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Abstract: In this paper we present a low-order numerical scheme developed using the Proper 
Orthogonal (POD) method to address non-homogeneous parabolic equations in both one and two 
dimensions. The proposed schemes leverage the POD technique to reduce the computational complexity 
associated with solving these equations while maintaining accuracy. By employing POD, the high-
dimensional problem is approximated by a reduced set of models, allowing for a more efficient 
representation of the system dynamics. The application of this method to non-homogenous parabolic 
equations offers a promising approach for enhancing the computational efficiency of simulations in 
diverse fields, such as fluid dynamics, heat conduction, and reaction-diffusion processes. The presented 
numerical scheme demonstrates its efficacy in achieving accurate results with significantly reduced 
computational costs, making it a valuable tool for applications demanding efficient solutions to non-
homogeneous parabolic equations in one and two dimensions. 

Key Words: Proper orthogonal decomposition (POD), Singular value decomposition (SVD), Reduced 
order method (ROM), Forward time centered space (FTCS) 

1. INTRODUCTION 
We live in an era where the size of data represents a space with an enormous exponential 
growth. Parabolic equations describe phenomena such as gas proliferation, thermal 
conductivity, and liquid infiltration, events that occur in nature and daily life. Exact solutions 
for these engineering problems are not easily found, especially concerning numerical 
solutions. Among the methods mentioned above, the finite difference scheme is the simplest, 
as it is easier to understand and program, being considered the most efficient method. 
However, regarding finite difference schemes for the parabolic equation, especially in the case 
of a large dimension, there are too many degrees of freedom. Thus, an important problem 
arises: how to simplify computational resources and save computation time in a way that 
guarantees the highest accuracy and efficiency of the numerical solution [1]. 

The Proper Orthogonal Decomposition (POD) method is a technique that offers the 
possibility of obtaining the most suitable approximation in terms of fluid flow representation 
with a reduced number of degrees of freedom and reduced-size models to alleviate the 
computational burden and not to overload the memory requirements for data processing. The 
method essentially provides an orthogonal basis to represent processed data in the optimal 
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sense for the processed dataset. Combined with the Galerkin projection method, POD 
represents a powerful method for generating reduced-size models of dynamic systems that 
have an extremely large or even infinite domain of definition [11]. 

Modal decomposition is necessary for the following reasons [2, 4]: 
• Recognition of distinct structures in databases. 
• Conducting a statistical analysis of processed data. 
• Obtaining a set of models to generate a basis. This basis is subsequently used to 

approximate solutions to numerical problems with characteristics similar to those used 
in constructing the modal basis. 

• Reconstruction of data states using a reduced-order model (ROM) with a lower order, 
ensuring that the informational quantity remains relatively the same or close. 

2. THE GENERATION OF THE OPTIMAL BASIS THROUGH THE SVD-
POD METHOD 

We generate the set of instantaneous moments �𝑢𝑢𝑗𝑗
𝑛𝑛𝑖𝑖�

𝑖𝑖=1,𝐿𝐿
(𝑗𝑗 = 1,2, . . . , 𝐽𝐽 − 1, 1 ≤ 𝑛𝑛1 < 𝑛𝑛2 <·

   ·< 𝑛𝑛𝐿𝐿 ≤ 𝑁𝑁) that can be expressed as a matrix 𝑨𝑨𝑚𝑚×𝐿𝐿(𝑚𝑚 = 𝐽𝐽 − 1) written as: 

𝑨𝑨𝑚𝑚×𝐿𝐿 =

⎝

⎜
⎛
𝑢𝑢1
𝑛𝑛1 𝑢𝑢1

𝑛𝑛2 … 𝑢𝑢1
𝑛𝑛𝐿𝐿

𝑢𝑢2
𝑛𝑛1 𝑢𝑢2

𝑛𝑛2 … 𝑢𝑢2
𝑛𝑛𝐿𝐿

⋮ ⋮ ⋱ ⋮
𝑢𝑢𝑚𝑚
𝑛𝑛1 𝑢𝑢𝑚𝑚

𝑛𝑛2 ⋯ 𝑢𝑢𝑚𝑚
𝑛𝑛𝐿𝐿
⎠

⎟
⎞

 (1) 

Using the SVD (Singular Value Decomposition) method for the 𝑨𝑨𝑚𝑚×𝐿𝐿 matrix we obtain: 
𝑨𝑨 = 𝑼𝑼𝑼𝑼𝑽𝑽T, (2) 

where 𝑼𝑼 = 𝑼𝑼𝑚𝑚×𝑚𝑚 and 𝑽𝑽 ∈ 𝑀𝑀𝐿𝐿×𝐿𝐿(ℝ) are orthogonal matrices, and the matrix 𝑼𝑼𝑚𝑚×𝐿𝐿 is: 

