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Abstract: The inverted pendulum is a non-linear control problem permanently tending towards 
instability. The main aim of this study is to design a controller capable enough to work within the given 
conditions while also keeping the pendulum erect given the impulsive movement of the cart to which it 
is joint via a hinge. The first half of the paper presents the mathematical modelling of the dynamic 
system, together with the design of a linear quadratic regulator (LQR). This paper also discusses a 
novel adaptive control mechanism employing a Kalman filter for the mobile inverted pendulum system 
(MIPS). In the second half of the paper, a Gaussian Quadratic Linear Controller (LQG) is adapted to 
improve on previous deficiencies. The simulation is done through Simulink and results show that both 
controllers are capable of managing the multiple output model. However, data from simulations clearly 
showed that an LQG controller is a better choice. 

Key Words: Linear Quadratic Regulator, Kalman Filter, Linear Quadratic Gaussian Controller, 
Inverted Pendulum 

NOMENCLATURE 
(M) mass of the cart 
(m) mass of the pendulum 
(b) coefficient of friction for cart 
(l) length of pendulum 
(I) mass moment of inertia of the pendulum 
(F) the force applied to the cart 
(x) cart position coordinate 
(u) cart velocity 
(𝑋𝑋𝐺𝐺) X co-ordinate of Instantaneous centre of gravity of point mass 
(𝑋𝑋𝐺𝐺) Y co-ordinate of Instantaneous centre of gravity of point mass 
(𝜃𝜃) pendulum angle from vertical (down) 
(Φ) angle of deviation 
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1. INTRODUCTION 
The mobile inverted pendulum system (MIPS) is a typical nonlinear control problem suitable 
for studying various aspects of an under actuated system. Most of the realistic control systems 
are non-linear in nature. Controlling such a dynamic system is a challenging task. The control 
mechanism adopted here can also be used in various military and robotics, chaotic systems, 
and aerospace applications such as attitude control of launch vehicles and missiles [1-3]. The 
implementation of a controller for such a system has been of interest to the control engineering 
community for quite a while due to its complex nature for creating a benchmark to compare 
different control methods and various procedures for their design. Due to its importance, this 
was the choice of dynamic system selected. There are various issues at hand with such a 
system, the biggest being its inertia. Several methods have been adopted to control such a 
system. In [1], [4-9] many different kinds of control schemes are presented. Shireen and Patel 
[6] used a basic LQR + PID controller to control the nonlinear system, a common technique 
for such dynamic situations. The clear drawback, in this case, was the settling time which 
appears to be about 5 seconds. Efforts were made in this study to address and provide a solution 
to this issue. Babushanmugham et. al [7] employed Particle Swarm Optimisation (PSO) with 
Genetic Algorithm and SMC, but PSO-SMC responses proved to show better results. In [8], a 
comparison is made between a Fuzzy controller and a PID controller, and a conclusion is 
drawn that a simple PID controller would fail to provide the required stability. The main aim 
of this study is to design a controller capable enough to work within the given conditions while 
also keeping the pendulum erect given the impulsive movement of the cart. The system in 
question considers a cart capable of bidirectional linear motion along the X-axis with an 
inverted pendulum attached to it via a hinge allowed to oscillate in the X-Y plane. The design 
parameters are shown in Table 1: 

Table 1: Design parameters of the MIPS 

Mass of the Cart 0.5 kg 
Mass of the Pendulum 0.2 kg 
Length of the Pendulum 0.3 m 
Coefficient of static friction between Cart and linear rail 0.1 
Pendulum’s Moment of Inertia 0.006 𝑘𝑘𝑘𝑘𝑚𝑚2 
Max settling time  3 s 
Maximum Angular Deviation of the Pendulum 0.5 rad 

2. MODELLING 

 
Fig. 1: Free Body Diagram of the System 
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By summing the forces in the horizontal direction acting on the cart we obtain the first equation 
of motion. 

