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Abstract: This paper presents the analysis of the unsteady flows past stationary airfoils equipped with 

Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior of the aerodynamic 

coefficients due to the flow separations occurring at these Reynolds numbers. The Gurney flaps are 

simple but very efficient lift-increasing devices, which due to their mechanical simplicity are of 

particular interest for the small size micro-air-vehicles (MAV) flying at low speed and very low 

Reynolds number. The unsteady aerodynamic analysis is performed with an efficient time-accurate 

numerical method developed for the solution of the Navier-Stokes equations at low Reynolds numbers, 

which is second-order-accurate in time and space. The paper presents solutions for the unsteady 

aerodynamic coefficients of lift and drag and for the lift-to-drag ratio of several symmetric and 

cambered airfoils with Gurney flaps. It was found that although the airfoil is considered stationary, 

starting from a relatively small incidence (about 8 degrees) the flow becomes unsteady due to the 

unsteadiness of the flow separations occurring at low Reynolds numbers, and the aerodynamic 

coefficients display periodic oscillations in time. A detailed study is presented in the paper on the 

influence of various geometric and flow parameters, such as the Gurney flap height, Reynolds 

number, airfoil relative thickness and relative camber, on the aerodynamic coefficients of lift, drag 

and lift-to-drag ratio. The flow separation is also studied with the aid of flow visualizations 

illustrating the changes in the flow pattern at various moments in time. 
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1. INTRODUCTION 

The Gurney flap is a mechanically simple lift-increasing device, consisting of a small tab 

attached at the trailing edge of an airfoil (or wing), on its pressure side, and perpendicular to 

its chord. Originally installed by Dan Gurney in early 1970s on the rear inverted wing of a 

racing car, the Gurney flap was proven to increase the wing lift, which is usually associated 
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with a small increase of its drag, resulting in a significant increase of its lift-to-drag ratio, 

when the flap height is only a small percentage (1% to 4%) of the wing chord. The lift 

increase is mainly due to the fact that the Gurney flap increases the effective camber of the 

airfoil and decelerates the flow on the lower side, while accelerating the flow on the upper 

side. In addition to its beneficial effect on the aerodynamic performance of the wing, this 

device has the advantage of a very low manufacturing and maintenance cost. 

For these reasons, Gurney flaps have been thoroughly studied by many authors. Liebeck 

[1] first found that a Gurney flap installed on the inverted rear wing of a car increased 

substantially its lift and the racing car performance. Numerical solutions have also been 

obtained for airfoils with Gurney flaps and they were found in good agreement with the 

experimental results. Jang [2] has shown that for some configurations, such as a NACA 4412 

airfoil with a 1.25% Gurney flap, the lift is higher and the drag is lower than for the airfoil 

without flap. However, for large size flaps, the aerodynamic performance is compromised by 

a large increase in drag. It has been shown that for optimal use, the flap height should be in 

the range of 1% to 4% of the airfoil chord [3]. 

Recently, some experimental studies have shown that the positive aerodynamic effects 

of Gurney flaps can be enhanced by using perforated flaps or combining them with 

harmonically deflected trailing edge flaps [4, 5]. 

All the above studies have been performed for relatively large Reynolds numbers. 

However, due to its mechanical simplicity, the utilization of Gurney flap is of particular 

interest for the small size micro-air-vehicles (MAV) flying at low speed, for which the 

Reynolds number is between 600 and 6000. 

Several studies on the steady flows past airfoils without flaps at low Reynolds number 

have been published by Kunz & Kroo [6], and Mateescu & Abdo [7, 8] for airfoils in free 

flight, and by Mateescu et al [9] for airfoils in the proximity of the ground. 

The unsteady flows past airfoils without flap executing pitching oscillations at low 

Reynolds numbers has been recently studied by Mateescu et al. [10] by using an efficient 

time-accurate method. The unsteady flow at low Reynolds numbers past oscillating airfoils 

in the proximity of the ground has been studied by Mateescu et al. [11]. 

More recently, Mateescu et al. [12] have studied the unsteady effects on stationary 

airfoils that are generated by the unsteady flow separations developed at low Reynolds 

numbers. It was found that starting from relatively small angles of attack (6 or 8 degrees) the 

aerodynamic coefficients become unsteady due to the unsteadiness of the flow separations at 

low Reynolds numbers. The new numerical method has been validated by comparison with 

experiments. 