𝑼𝑼𝑚𝑚×𝐿𝐿 = �
𝑼𝑼𝑙𝑙×𝑙𝑙 𝑶𝑶𝑙𝑙×(𝐿𝐿−𝑙𝑙)

𝑶𝑶(𝑚𝑚−𝑙𝑙)×𝑙𝑙 𝑶𝑶(𝑚𝑚−𝑙𝑙)×(𝐿𝐿−𝑙𝑙)
�, (3) 

and 

𝑼𝑼𝑙𝑙×𝑙𝑙 = �

𝜎𝜎1 0 … 0
0 𝜎𝜎2 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜎𝜎𝑙𝑙

� = 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝜎𝜎1,𝜎𝜎2, . . . ,𝜎𝜎𝑙𝑙) (4) 

The values on the main diagonal of the matrix 𝑼𝑼𝑙𝑙×𝑙𝑙 are called singular values of the matrix 
𝑨𝑨, which respects the following condition: 𝜎𝜎1 ≥ 𝜎𝜎2 ≥···≥ 𝜎𝜎𝑙𝑙 > 0 [10, 11]. 

Thus, relation (2) becomes: 

𝑨𝑨 = 𝑼𝑼�
𝑼𝑼𝑙𝑙×𝑙𝑙 𝑶𝑶𝑙𝑙×(𝐿𝐿−𝑙𝑙)

𝑶𝑶(𝑚𝑚−𝑙𝑙)×𝑙𝑙 𝑶𝑶(𝑚𝑚−𝑙𝑙)×(𝐿𝐿−𝑙𝑙)
�𝑽𝑽T, (5) 

Matrix 𝑼𝑼 = (𝝍𝝍1 𝝍𝝍2 . . . 𝝍𝝍𝑚𝑚) contains the orthogonal vectors specific of the matrix 
𝑨𝑨𝑨𝑨T. While the singular values 𝜎𝜎𝑖𝑖 (𝑑𝑑 = 1,2, . . . , 𝑙𝑙) satisfy the relationship 𝜎𝜎1 ≥ 𝜎𝜎2 ≥···≥ 𝜎𝜎𝑙𝑙 >
0. A column of the matrix 𝑨𝑨 ∈ ℝ𝑚𝑚×𝐿𝐿 is written as 𝒘𝒘𝑛𝑛𝑖𝑖 = (𝑢𝑢1

𝑛𝑛𝑖𝑖 ,𝑢𝑢2
𝑛𝑛𝑖𝑖 , . . . ,𝑢𝑢𝑚𝑚

𝑛𝑛𝑖𝑖)𝑇𝑇, (𝑑𝑑 = 1,2, . . . , 𝐿𝐿) 
[3]. We denote by 𝜱𝜱 = (𝝍𝝍1,𝝍𝝍2, . . . ,𝝍𝝍𝑀𝑀) the matrix of the first M vectors of the orthogonal 
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matrix 𝑼𝑼 = (𝝍𝝍1 𝝍𝝍2 . . . 𝝍𝝍𝑚𝑚) [3]. Therefore, we have for any 𝑀𝑀 ≤ 𝑙𝑙 defines the 
projection 𝑃𝑃𝑀𝑀 by 

𝑃𝑃𝑀𝑀(𝒘𝒘𝑛𝑛) = 𝒘𝒘∗𝑛𝑛 = �(𝝍𝝍𝑗𝑗,𝒘𝒘𝑛𝑛)
𝑀𝑀

𝑗𝑗=1

𝝍𝝍𝑗𝑗 (6) 

where (⋅,⋅) represents the dot product between two vectors. We will have the following 
relation: 

‖𝒘𝒘𝑛𝑛 − 𝑃𝑃𝑀𝑀(𝒘𝒘𝑛𝑛)‖2 ≤ 𝜎𝜎𝑀𝑀+1 (7) 

where ‖. ‖2 represents the standard Euclidean norm of the vector. Thus, {𝝍𝝍𝑖𝑖}𝑖𝑖=1,𝑀𝑀 represents 
an optimal basis, and 𝜱𝜱 is a matrix 𝜱𝜱 = (𝝍𝝍1,𝝍𝝍2, . . . ,𝝍𝝍𝑀𝑀) constructed with orthogonal vectors 
so that 𝜱𝜱T𝜱𝜱 = 𝑰𝑰 (𝑰𝑰 ∈ ℝ𝑀𝑀×𝑀𝑀 is the identity matrix) [3]. The relationships describing the initial 
and boundary conditions can be written in the following vectorial form: 