𝑀𝑀𝑥̈𝑥 + 𝑏𝑏𝑥̇𝑥 (1) 

Summing the forces on the pendulum 

𝐻𝐻 = 𝑚𝑚𝑥̇𝑥 + 𝑚𝑚𝑚𝑚𝜃̈𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑚𝑚𝑚𝑚𝜃̇𝜃2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (2) 

By (2) and (1) the first equation of motion is obtained 

(𝑀𝑀 + 𝑚𝑚)𝑥̈𝑥 + 𝑏𝑏𝑥̇𝑥 + 𝑚𝑚𝑚𝑚𝜃̈𝜃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 −𝑚𝑚𝑚𝑚𝜃̇𝜃2𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝐹𝐹 (3) 

By solving about the axis perpendicular to the pendulum 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝜃̈𝜃 +𝑚𝑚𝑥̈𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (4) 

Summing the moments about the centroid of the pendulum, 

−𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 − 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐼𝐼𝜃̈𝜃 (5) 

From (4) and (5) 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝜃̈𝜃 + 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = −𝑚𝑚𝑚𝑚𝑥̈𝑥𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (6) 

The set of equations of motion (3) and (6) are nonlinear and need to be linearized. It is 
evident that the output is not proportional to the change in input and for solving such nonlinear 
equations we employ the standard state-space forms of these two equations. 

Linearization of the system about the central upright position of the pendulum is done and 
a reference state is defined where no external force is applied yet. 

Thus, the cart velocity and position are considered to be zero. Here we assume that the 
system stays within a region cantered at 𝜃𝜃 = 𝜋𝜋. 

On presuming (Φ) a small deviation from the central position, we employ the following 
approximations: 

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = cos(𝜋𝜋 + 𝜑𝜑) ≈ 1 (7) 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = sin(𝜋𝜋 + 𝜑𝜑) ≈ −𝜑𝜑 (8) 

𝜃𝜃2̇ = 𝜑̇𝜑2 ≈ 0 (9) 

Substituting (7), (8), and (9) into (3) and (6) we arrive at a linearized form of the equations of 
motion 

(𝑀𝑀 + 𝑚𝑚)𝑥̈𝑥 + 𝑏𝑏𝑥̇𝑥 − 𝑚𝑚𝑚𝑚𝜑̈𝜑 = 𝐹𝐹 (10) 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝜑̈𝜑 − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑥̈𝑥 (11) 

Taking the Laplace transform of (10) and (11) 

(𝑀𝑀 + 𝑚𝑚)𝑋𝑋(𝑠𝑠)𝑠𝑠2 + 𝑏𝑏𝑏𝑏(𝑠𝑠)𝑠𝑠 − 𝑚𝑚𝑚𝑚Φ(𝑠𝑠)𝑠𝑠2 = 𝑈𝑈(𝑠𝑠) (12) 

(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)Φ(𝑠𝑠)𝑠𝑠2 + 𝑏𝑏𝑏𝑏(𝑠𝑠)𝑠𝑠 − 𝑚𝑚𝑚𝑚Φ(𝑠𝑠) = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑠𝑠)𝑠𝑠2 (13) 

We define the output as the angle of deviation (Φ) and the input to the system as U(s). 
Re-arranging (13) 
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𝑋𝑋(𝑠𝑠) = �
𝐼𝐼 +𝑚𝑚𝑙𝑙2

𝑚𝑚𝑚𝑚
−
𝑔𝑔
𝑠𝑠2
�Φ(𝑠𝑠) (14) 

Substituting (14) in (12) 

(𝑀𝑀 + 𝑚𝑚) �
𝐼𝐼 + 𝑚𝑚𝑙𝑙2

𝑚𝑚𝑚𝑚
−
𝑔𝑔
𝑠𝑠2
�Φ(𝑠𝑠)𝑠𝑠2 + 𝑏𝑏 �

𝐼𝐼 + 𝑚𝑚𝑙𝑙2

𝑚𝑚𝑚𝑚
−
𝑔𝑔
𝑠𝑠2
�Φ(𝑠𝑠)𝑠𝑠 − 𝑚𝑚𝑚𝑚Φ(𝑠𝑠)𝑠𝑠2 (15) 

Thus, we obtain a fourth-order transfer function as: 

Φ(𝑠𝑠)
𝑈𝑈(𝑠𝑠) =

�(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝑠𝑠2 − 𝑔𝑔𝑔𝑔𝑔𝑔
𝑞𝑞 �

𝑠𝑠4 + �𝑏𝑏(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)
𝑞𝑞 � 𝑠𝑠3 − �(𝑀𝑀 +𝑚𝑚)𝑚𝑚𝑚𝑚𝑚𝑚

𝑞𝑞 � 𝑠𝑠2 − �𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑞𝑞 � 𝑠𝑠
 (16) 

where 𝑞𝑞 = [(𝑀𝑀 + 𝑚𝑚)(𝐼𝐼 +𝑚𝑚𝑙𝑙2) − (𝑚𝑚𝑚𝑚)2] 
We create a general linear state-space representation for our system 

𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢(𝑡𝑡) (17) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶(𝑡𝑡) + 𝐷𝐷(𝑡𝑡)𝑢𝑢(𝑡𝑡) (18) 
The state variables are defined as 

𝑥𝑥1 = 𝑥𝑥, 𝑥𝑥2 =  𝑥̇𝑥 = 𝑥̇𝑥1,  𝑥𝑥3 = Φ, 𝑥𝑥4 = Φ̇ = 𝑥̇𝑥3 (19) 

For creating the state space representation, we define the most general representation of a 
linear system and using equations (10) and (11) 

�

𝑥̇𝑥
𝑥̈𝑥
𝜙̇𝜙
𝜙̈𝜙

� =

⎣
⎢
⎢
⎢
⎢
⎡
0
0
0
0

1
−(𝐼𝐼 + 𝑚𝑚𝑙𝑙2)𝑏𝑏

𝐼𝐼(𝑀𝑀 + 𝑚𝑚) + 𝑀𝑀𝑀𝑀𝑙𝑙2
0

−𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼(𝑀𝑀 + 𝑚𝑚) + 𝑀𝑀𝑀𝑀𝑙𝑙2

0
𝑚𝑚2𝑔𝑔𝑙𝑙2

𝐼𝐼(𝑀𝑀 + 𝑚𝑚) +𝑀𝑀𝑀𝑀𝑙𝑙2
0

𝑚𝑚𝑚𝑚𝑚𝑚(𝑀𝑀 + 𝑚𝑚)
𝐼𝐼(𝑀𝑀 + 𝑚𝑚) +𝑀𝑀𝑀𝑀𝑙𝑙2

0
0
1
0
⎦
⎥
⎥
⎥
⎥
⎤

�

𝑥𝑥
𝑥̇𝑥
𝜙𝜙
𝜙̇𝜙
�

+

⎣
⎢
⎢
⎢
⎢
⎡

0
𝐼𝐼 +𝑚𝑚𝑙𝑙2

𝐼𝐼(𝑀𝑀 + 𝑚𝑚) +𝑀𝑀𝑀𝑀𝑙𝑙2
0
𝑚𝑚𝑚𝑚

𝐼𝐼(𝑀𝑀 + 𝑚𝑚) +𝑀𝑀𝑀𝑀𝑙𝑙2⎦
⎥
⎥
⎥
⎥
⎤

 

(20) 

𝑦𝑦 = �10
0
0

0
1

0
0� �

𝑥𝑥
𝑥̇𝑥
𝜙𝜙
𝜙̇𝜙
� + �00� 𝑢𝑢 (21) 

Putting in the aforementioned values, we obtain the matrices as 

𝐴𝐴 = �
0 1 0 0
0 −0.1818 2.6727 0
0
0

0
−0.4545

0
31.1818

1
0

� ;   𝐵𝐵 = �
0

1.8182
0

4.5455
� (22) 
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𝐶𝐶 = �10
0
0

0
1

0
0� ;     𝐷𝐷 = �00� (23) 

To observe the preliminary stability of our system, a pole-zero plot is created for the 
previously derived transfer function. 

Poles are found at 0, -0.143, -5.6 and 5.57. It is observed that one of the poles lies to the 
right-hand side of the Y-axis. 

Thus, we can assume that such an independent open loop system without a controller 
would prove to be unstable.  

 
Fig. 2: Pole-Zero plot 

By providing an impulse and a step response to our open system, we can justify the above 
assumption, see Fig. 3. It is observed that the amplitude of the open system is increasing 
exponentially.  

 
Fig. 3: Open-loop response to a Step Input 
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3. OPTIMAL CONTROL THROUGH LQR 

Optimal control can be defined as the process of determining state trajectories for a system 
that varies with time to minimize the costs and maximize performance [10]. The main 
objective here is to strike a balance between the physical constraints and the performance 
criterion. Hence we require to develop a controller which would cause a dynamic system to 
reach a fixed target with the given physical limitations. 