The first attempt to study the effect of Gurney flaps in steady flows at low Reynolds 

numbers has been published by Dumitrescu & Malael [13], which calculated the steady lift 

and drag coefficients for the NACA 4404 airfoil at angles of attack up to 8 degrees, for 

several flap sizes by using a steady flow solver. 

The present study is dedicated to the analysis of the unsteady flows past airfoils 

equipped with Gurney flaps at low Reynolds numbers, aiming to study the unsteady behavior 

of the aerodynamic coefficients due to the flow separations occurring at these Reynolds 

numbers. This analysis is performed with an efficient time-accurate numerical method 

developed by the author for the solution of the unsteady Navier-Stokes equations at low 

Reynolds numbers, which is second-order-accurate in time and space. A second-order three-

point-backward implicit scheme is used first for the real time discretization, followed by a 

pseudo-time relaxation procedure using artificial compressibility and a factored Alternating 

Direction Implicit (ADI) scheme for the pseudo-time integration. A second order central 
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finite difference formulation is used on a stretched staggered grid (which avoids the odd-and-

even points decoupling). A special decoupling procedure using the continuity equation 

reduces the problem to the solution of scalar tridiagonal systems of equations, which 

enhances substantially the computational efficiency of the method. Solutions for the lift and 

drag coefficients and for the lift-to-drag ratio are presented for several symmetric and 

cambered NACA airfoils equipped with Gurney flaps at different Reynolds numbers. 

At somewhat larger angles of attack (above 8 degrees, depending on the airfoil geometry 

and flap size), the lift and drag coefficients display oscillations in time which are generated 

by the unsteady flow separations developed at low Reynolds numbers. The influence of 

various geometric and flow parameters, such as the flap size, Reynolds number, angle of 

attack and the airfoil relative thickness and camber, is also studied in this paper. 

2. PROBLEM FORMULATION 

Consider a cambered airfoil of chord c  placed at an incidence   in a uniform stream of 

velocity U , as shown in Figure 1. The airfoil, which is equipped with a Gurney flap of 

height lc ,  is referred to a Cartesian reference system of coordinates xc , yc , where x  and 

y  are nondimensional coordinates (with respect to the chord c ), with the x-axis along the 

airfoil chord and its origin at the airfoil leading edge. The airfoil upper and lower surfaces 

are defined by the equations  

     xexhxey  1         and            xexhxey  2 , (1) 
 

where the subscripts 1 and 2 refer to the upper and lower surfaces, and where  xh  and 

 xe  define, respectively, the camberline and the airfoil thickness variation along the airfoil 

chord. The special case of symmetric airfoils is characterized by      xexexe  21  and 

  0xh . The viscous fluid flow past the oscillating airfoil is referred to a fixed Cartesian 

reference system of coordinates ξc , c  defined by the equations  

 sincos yx  ,  cossin y , (2) 
 

where   and   are nondimensional coordinates with respect to the airfoil chord c , with 

the  -axis parallel to the uniform stream velocity U , which is inclined with the angle   

with respect to the airfoil chord (as shown in Figure 1).  

Let uU  and vU  denote the fluid velocity components along the fixed  - and  -

axes, where u  and v  are the nondimensional velocity components with respect to U . 

The time-dependent Navier-Stokes and continuity equations for the incompressible flow 

past the airfoil can be expressed in nondimensional conservation form as 

0VQ
V





),( p

t
 ,         0













vu
V  , (3) 

where cUtt  *  is the nondimensional time ( *t  is the dimensional time),  T
,vuV  

represents the vector of the dimensionless velocity components and ),( pVQ , which 

includes the convective derivative, pressure and viscous terms, can be expressed in 2-D 

Cartesian coordinates in the form 

      T
,,,,,, pvuQpvuQp vuVQ  , (4) 
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where p  is the dimensionless pressure, nondimensionalized with respect to 
2

U , and 

 UcRe  is the Reynolds number based on the chord length (   and   are the fluid 

density and kinematic viscosity). 

In the present computational analysis we focus our attention on flows at low Reynolds 

numbers, in which the viscous effects play a very important role. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Geometry of an airfoil placed in a uniform flow at the angle of attack  . 

The problem is solved in a rectangular computational domain with six sub-domains, 

which is obtained from the physical domain indicated in Figure 2 by a geometrical 

transformation defined as 

  ,gX   ,    ,fY   , (6) 

where   ,g  and   ,f  are defined for each domain in the following forms. 