𝒘𝒘𝑛𝑛+1 = 𝒘𝒘𝑛𝑛 +
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑲𝑲𝒘𝒘𝑛𝑛 + Δ𝑡𝑡𝑭𝑭𝑛𝑛,𝑛𝑛 = 0,1, . . . ,𝑁𝑁 − 1 (8) 

where 𝑭𝑭𝑛𝑛 = (𝑓𝑓1𝑛𝑛,𝑓𝑓2𝑛𝑛, . . . ,𝑓𝑓𝑚𝑚𝑛𝑛)T and 

𝑲𝑲 =

⎝

⎜
⎜
⎜
⎛

−1 0 0 ⋯ 0 0 0
0 −2 1 ⋱ 0 0 0
0 1 −2 ⋱ 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋱ −2 1 0
0 0 0 ⋱ 1 −2 0
0 0 0 ⋯ 0 0 −1⎠

⎟
⎟
⎟
⎞

 (9) 

If 𝒘𝒘𝑛𝑛 is replaced in equation (8) by his approximation 𝒘𝒘∗𝑛𝑛 which is determined by the 
following relationship: 

𝒘𝒘∗𝑛𝑛 = 𝜱𝜱𝜶𝜶𝑛𝑛 = 𝜱𝜱𝑚𝑚×𝑀𝑀(𝜶𝜶𝑛𝑛)𝑀𝑀×1,   𝑛𝑛 = 0,1,2, . . . ,𝑁𝑁, (10) 
We are going to obtain:  

𝒘𝒘∗𝑛𝑛+1 = 𝒘𝒘∗𝑛𝑛 +
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑲𝑲𝒘𝒘∗𝑛𝑛 + Δ𝑡𝑡𝑭𝑭𝑛𝑛,  𝑛𝑛 = 0,1, . . . ,𝑁𝑁 − 1, (11) 

We obtain a system equivalent to [6] 

𝜱𝜱𝜶𝜶𝑛𝑛+1 = 𝜱𝜱𝜶𝜶𝑛𝑛 +
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑲𝑲𝜱𝜱𝜶𝜶𝑛𝑛 + Δ𝑡𝑡𝑭𝑭𝑛𝑛,𝑛𝑛 = 0,1, . . . ,𝑁𝑁 − 1 (12) 

Recalling that 𝜱𝜱T𝜱𝜱 = 𝑰𝑰, we multiply to the left by 𝜱𝜱T, in equation (12) we obtain a 
system with a reduced number of equations (𝑀𝑀 ≪ 𝑚𝑚) associated with the classical Crank-
Nicolson scheme with m equations [1]: 

𝜶𝜶𝑛𝑛+1 = 𝜶𝜶𝑛𝑛 +
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝜱𝜱T𝑲𝑲𝜱𝜱𝜶𝜶𝑛𝑛 + Δ𝑡𝑡𝜱𝜱T𝑭𝑭𝑛𝑛,   𝑛𝑛 = 0,1, . . . ,𝑁𝑁 − 1, (13) 

where 𝜶𝜶0 = 𝜱𝜱T𝒘𝒘0 = 𝜱𝜱T(𝑢𝑢10,𝑢𝑢20, . . . , 𝑢𝑢𝑚𝑚0 )T. 
After we obtain 𝜶𝜶𝑛𝑛 from equation (13), we deduct the optimized solutions for the 

PODROEFD scheme which are 𝒘𝒘∗𝑛𝑛 = 𝜱𝜱𝜶𝜶𝑛𝑛. The low-order finite difference Crank-Nicolson 
scheme includes only 𝑀𝑀 × 𝑁𝑁 equations, but the classical finite difference Crank-Nicolson 
includes 𝑚𝑚 × 𝑁𝑁 equations, but usually 𝑚𝑚 ≫ 𝑀𝑀, therefore this means that time will be saved in 
future numerical simulations, [9]. 
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The 1D parabolic equation is given in a general form: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

− 𝑑𝑑2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

= 𝑓𝑓(𝑡𝑡, 𝑥𝑥),   0 < 𝑡𝑡 < 𝑇𝑇, 0 < 𝑥𝑥 < 𝑙𝑙, (14) 

with the following Dirichlet-type boundary conditions 

𝑢𝑢(0, 𝑡𝑡) = ℎ1(𝑡𝑡), 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 
𝑢𝑢(𝑙𝑙, 𝑡𝑡) = ℎ2(𝑡𝑡), 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 

(15) 

and the initial condition 

𝑢𝑢(𝑥𝑥, 0) = 𝜑𝜑(𝑥𝑥),      0 ≤ 𝑥𝑥 ≤ 𝑙𝑙, (16) 

where 𝑑𝑑 is a constant, and 𝑓𝑓(𝑡𝑡, 𝑥𝑥) and 𝜑𝜑(𝑥𝑥) are two smooth functions. We consider the spatial 
step Δ𝑥𝑥 and the time step Δ𝑡𝑡, we generate the grid 𝑥𝑥𝑗𝑗 = 𝑗𝑗Δ𝑥𝑥(𝑗𝑗 = 0,1,2, . . . , 𝐽𝐽), 𝑡𝑡𝑛𝑛 =
𝑛𝑛Δ𝑡𝑡(𝑛𝑛 = 0,1,2, . . . ,𝑁𝑁) and we denote by  𝑢𝑢𝑗𝑗𝑛𝑛 an approximation of the exact solution 𝑢𝑢�𝑥𝑥𝑗𝑗, 𝑡𝑡𝑛𝑛� 

and by 𝑓𝑓𝑗𝑗
𝑛𝑛+12 = 1

2
�𝑓𝑓�𝑥𝑥𝑗𝑗, 𝑡𝑡𝑛𝑛� + 𝑓𝑓�𝑥𝑥𝑗𝑗, 𝑡𝑡𝑛𝑛+1��, [5]. 