A Linear Quadratic Regulator (LQR) is such an optimal control method that provides a 
robust output while considering states of the unstable system, taking into account the states of 
the dynamical system [10], [11]. From previously defined (17), the linear state space equation 
[16] can be written as 

𝑥̇𝑥 = 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 (24) 

where 𝑥𝑥 = [𝑥𝑥 𝑥̇𝑥 𝜙𝜙 𝜙̇𝜙]𝑇𝑇 
Given that the feedback control 𝑢𝑢 = −𝐾𝐾𝐾𝐾, (24) can be re-arranged as 

𝑥̇𝑥 = (𝐴𝐴 − 𝐵𝐵𝐵𝐵)𝑥𝑥 (25) 

Here 𝐾𝐾 is obtained from the minimization of the cost function (26) 

𝐽𝐽 = �(𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 + 𝑢𝑢𝑇𝑇𝑅𝑅𝑅𝑅) (26) 

𝐾𝐾 = 𝑅𝑅−1𝐵𝐵𝑇𝑇𝑃𝑃 (27) 
𝑄𝑄 is defined as a semi-definitive symmetric constant matrix and 𝑅𝑅 is a positive definitive 
symmetric constant matrix in (26) and 𝑃𝑃 in (27) is also a positive definitive symmetric constant 
matrix derived from algebraic Riccati Equation (26). 

𝐴𝐴𝑇𝑇𝑃𝑃 + 𝑃𝑃𝑃𝑃 − 𝑃𝑃2𝐵𝐵𝑇𝑇+1𝑅𝑅−1 + 𝑄𝑄 = 0 (28) 

On further examination of our system, we find that it is controllable and observable through 
equations (29) and (30). 

𝐶𝐶 = [𝐵𝐵 𝐴𝐴𝐴𝐴 𝐴𝐴2𝐵𝐵 ⋯ 𝐴𝐴𝑛𝑛−1𝐵𝐵] (29) 

𝑂𝑂 =

⎣
⎢
⎢
⎡

𝐶𝐶
𝐶𝐶𝐶𝐶
𝐶𝐶𝐴𝐴2
⋮

𝐶𝐶𝐴𝐴𝑛𝑛−1⎦
⎥
⎥
⎤
 (30) 

3.1 Designing the controller 

To find the feedback gain vector K, we use the linear quadratic regulation method. The R and 
Q parameters which we select will define the balance between the relative importance of the 
control effort and the deviation from the central position of the pendulum. 

For the initial case, we will assume 𝑅𝑅 = 1 and 𝑄𝑄 = 𝐶𝐶′𝐶𝐶. Here we give equal importance 
on both control parameters (cart’s velocity and output variables (𝜙𝜙)). 

𝑄𝑄 = 𝐶𝐶′𝐶𝐶 = �
1 0 0 0
0 0 0 0
0
0

0
0

1 0
0 0

� (31) 
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Here Q (1,1) and Q (3,3) are the weights of the cart position and the pendulum angle, 
respectively.  

What matters to us is the relative difference between the values of Q and R and not their 
absolute values. For our problem, we set Q (1,1) to 5000 and Q(3,3) to 100. 

𝑄𝑄 = �
5000 0 0 0

0 0 0 0
0
0

0
0

100 0
0 0

� (32) 

While it may appear drastic to compromise the pendulum deviation angle for the cart 
position control, it is found that the settling time for the pendulum is still within our design 
parameters. 

Such a configuration yields a gain matrix of 𝐾𝐾 =
[−223.6068 −107.1604 258.0306 51.4370]. 

It is observed that a steady-state error exists in the cart position which can be eliminated 
by changing the reference input signal itself. 

In the system described, all the state variables are fed back into the controller, thus a need 
arises to find a constant value that will be added to our feedback after multiplying it with the 
feedback gain array K. 

This can be accomplished by adding a pre-compensating or a scaling constant to our 
reference denoted by 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟. 

For our case, 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟 is calculated to be -223.6068 using the ‘rscale’ algorithm [17]. Fig. 4 
shows perfect behavior as expected after adding the scaling parameter to the reference input.  

 
Fig. 4: Step response with 𝐾𝐾𝑟𝑟𝑟𝑟𝑟𝑟 applied 

3.2 Designing an observer-based control 

An observer-based controller comprises a real-time simulation making use of a correction term 
along with the same input as the plant (33), [12]. L is the observer gain matrix and 𝑦𝑦� is an 
estimate of the plant’s output. 

The observer gain matrix is used to correct the state estimate based on the difference 
between the actual and the estimated output. 
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It is required that the observer poles be faster than the controller poles to make the state 
estimate converge faster. The controller poles are found to be (34). 