Domain 1 (for 0x  and 10 H ):    0

0 sincos

sincos
, L

L
g









 ,      ,f , (7a) 

Domain 2 (for 0x  and 02  H ):   0

0 sincos

sincos
, L

L
g




 ,   ,f , (7b) 

Domain 3 (for 10  x  and   11 Hyxe  ):  
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(7c) 

Domain 4 (for 10  x  and  xeyH 22  ):  
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(7d) 

Domain 5 (for 1x  and 1sin H  ):  
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Domain 6 (for 1x  and  sin2 H ):  

    11
1sincos

1sincos
, 1

1



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 L
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, H
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f




 , 

(7f) 

In equations (7), 1H  and 2H  are the nondimensional physical coordinates of 

the upper and lower far-field boundaries of the computational domain (which are considered 

equal in the specific numerical applications presented further, HHH  21 ), while 0L  

and 1L  are the nondimensional physical coordinates of the inflow and outflow 

boundaries, as shown in Figure 2.  

In the computational domain  YX , , the upstream inflow and downstream outflow 

boundaries and the upper and lower boundaries are defined by the same nondimensional 

coordinates 0LX  , 1LX   and 1HY  , 2HY  , respectively. The height of the 

Gurney flap in the computational domain is     sincos 22  HHl , that is lY . 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 2. Geometry of the computational domain  YX ,  defined by the transformations (6)-(7). 

The Navier-Stokes and continuity equations can be expressed in the computational 

domain, as  

0VG
V

 ),( p
t


 ,  0VD  , (8) 
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where 

 T
,vuV ,        T

,,,,,, pvuGpvuGp vuVG , (9) 
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3427 V , (12) 

in which the expressions of the coefficients 1C , 2C , . . . , 7C  are obtained for each domain 

from the coordinate transformations (6) - (7). 

In order to study the unsteady flow past stationary airfoils with Gurney flaps at low 

Reynolds numbers, the Navier-Stokes momentum equation is first discretized in real time 

based on a second-order three-point-backward implicit scheme: 

tt

n















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2

43
1 1nn1n

VVVV
 , (13) 

where the superscripts 1n , n  and 1n  indicate three consecutive time levels, and 
11   nnnn ttttt  represents the real time step. Thus, equations (8) – (12) can be 

expressed at the time level 
1nt  in the form  

nnn
FGV

11    ,       01
V

nD  , (14) 

where 32 t ,  111 ,   nnn pVGG  and   34 1 nnn
VVF . 

An iterative pseudo-time relaxation procedure with artificial compressibility is then used 

in order to advance the solution of the semi-discretized equations from the real time level 
nt  

to 
1nt  in the form 

n
FGV

V
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
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 , (15) 

where  V


 and  p


 denote the pseudo-functions corresponding to the variable velocity 

and pressure at pseudo-time  , between the real time levels 
nt  and 

1nt , and   represents 

an artificially-added compressibility. 

An implicit Euler scheme is then used to discretize equations (15) between the pseudo-

time levels   and   1 , and the resulting equations are expressed in terms of the 

pseudo-time variations 
 uuu


 1
, 

 vvv


 1
,  ppp


 1 , in the matrix form 

   SfDDI   YX , (16) 

where  T
,, pvu f , 32 t , I is the identity matrix, and where 
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in which the differential operators M  and N  are defined as 
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where   can be u , v  or p . 

The optimal value of the artificial compressibility,  , and the size of the pseudo-time 

step,  , are determined, as indicated in our previous papers [7, 8], based on the 

characteristic propagation velocity in the axial direction,    

2
qq , as  







22

1

q
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 , (20) 

where q  is a representative velocity of the unsteady flow, x  is an average value of the 

mesh size and C  is the Courant-Friedrichs-Levy number (between 30 and 40 is considered). 

The resulting values for   and   are eventually optimized by numerical experimentation.  

A factored Alternating Direction Implicit (ADI) scheme is used to separate equation 

(17) into two successive sweeps in the Y  and X  directions, defined by equations  

  SfDI   *Y  ,            *ffDI  X  , (21) 

where  T
**,*,* pvu f  is a convenient intermediate variable vector. 

These equations are further spatially discretized by central differencing on a stretched 

staggered grid, in which the flow variables u , v  and p  are defined at different positions. By 

using a staggered grid, this method avoids the odd-and-even point decoupling while 

preserving the second-order accuracy in space of the method. The grid stretching is defined 

by hyperbolic sine functions in the X  and Y  directions. 