Applying the Crank-Nicolson finite difference scheme to the parabolic equation yields: 

𝑤𝑤𝑗𝑗𝑛𝑛+1 = 𝑤𝑤𝑗𝑗𝑛𝑛 +
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2 �

(1− 𝜃𝜃)�𝑤𝑤𝑗𝑗+1𝑛𝑛+1 − 2𝑤𝑤𝑗𝑗𝑛𝑛+1 + 𝑤𝑤𝑗𝑗−1𝑛𝑛+1�+ 𝜃𝜃�𝑤𝑤𝑗𝑗𝑛𝑛 − 2𝑤𝑤𝑗𝑗𝑛𝑛 + 𝑤𝑤𝑗𝑗𝑛𝑛��

+ Δ𝑡𝑡𝐹𝐹𝑗𝑗
𝑛𝑛+12, 𝑗𝑗 = 1,𝑁𝑁𝑥𝑥 − 1 

 
(17) 

to which Dirichlet-type conditions are attached: 
𝑤𝑤0𝑛𝑛 = ℎ1(𝑡𝑡𝑛𝑛), 
𝑤𝑤𝑁𝑁𝑥𝑥
𝑛𝑛 = ℎ2(𝑡𝑡𝑛𝑛), 

𝑤𝑤𝑗𝑗0 = 𝑓𝑓�𝑥𝑥𝑗𝑗�, 𝑗𝑗 = 0,𝑁𝑁𝑥𝑥 
(18) 

or, explicitly written, we obtain: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧𝑤𝑤0

𝑛𝑛+1 = ℎ1(𝑡𝑡𝑛𝑛+1)

𝑤𝑤1𝑛𝑛+1 = 𝑤𝑤1𝑛𝑛 + 𝜃𝜃
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤2𝑛𝑛 − 2𝑤𝑤1𝑛𝑛 + 𝑤𝑤0𝑛𝑛) +

          + (1 − 𝜃𝜃)
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤0𝑛𝑛+1 − 2𝑤𝑤1𝑛𝑛+1 + 𝑤𝑤2𝑛𝑛+1) + Δ𝑡𝑡
𝐹𝐹1𝑛𝑛 + 𝐹𝐹1𝑛𝑛+1

2

𝑤𝑤2𝑛𝑛+1 = 𝑤𝑤2𝑛𝑛 + 𝜃𝜃
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤3𝑛𝑛 − 2𝑤𝑤2𝑛𝑛 + 𝑤𝑤1𝑛𝑛) +

          + (1 − 𝜃𝜃)
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤1𝑛𝑛+1 − 2𝑤𝑤2𝑛𝑛+1 + 𝑤𝑤3𝑛𝑛+1) + Δ𝑡𝑡
𝐹𝐹2𝑛𝑛 + 𝐹𝐹2𝑛𝑛+1

2
⋮

𝑤𝑤𝑁𝑁𝑥𝑥−1
𝑛𝑛+1 = 𝑤𝑤𝑁𝑁𝑥𝑥−1

𝑛𝑛 +
𝜃𝜃𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤𝑁𝑁𝑥𝑥
𝑛𝑛 − 2𝑤𝑤𝑁𝑁𝑥𝑥−1

𝑛𝑛 + 𝑤𝑤𝑁𝑁𝑥𝑥−2
𝑛𝑛 ) +

           +
(1 − 𝜃𝜃)𝑑𝑑2Δ𝑡𝑡

Δ𝑥𝑥2
(𝑤𝑤𝑁𝑁𝑥𝑥

𝑛𝑛+1 − 2𝑤𝑤𝑁𝑁𝑥𝑥−1
𝑛𝑛+1 + 𝑤𝑤𝑁𝑁𝑥𝑥−2

𝑛𝑛+1 ) + Δ𝑡𝑡
𝐹𝐹𝑁𝑁𝑥𝑥−1
𝑛𝑛 + 𝐹𝐹𝑁𝑁𝑥𝑥−1

𝑛𝑛+1

2
𝑤𝑤𝑁𝑁𝑥𝑥
𝑛𝑛+1 = ℎ2(𝑡𝑡𝑛𝑛+1)

