be applied to the obtained results (137)-(139). As is 
known from [34], [35], the inversion of the Laplace transform is easily performed in the case 
of a bounded domain and no branching point. However, in this case the domain is unbounded 
and the functions (102) contain branching points, thus, it becomes obvious that analytical 
inversion is impossible. 

To reverse the function, the Durbin method [36] is used, where variables are replaced, 
based on the representation of exponential functions in the form of trigonometric functions 
and taking into account the features of these functions. As a result, any function is drawn by 
the following formula: 

𝑓𝑓(𝑡𝑡) =
2𝑒𝑒𝜎𝜎𝜎𝜎

𝜋𝜋
� 𝑅𝑅𝑅𝑅 𝑓𝑓𝐿𝐿 (𝜎𝜎 + 𝑖𝑖𝑖𝑖) 𝑐𝑐𝑐𝑐𝑐𝑐 𝜔𝜔 𝑡𝑡
𝛺𝛺

0
𝑑𝑑𝑑𝑑 (140) 

where the integral is calculated numerically. As an example, a plate with the following 
parameters is considered: length l = 1 m, the thickness of the bearing stratum t = 0.15 mm, the 



129 Unsteady dynamics of a sandwich plate under the influence of a cylindrical wave in an elastic medium 
 

INCAS BULLETIN, Volume 13, Special Issue/ 2021 

thickness of the core h = 1.4 mm (Figure 1). Material of the bearing layers – steel 12X18N10T: 
𝐸𝐸 = 1.8 ⋅ 1010𝑘𝑘𝑘𝑘/𝑚𝑚2,𝜌𝜌𝑏𝑏 = 7900𝑘𝑘𝑘𝑘/𝑚𝑚3, 𝜈𝜈 = 0.29, core material – Amg2-N: 𝐸𝐸𝑧𝑧 = 7.1 ⋅
109𝑘𝑘𝑘𝑘/𝑚𝑚2,𝜌𝜌𝑧𝑧 = 2690𝑘𝑘𝑘𝑘/𝑚𝑚3; 𝜈𝜈𝑧𝑧 = 0.32,𝑎𝑎𝑧𝑧 = 6 ⋅ 10−3𝑚𝑚;𝑑𝑑𝑑𝑑 = 0.05 ⋅ 10−3𝑚𝑚;𝜑𝜑 = 120. 
Where 𝑎𝑎𝑧𝑧 – the length of the core wall, 𝑑𝑑𝑑𝑑 – the thickness of the core wall, 𝜑𝜑 – the angle 
between the walls of the core. 
The ground has the following parameters [37]: density – 𝜌𝜌𝑔𝑔𝑔𝑔 = 1600𝑘𝑘𝑘𝑘/𝑚𝑚3, elasticity 
modulus – 𝐸𝐸𝑔𝑔𝑔𝑔 = 109𝑘𝑘𝑘𝑘/𝑚𝑚2. 
As a result of the calculations, a graph of normal displacements and stresses at the boundary 
of the plate with the media “1” and “2” as a function of time 𝜏𝜏 is obtained (Figure 2). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a      b 

Fig. 1 – Normal displacements in the a) incoming wave 𝑤𝑤∗;  𝑏𝑏) transmitted wave in the medium “2” 𝑤𝑤 
(2) 

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

a       b 

Fig. 2 – Tangential displacements in the а) incoming wave 𝑢𝑢∗
(2);  

b)Tangential displacements in the medium “2” 𝑢𝑢1
(2) 

4. CONCLUSIONS 
As a result of the interaction of the damped cylindrical wave with the plate in the media “1” 
and “2”, the transmitted and reflected waves are induced. As a result of solving the equations 
of motion in potentials, the scalar and vector potentials of displacements in the media “1” and 
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“2” are determined. In addition, from the equations of motion of the medium in the potentials, 
the stresses and displacements in the incoming cylindrical wave are determined. As the 
conditions for the contact of the plate and the ground, the equality of normal displacements at 
the boundary of the medium and the plate is assumed. It is also assumed that the pressure 
amplitudes and normal stresses coincide. After determining the constants from the contact 
conditions, it becomes possible to determine the values of the scalar and vector potentials of 
the displacement field, through which the displacements at any point of the medium located 
behind the plate are unambiguously expressed. Next, the inverse Laplace transform is 
performed and the sums of the Fourier series for the displacement of stresses in both media 
are found. The solution of the problem in a related form allows taking into account not only 
the vibration-absorbing properties of the plate itself, but also the behaviour of the soil, and the 
features of the incoming cylindrical wave. The results obtained allows one to determine the 
values of the integration constants based on the contact conditions, knowing which it becomes 
possible to determine the kinematic and dynamic parameters at any point of the media 
surrounding the plate and, accordingly, to evaluate its vibration-absorbing properties. 
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