A special decoupling procedure (Mateescu & Abdo [8]), based on the continuity 

equation, is used for each sweep to eliminate the pressure from the momentum equations. 

The following relations, which are derived using equations (21) and (17) - (19) from the 

continuity equation expressed for each sweep, 
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


*  , (22) 

are used to eliminate the pseudo-time variations of the pressure from the systems of 

equations for the pseudo-time variations of the velocity components in each sweep. 

In this manner, the problem is reduced to the solution of two sets of decoupled scalar 

tridiagonal systems of equations, for each sweep. As a result, this method is characterized by 

excellent computational efficiency and accuracy. 



Dan MATEESCU 118 
 

INCAS BULLETIN, Volume 7, Issue 4/ 2015 

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Cp

x

Present Computational Solution

Dumitrescu & Malael (2010)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8

CL

α

Present computational solution

Dumitrescu & Malael (2010)

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

CL/CD

α

Present computational solution

Dumitrescu & Malael (2010)

3. METHOD VALIDATION FOR STEADY FLOWS PAST AIRFOILS  

WITH GURNEY FLAPS 

The numerical method is validated by comparison with the results for steady flows obtained 

by Dumitrescu & Malael [13], the only published results for airfoils with Gurney flaps at low 

Reynolds numbers (no other numerical or experimental studies on airfoils with Gurney flaps 

at low Reynolds numbers are known). They used in their study a steady flow solver and 

restricted their computations to angles of attack smaller than 8 degrees; thus they did not find 

the oscillatory behaviour of the aerodynamic coefficients that is generated by the unsteady 

flow separations occurring at low Reynolds numbers (discussed further is the next section). 

The present solution for the pressure coefficient distribution, pC , along the upper and 

lower sides of a NACA 4404 airfoil with a Gurney flap of height %2l  at the angle of 

attack 4  and Reynolds number Re=1000 is compared in Figure 3 with the results 

obtained in [13]; a reasonable good agreement can be observed between these results. 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Method validation: Present solution for the pressure coefficient distribution, 

pC ,  

along the NACA 4404 airfoil with a Gurney flap of height %2l  at 4  and Re=1000,  

compared with the results obtained in [13]. 

The present solutions for the lift coefficient, LC , and the lift-to-drag ratio, DL CC , of a 

NACA 4404 airfoil equipped with a Gurney flap of height %2l , at Reynolds number 

Re=1000, are also compared in Figure 4 with the results obtained in [13]. 
 

 

 

 

 

 

 

 
 

 
Figure 4. Method validation: Present solution for the variations with the angle of attack,  , of the  

lift coefficient, LC , and the lift-to-drag ratio, 
DL CC , of the NACA 4404 airfoil with a Gurney flap  

of height %2l  at 4  and Re=1000, compared with the results obtained in [13]. 
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For steady flows, the influence of the Gurney flap height, l , on the lift and drag 

coefficients, LC  and DC , is illustrated in Figure 5 for a NACA 0002 airfoil at Reynolds 

number Re=1000. One can notice that both LC  and DC  are increasing with the flap height 

l . However, the increase in the lift coefficient is much larger than the increase in drag, and 

thus the lift-to-drag ratio, DL CC , is substantially increasing with the Gurney flap height, as 

it can be seen in Figure 6. 
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Figure 5. Influence of the Gurney flap height, l . Typical variations with the angle of attack,  ,  

of the lift and drag coefficients, 
LC  and DC , for the NACA 0002 airfoil at Re=1000  

for various flap heights, from %0l  (airfoil without flap) to %4l . 
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Influence of the Gurney flap height, l . Typical variation with  , of the lift-to-drag ratio, DL CC , for 

the NACA 0002 airfoil at Re=1000 for various flap heights, from %0l  to %4l . 
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4. UNSTEADY EFFECTS ON AIRFOILS WITH GURNEY FLAPS DUE TO 

THE FLOW SEPARATIONS AT LOW REYNOLDS NUMBERS 

The unsteady flow analysis indicates however that at larger angles of attack the flow past the 

airfoil becomes unsteady due to the unsteadiness of the flow separations occurring on the 

airfoil upper side at low Reynolds numbers. As a result, the aerodynamic coefficients of the 

airfoils with Gurney flaps, computed with the numerical method discussed, display 

oscillations in time at larger angles of attack. The typical variations with the non-

dimensional time cUtt  *  (where *t  is the dimensional time) of the lift and drag 

coefficients, LC  and DC , and of the lift-to-drag ratio, DL CC , are illustrated in Figures 7 

and 8 for the symmetric airfoil NACA 0004 equipped with a 2% Gurney flap ( %2l ) at 