 (19) 

In the following we will present the variant of introducing the boundary conditions in the 
matrix equation of the system. This variant consists in solving a system of (𝑁𝑁𝑥𝑥 − 1) × (𝑁𝑁𝑥𝑥 −
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1) equations instead of (𝑁𝑁𝑥𝑥 + 1) × (𝑁𝑁𝑥𝑥 + 1). Basically, the vector of unknowns at western 
and eastern border will be dropped because they will be introduced in the other equations. If 
we replace the first and the last condition in relation (17) the following relationship is obtained 
explicitly: 

⎩
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎧𝑤𝑤0

𝑛𝑛+1 = ℎ1(𝑡𝑡𝑛𝑛+1)

𝑤𝑤1𝑛𝑛+1 = 𝑤𝑤1𝑛𝑛 + 𝜃𝜃
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤2𝑛𝑛 − 2𝑤𝑤1𝑛𝑛) +

          + (1 − 𝜃𝜃)
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤0𝑛𝑛+1 − 2𝑤𝑤1𝑛𝑛+1 +𝑤𝑤2𝑛𝑛+1) + 𝜃𝜃
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑤𝑤0𝑛𝑛 +

          + Δ𝑡𝑡
𝐹𝐹1𝑛𝑛 + 𝐹𝐹1𝑛𝑛+1

2

𝑤𝑤2𝑛𝑛+1 = 𝑤𝑤2𝑛𝑛 + 𝜃𝜃
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤3𝑛𝑛 − 2𝑤𝑤2𝑛𝑛 + 𝑤𝑤1𝑛𝑛) +

          + (1 − 𝜃𝜃)
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤1𝑛𝑛+1 − 2𝑤𝑤2𝑛𝑛+1 +𝑤𝑤3𝑛𝑛+1) +

          + Δ𝑡𝑡
𝐹𝐹2𝑛𝑛 + 𝐹𝐹2𝑛𝑛+1

2
⋮

𝑤𝑤𝑁𝑁𝑥𝑥−1
𝑛𝑛+1 = 𝑤𝑤𝑁𝑁𝑥𝑥−1

𝑛𝑛 +
𝜃𝜃𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤𝑁𝑁𝑥𝑥−2
𝑛𝑛 − 2𝑤𝑤𝑁𝑁𝑥𝑥−1

𝑛𝑛 ) +

            +
(1 − 𝜃𝜃)𝑑𝑑2Δ𝑡𝑡

Δ𝑥𝑥2
(𝑤𝑤𝑁𝑁𝑥𝑥

𝑛𝑛+1 − 2𝑤𝑤𝑁𝑁𝑥𝑥−1
𝑛𝑛+1 + 𝑤𝑤𝑁𝑁𝑥𝑥−2

𝑛𝑛+1 ) +
𝜃𝜃𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑤𝑤𝑁𝑁𝑥𝑥
𝑛𝑛 +

            + Δ𝑡𝑡
𝐹𝐹𝑁𝑁𝑥𝑥−1
𝑛𝑛 + 𝐹𝐹𝑁𝑁𝑥𝑥−1

𝑛𝑛+1

2
𝑤𝑤𝑁𝑁𝑥𝑥
𝑛𝑛+1 = ℎ2(𝑡𝑡𝑛𝑛+1)

 (20) 

Using 𝒘𝒘𝑛𝑛 = (𝑤𝑤1𝑛𝑛,𝑤𝑤2𝑛𝑛, . . . ,𝑤𝑤𝑁𝑁𝑥𝑥−1
𝑛𝑛 )T, relation (17) can be written in the following matrix 

formulation: 

𝒘𝒘𝑛𝑛+1 = 𝒘𝒘𝑛𝑛 + 𝜃𝜃
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑲𝑲𝒘𝒘𝑛𝑛 + (1 − 𝜃𝜃)
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑲𝑲𝒘𝒘𝑛𝑛+1 + Δ𝑡𝑡𝑭𝑭�𝑛𝑛+
1
2,  

𝑛𝑛 = 0,1, . . . ,𝑁𝑁 − 1, 
(21) 

or 

�𝑰𝑰 − (1 − 𝜃𝜃)
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑲𝑲�𝒘𝒘𝑛𝑛+1 = �𝑰𝑰 + 𝜃𝜃
𝑑𝑑2Δ𝑡𝑡
Δ𝑥𝑥2

𝑲𝑲�𝒘𝒘𝑛𝑛 + Δ𝑡𝑡𝑭𝑭�𝑛𝑛+
1
2,  

                                           𝑛𝑛 = 0,1, . . . ,𝑁𝑁 − 1, 
(22) 

where 

𝑭𝑭�𝑛𝑛+
1
2 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡ 𝜃𝜃

𝑑𝑑2

Δ𝑥𝑥2
ℎ1(𝑡𝑡𝑛𝑛) + (1 − 𝜃𝜃)