𝛿𝛿𝑥𝑥� = 𝐴𝐴𝑥̇𝑥 + 𝐵𝐵𝐵𝐵 − 𝐿𝐿(𝑦𝑦 − 𝑦𝑦�) (33) 

𝑝𝑝𝐶𝐶 = �
−14.8355 + 14.5151𝑖𝑖
−14.8355 − 14.5151𝑖𝑖
−4.7391 + 0.8146𝑖𝑖
−4.7391 − 0.8146𝑖𝑖

� (34) 

By placing the estimator poles at a higher value than our slowest pole (-4.7391), we can 
obtain the estimator gain matrix (Ke) in a similar algorithm developed for finding feedback 
gain (K) stated previously and then applying a step input Fig. 5, a stable system is created 
using both (Φ) and (𝑥𝑥) 

𝐾𝐾𝑒𝑒 = �
82.6415
1.7002
−1.4865
−77.0093

−1.0371
−40.0023
83.3575
1.7504

� (35) 

 
Fig. 5: Step Response with Observer-Based Feedback control 

 
Fig. 6: Designing the system in Simulink, with full state feedback 
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Fig. 7: Unit pulse response of the LQG controller 

 
Fig. 8: Continuous pulse response of the LQG controller 

4. LINEAR QUADRATIC GAUSSIAN CONTROLLER 

A Linear Quadratic Gaussian controller (LQG) is in essence, an LQR controller combined 
with a Kalman filter. An LQG controller is as dynamic as the system it controls. The schematic 
of the LQG controller is depicted in Fig. 9. They are applicable to linear time-variant as well 
as time-invariant systems [13], [14]. The separation principle states that the state estimator and 
the state feedback are independent of each other. A changed form of (24), (25), and (26) would 
now be described by: 

𝐾𝐾𝑒𝑒 = �
82.6415
1.7002
−1.4865
−77.0093

−1.0371
−40.0023
83.3575
1.7504

� (36) 
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𝑥̇𝑥(𝑡𝑡) = 𝐴𝐴(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝐵𝐵(𝑡𝑡)𝑢𝑢(𝑡𝑡) + 𝑣𝑣(𝑡𝑡) (37) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑤𝑤(𝑡𝑡) (38) 

𝑥𝑥�̇ = (𝐴𝐴 − 𝐿𝐿𝐿𝐿 − 𝐵𝐵𝐵𝐵)𝑥𝑥� + 𝐿𝐿𝐿𝐿 (39) 

𝐽𝐽 = Ε[𝑥𝑥𝑇𝑇Fx(T)  +  � 𝑥𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄(𝑡𝑡)𝑥𝑥(𝑡𝑡) + 𝑢𝑢𝑇𝑇(t)R(t)(t) dt
𝑇𝑇

0
] (40) 

where 𝑦𝑦(𝑡𝑡) resembles the vector of available outputs for feedback, L is the Kalman gain 
matrix, 𝑣𝑣(𝑡𝑡) and 𝑤𝑤(𝑡𝑡) are the white Gaussian noise affecting the system and E is the expected 
value. 

We use our previously found value of  𝐾𝐾 =
[−223.6068 −107.1604 258.0306 51.4370 ] directly in the new controller design. 

A Kalman filter is a set of equations that are used for minimizing the estimated error when 
the variables are linearly transformed provided that some pre-requisite conditions are met [15]. 

The Kalman gain is given by 

𝐿𝐿(𝑡𝑡) = 𝑆𝑆𝑒𝑒(𝑡𝑡)𝐶𝐶𝑇𝑇𝑅𝑅−1 (41) 

𝑆𝑆𝑒𝑒 = Ε[�𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡)�𝑇𝑇(𝑥𝑥(𝑡𝑡) − 𝑥𝑥�(𝑡𝑡))] (42) 

To find the Kalman gain matrix, the MATLAB function ‘kalman’ was used and was found 
to be 

𝐿𝐿 = �
10.8148
8.4945
0.1679
0.6966

0.1679
3.6518

15.0779
63.6857

� (43) 

 
Fig. 9: Simulink Diagram of an LQG controller 
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Fig. 10: Simulink output for a Unit Pulse 

 
Fig. 11: Simulink output for a Continuous Pulse 

5. CONCLUSIONS 
From Fig. 7 and Fig. 10 it is clear that there is a significant decrease in settling time (from ≈3 
to 1.6), thus proving that an LQR controller is more suitable for such a system in terms of 
accuracy. However, a huge jump is noticed in the rate of displacement and the rate of angular 
deviation of the pendulum. There might be circumstances where the hardware does not support 
such high rates and may cause malfunctioning of the entire system itself. On the other hand, 
while the LQR controller is slower in response, it significantly relaxes the rate of change.  
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