Reynolds number Re=1000 for various values of the angle of attack,  , in comparison with 

the same airfoil without flap ( %0l ). One can notice that the lift and drag coefficients of 

the airfoil with Gurney flap display oscillations in time at incidences larger than 8 , and 

the oscillation amplitudes increase substantially with the angle of attack,  . The amplitudes 

of these oscillations of the aerodynamic coefficients, as well as their mean values are much 

larger than in the case of the same airfoil without flap. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Typical time variations of the lift and drag coefficients, LC  and DC , for the NACA 0004 airfoil with a 

2% Gurney flap ( %2l ) at Reynolds number Re=1000, for various values of the angle of attack,  ,  

in comparison with the same airfoil without flap ( %0l ). 
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Figure 8. Typical time variations of the lift-to-drag ratio, 

DL CC , for a symmetric NACA 0004 airfoil with a 2% 

Gurney flap ( %2l ) at Reynolds number Re=1000, compared with the airfoil without flap ( %0l ). 

The periodic variations of the aerodynamic coefficients, which are illustrated in Figure 

7, are consistent with the unsteady flow separation patterns illustrated by the flow 

visualizations shown in Figure 9 at several moments in time for the angle of attack 10 .  

In this figure, the lines represent the streamlines of the flows, and the color shades 

indicate the local value of the non-dimensional flow velocity (with respect to the free stream 

velocity U ). 

One can notice that the complexity of the unsteady flow separations increases with the 

increase in the angle of attack. 

Influence of the Reynolds number 

The influence of the Reynolds number can be seen by comparing the Figures 10, which 

present the variations with the nondimensional time cUtt  *  of the lift and drag 

coefficients, LC  and DC , for the Reynolds numbers Re=600 and Re=1500, with the Figure 

7 presenting the results for Re=1000. 

One can notice that the amplitudes of oscillations of the aerodynamic coefficients, as 

well as their mean averages, increase substantially with the increase in the Reynolds number. 

For Re=1500, the variations in time of the aerodynamic coefficients at the angle of 

attack 16 , although periodic, becomes more complex than a simple harmonic 

oscillation, which is due to the increase in the complexity of the unsteady flow separations 

with the increase in the angle of attack. 

One can also notice that the stall conditions are reached in this case between 
14  

and 16 , with the lift coefficient decreasing for 16  while the drag coefficient is still 

increasing. 
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Figure 9. Illustration of the flow separations for NACA 0004 airfoil with a 2% Gurney flap  

( %2l ) at various moments in time for 10  and 14  at Reynolds number Re=1000.  

The lines are the streamlines and the color shades indicate the nondimensional velocity field ( UV ). 
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Figure 10. The time variations of the lift and drag coefficients, 
LC  and 

DC , for the symmetric  

NACA 0004 airfoil equipped with a 2% Gurney flap ( %2l ) at Reynolds numbers Re=600 and Re=1500, 

for various angles of attack,  , in comparison with the same airfoil without flap ( %0l ). 
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Influence of the Gurney flap size 

The influence of the Gurney flap height, l , is illustrated in Figure 11, which presents the 

variations with the non-dimensional time cUtt  *  of the lift and drag coefficients, LC  

and DC , for two values of the flap height, %1l  and %3l , at the Reynolds number 

Re=1000 and for various values of the angle of attack,  . 

As expected, the lift and drag coefficients are both increasing with the increase in the 

height of the Gurney flap, l , but the lift coefficient is increasing more than the drag 

coefficient. As a result, the lift-to-drag ratio increases with the increase in the Gurney flap 

height from %1l  to %3l . The study of the effect of the Gurney flap height, l , can be 

extended by comparing Figure 10 with the results presented in Figure 7 for %2l  and 

%0l , which confirm the conclusions stated above. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 11. Influence of the Gurney flap height, l . The time variations of the lift and drag coefficients, LC  and 

DC , for the symmetric NACA 0004 airfoil with a 1% Gurney flap ( %1l ) at Reynolds number Re=1000,  

for various angles of attack,  , in comparison with a 3% Gurney flap ( %3l ). 