𝑑𝑑2

Δ𝑥𝑥2
ℎ1(𝑡𝑡𝑛𝑛+1) +

𝐹𝐹1𝑛𝑛 + 𝐹𝐹1𝑛𝑛+1

2
𝐹𝐹2𝑛𝑛 + 𝐹𝐹2𝑛𝑛+1

2
⋮

𝜃𝜃
𝑑𝑑2

Δ𝑥𝑥2
ℎ2(𝑡𝑡𝑛𝑛) + (1 − 𝜃𝜃)

𝑑𝑑2

Δ𝑥𝑥2
ℎ2(𝑡𝑡𝑛𝑛+1) +

𝐹𝐹𝑁𝑁𝑥𝑥−1
𝑛𝑛 + 𝐹𝐹𝑁𝑁𝑥𝑥−1

𝑛𝑛+1

2 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (23) 

and 
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𝑲𝑲 =

⎝

⎜
⎜
⎜
⎛

−2 1 0 ⋯ 0 0 0
1 −2 1 ⋱ 0 0 0
0 1 −2 ⋱ 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋱ −2 1 0
0 0 0 ⋱ 1 −2 1
0 0 0 ⋯ 0 1 −2⎠

⎟
⎟
⎟
⎞

 (24) 

where we consider the vector 𝒘𝒘𝑛𝑛+1 equals to: 

𝒘𝒘𝑛𝑛+1 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑤𝑤1

𝑛𝑛+1

𝑤𝑤2𝑛𝑛+1
⋮

𝑤𝑤𝑁𝑁𝑥𝑥−2
𝑛𝑛+1

𝑤𝑤𝑁𝑁𝑥𝑥−1
𝑛𝑛+1 ⎦

⎥
⎥
⎥
⎥
⎤

 (25) 

Solving equation (22) involves solving a tridiagonal system of form: 

𝑨𝑨𝒘𝒘𝑛𝑛+1 = 𝑩𝑩𝒘𝒘𝑛𝑛 + Δ𝑡𝑡𝑭𝑭�𝑛𝑛+
1
2 (26) 

at each iteration for the time advance [7]. 
We consider the general form of a parabolic equation in 2D: 

⎩
⎪
⎨

⎪
⎧𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

(𝑥𝑥,𝑦𝑦, 𝑡𝑡) −
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) −
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡),

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑡𝑡), (𝑥𝑥,𝑦𝑦, 𝑡𝑡) ∈ 𝜕𝜕𝜕𝜕 × [0,𝑇𝑇)
𝑢𝑢(𝑥𝑥,𝑦𝑦, 0) = 𝑠𝑠(𝑥𝑥,𝑦𝑦), (𝑥𝑥,𝑦𝑦) ∈ 𝜕𝜕

 (27) 

where 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡),𝑑𝑑(𝑥𝑥,𝑦𝑦, 𝑡𝑡), 𝑠𝑠(𝑥𝑥,𝑦𝑦) represents the source term, the boundary function, and the 
initial function, respectively, while 𝑇𝑇 is the total duration of time for the simulation [11]. 

We consider Δ𝑥𝑥 and 𝛥𝛥𝑦𝑦 the spatial steps for x and y directions, and Δ𝑡𝑡 the time step, also 
we denote by 𝑢𝑢𝑗𝑗,𝑘𝑘

𝑛𝑛 = 𝑢𝑢(𝑥𝑥𝑗𝑗,𝑦𝑦𝑘𝑘 , 𝑡𝑡𝑛𝑛) the value of function [8]. 
Using the FTCS scheme in the x direction and also in the y direction, we obtain: 

𝑤𝑤𝑖𝑖,𝑗𝑗𝑛𝑛+1 = 𝑤𝑤𝑖𝑖,𝑗𝑗𝑛𝑛 +
Δ𝑡𝑡

(Δ𝑥𝑥)2 �𝑤𝑤𝑖𝑖+1,𝑗𝑗
𝑛𝑛 − 2𝑤𝑤𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑤𝑤𝑖𝑖−1,𝑗𝑗

𝑛𝑛 � + 

         +
Δ𝑡𝑡

(Δ𝑦𝑦)2 (𝑤𝑤𝑖𝑖,𝑗𝑗+1𝑛𝑛 − 2𝑤𝑤𝑖𝑖,𝑗𝑗𝑛𝑛 + 𝑤𝑤𝑖𝑖,𝑗𝑗−1𝑛𝑛 ) + Δ𝑡𝑡𝐹𝐹𝑖𝑖,𝑗𝑗𝑛𝑛  
(28) 

To which we attach the initial conditions: 
𝑤𝑤(𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗 , 0) = 𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗), 𝑑𝑑 = 1,𝑁𝑁𝑥𝑥 + 1, 𝑗𝑗 = 1,𝑁𝑁𝑦𝑦 + 1 (29) 

Dirichlet-type boundary conditions on the western and eastern boundaries are [12]: 
𝑤𝑤1,𝑗𝑗
𝑛𝑛 = ℎ𝑤𝑤(𝑥𝑥1,𝑦𝑦𝑗𝑗, 𝑡𝑡𝑛𝑛), 𝑗𝑗 = 1,𝑁𝑁𝑦𝑦 + 1 

𝑤𝑤𝑁𝑁𝑥𝑥+1,𝑗𝑗
𝑛𝑛 = ℎ𝑒𝑒(𝑥𝑥𝑁𝑁𝑥𝑥+1,𝑦𝑦𝑗𝑗, 𝑡𝑡𝑛𝑛), 𝑗𝑗 = 1,𝑁𝑁𝑦𝑦 + 1 

(30) 

The boundary conditions on the southern and northern boundaries are, respectively, [12]: 
𝑤𝑤𝑖𝑖,1𝑛𝑛 = ℎ𝑠𝑠(𝑥𝑥1,𝑦𝑦𝑗𝑗, 𝑡𝑡𝑛𝑛), 𝑑𝑑 = 1,𝑁𝑁𝑥𝑥 + 1 
𝑤𝑤𝑖𝑖,𝑁𝑁𝑦𝑦+1
𝑛𝑛 = ℎ𝑛𝑛(𝑥𝑥𝑁𝑁𝑥𝑥+1,𝑦𝑦𝑗𝑗, 𝑡𝑡𝑛𝑛), 𝑑𝑑 = 1,𝑁𝑁𝑥𝑥 + 1 

(31) 

We will transition from the index pair (𝑑𝑑, 𝑗𝑗) to the multi-index defined by [12]: 
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𝑚𝑚 = (𝑗𝑗 − 1)(𝑁𝑁𝑥𝑥 + 1) + 𝑑𝑑, 𝑑𝑑 = 1,𝑁𝑁𝑥𝑥 + 1, 𝑗𝑗 = 1,𝑁𝑁𝑦𝑦 + 1 (32) 

Equation (28) will be rewritten using the multi-index [12]: 

𝑤𝑤𝑚𝑚𝑛𝑛+1 = 𝑤𝑤𝑚𝑚𝑛𝑛 + 𝑐𝑐𝑥𝑥2
Δ𝑡𝑡
Δ𝑥𝑥2

(𝑤𝑤𝑚𝑚−1
𝑛𝑛 − 2𝑤𝑤𝑚𝑚𝑛𝑛 + 𝑤𝑤𝑚𝑚+1

𝑛𝑛 ) + 

          + 𝑐𝑐𝑦𝑦2
Δ𝑡𝑡
Δ𝑦𝑦2

(𝑤𝑤𝑚𝑚+(𝑁𝑁𝑥𝑥+1)
𝑛𝑛 − 2𝑤𝑤𝑚𝑚𝑛𝑛 + 𝑤𝑤𝑚𝑚−(𝑁𝑁𝑥𝑥+1)

𝑛𝑛 ) + Δ𝑡𝑡𝐹𝐹𝑚𝑚𝑛𝑛 
(33) 

We will write the attached system in matrix form for m equations: 

𝒘𝒘𝑛𝑛+1 = 𝒘𝒘𝑛𝑛 +
Δ𝑡𝑡
Δ𝑥𝑥2

𝑩𝑩𝒘𝒘𝑛𝑛 +
Δ𝑡𝑡
Δ𝑦𝑦2

𝑪𝑪𝒘𝒘𝑛𝑛 + Δ𝑡𝑡𝑭𝑭𝑛𝑛, (34) 

or explicitly, written in block matrices: 