Influence of the airfoil thickness 

The influence of the airfoil thickness is illustrated in Figure 12, which presents the variations 

with the non-dimensional time cUtt  *  of the lift and drag coefficients, LC  and DC , for 

two symmetric airfoils, NACA 0002 and NACA 0004, equipped with 2% Gurney flaps at 

Reynolds number Re=1000 for various values of the angle of attack,  . 

One can notice that the lift coefficient of the thinner airfoil is larger, leading to a slightly 

larger lift-to-drag ratio. 
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Figure 12. Influence of the airfoil thickness. The time variations of the lift and drag coefficients,  

LC  and DC , for two symmetric airfoils, NACA 0002 and NACA 0004, with 2% Gurney flaps ( %2l )  

at Reynolds number Re=1000, for various angles of attack,  . 

Unsteady flow solutions for cambered airfoils and the influence of the relative camber 

Figure 13 shows the variations with the nondimensional time cUtt  *  of the lift and drag 

coefficients, LC  and DC , for the cambered airfoil NACA 4404 equipped with a 2% Gurney 

flap ( %2l ) at Reynolds number Re=1000 for various values of the angle of attack,  . In 

order to evaluate the influence of the relative camber, the results for the symmetric airfoil 

NACA 0004, of the same relative thickness and zero camber, equipped also with a 2% 

Gurney flap, are shown in the same figure for comparison. As expected, the lift coefficient of 

the cambered airfoil is larger than that of the symmetric airfoil with a Gurney flap of the 

same size, leading to a larger lift-to-drag ratio. One can notice that the oscillation amplitudes 

of the lift coefficient of the cambered airfoil are smaller than in the case of the symmetric 

airfoil for the same angle of attack. 

The oscillatory behavior of the aerodynamic coefficients of lift and drag is consistent 

with the unsteady flow separation patterns illustrated by the flow visualizations shown in 

Figure 14 at several moments in time for the cambered airfoil NACA 4404 at two angles of 

attack, 10  and 14 , and at Reynolds number Re=1000. 

In these figures, the lines represent the streamlines of the flows, and the color shades 

indicate the local value of the nondimensional flow velocity (with respect to U ). 

One can notice that the complexity of the unsteady flow separations increases 

substantially with the increase in the angle of attack. 
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Figure 13. Typical time variations of the lift and drag coefficients, LC  and 
DC , for a cambered  

NACA 4404 airfoil with a 2% Gurney flap ( %2l ) at Reynolds number Re=1000, for various  

angles of attack,  , compared with the symmetric airfoil NACA 0004 with the same 2% Gurney flap.  

5. CONCLUSIONS 

This paper presents the unsteady flow analysis of the low-Reynolds-number flows past 

stationary airfoils equipped with Gurney flaps, aiming to study the unsteady behavior of the 

aerodynamic coefficients due to the flow separations occurring at these Reynolds numbers. 

This analysis is performed with an efficient time-accurate numerical method developed for 

the solution of the Navier-Stokes equations at low Reynolds numbers, which is second-

order-accurate in time and space. 

Solutions are presented in this paper for the aerodynamic coefficients of lift and drag 

and for the lift-to-drag ratio of several symmetric and cambered airfoils. 

It was found that although the airfoil is considered stationary, starting from a relatively 

low incidence (about 8 degrees) the flow becomes unsteady due to the unsteadiness of the 

flow separations occurring at low Reynolds numbers, and the aerodynamic coefficients 

display periodic oscillations in time. The amplitudes of the aerodynamic coefficients 

oscillations increase with the angle of attack, and the unsteady flow separations become 

more complex (while remaining periodic) with a larger increase in the angle of attack. 

A detailed study is presented in the paper on the influence of various geometric and flow 

parameters, such as the Gurney flap height, angle of attack, Reynolds number, airfoil relative 

thickness and relative camber, on the unsteady aerodynamic coefficients of lift and drag. 
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The flow separation is also studied with the aid of flow visualizations illustrating the 

changes in the flow pattern at various moments in time, by using the flow streamlines and 

the flow velocity field represented by color shades. 
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Figure 14. Illustration of the flow separations for NACA 4404 airfoil with a 2% Gurney flap ( %2l )  

at various moments in time for 10  and 14  at Reynolds number Re=1000.  

The lines represent the streamlines and the color shades indicate the non-dimensional velocity field ( UV ). 
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