⎩
⎪⎪
⎨

⎪⎪
⎧𝒘𝒘�1𝑛𝑛+1 = 𝒘𝒘�1𝑛𝑛 +

Δ𝑡𝑡
Δ𝑥𝑥2

(−2𝑰𝑰)𝒘𝒘�1𝑛𝑛 +
Δ𝑡𝑡
Δ𝑦𝑦2

(−2𝑰𝑰)𝒘𝒘�1𝑛𝑛 + Δ𝑡𝑡𝑭𝑭1𝑛𝑛,

𝒘𝒘�2𝑛𝑛+1 = 𝒘𝒘�2𝑛𝑛 +
Δ𝑡𝑡
Δ𝑥𝑥2

𝑩𝑩1𝒘𝒘�2𝑛𝑛 +
Δ𝑡𝑡
Δ𝑦𝑦2

(𝑰𝑰𝒘𝒘�1𝑛𝑛 − 2𝑰𝑰𝒘𝒘�2𝑛𝑛 + 𝑰𝑰𝒘𝒘�3𝑛𝑛) + Δ𝑡𝑡𝑭𝑭2𝑛𝑛,

⋮

𝒘𝒘�𝑁𝑁𝑦𝑦+1
𝑛𝑛+1 = 𝒘𝒘�𝑁𝑁𝑦𝑦+1

𝑛𝑛 +
Δ𝑡𝑡
Δ𝑥𝑥2

(−2𝑰𝑰)𝒘𝒘�𝑁𝑁𝑦𝑦+1
𝑛𝑛 +

Δ𝑡𝑡
Δ𝑦𝑦2

(−2𝑰𝑰)𝒘𝒘�𝑁𝑁𝑦𝑦+1
𝑛𝑛 + Δ𝑡𝑡𝑭𝑭𝑁𝑁𝑦𝑦+1

𝑛𝑛 ,

 (35) 

where the vector of unknowns is denoted as blocks of vectors: 

𝒘𝒘𝑛𝑛+1 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝒘𝒘�1

𝑛𝑛+1

𝒘𝒘�2𝑛𝑛+1
⋮

𝒘𝒘�𝑁𝑁𝑦𝑦−1
𝑛𝑛+1

𝒘𝒘�𝑁𝑁𝑦𝑦+1
𝑛𝑛+1

⎦
⎥
⎥
⎥
⎥
⎤

 (36) 

We note vector 𝒘𝒘�𝑠𝑠𝑛𝑛+1 (where s is an arbitrary line) as being: 

𝒘𝒘�𝑠𝑠𝑛𝑛+1 =

⎣
⎢
⎢
⎢
⎢
⎡ 𝑤𝑤1+(𝑠𝑠−1)(𝑁𝑁𝑥𝑥+1)

𝑛𝑛+1

𝑤𝑤2+(𝑠𝑠−1)(𝑁𝑁𝑥𝑥+1)
𝑛𝑛+1

⋮
𝑤𝑤𝑁𝑁𝑥𝑥+(𝑠𝑠−1)(𝑁𝑁𝑥𝑥+1)
𝑛𝑛+1

𝑤𝑤𝑠𝑠(𝑁𝑁𝑥𝑥+1)
𝑛𝑛+1 ⎦

⎥
⎥
⎥
⎥
⎤

 (37) 

Matrix B is 

𝑩𝑩 =

⎝

⎜
⎜
⎜
⎛

−2𝑰𝑰 0 0 0 … 0 0
0 𝑩𝑩1 0 0 … 0 0
0 0 𝑩𝑩1 0 … 0 0
0 0 0 𝑩𝑩1 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … 𝑩𝑩1 0
0 0 0 0 … 0 −2𝑰𝑰⎠

⎟
⎟
⎟
⎞

𝑚𝑚×𝑚𝑚

 (38) 

Submatrix B1 is 
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𝑩𝑩1 =

⎝

⎜
⎜
⎜
⎛

−2 0 0 0 … 0 0
1 −2 1 0 … 0 0
0 1 −2 1 … 0 0
0 0 1 −2 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … −2 1
0 0 0 0 … 0 −2⎠

⎟
⎟
⎟
⎞

(𝑁𝑁𝑥𝑥+1)×(𝑁𝑁𝑥𝑥+1)

 (39) 

Matrix C is  

𝑪𝑪 =

⎝

⎜
⎜
⎜
⎛

−2𝑰𝑰 0 0 0 … 0 0
𝑰𝑰 −2𝑰𝑰 𝑰𝑰 0 … 0 0
0 𝑰𝑰 −2𝑰𝑰 𝑰𝑰 … 0 0
0 0 𝑰𝑰 −2𝑰𝑰 … 0 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 … −2𝑰𝑰 𝑰𝑰
0 0 0 0 … 0 −2𝑰𝑰⎠

⎟
⎟
⎟
⎞

𝑚𝑚×𝑚𝑚

, 

𝑰𝑰 ∈ ℝ(𝑁𝑁𝑥𝑥+1)×(𝑁𝑁𝑥𝑥+1) 

(40) 

where 𝑰𝑰 is the identity matrix. 
Special attention is given to the right-hand side term 𝑭𝑭𝑛𝑛. Thus, for example, we have: 

𝑭𝑭1𝑛𝑛 =
1
Δ𝑡𝑡 �

𝒘𝒘�1𝑛𝑛+1 − �𝒘𝒘�1𝑛𝑛 +
Δ𝑡𝑡
Δ𝑥𝑥2

(−2𝑰𝑰)𝒘𝒘�1𝑛𝑛 +
Δ𝑡𝑡
Δ𝑦𝑦2

(−2𝑰𝑰)𝒘𝒘�1𝑛𝑛�� (41) 

𝑭𝑭𝑁𝑁𝑦𝑦+1
𝑛𝑛 =

1
Δ𝑡𝑡 �

𝒘𝒘�𝑁𝑁𝑦𝑦+1
𝑛𝑛+1 − �𝒘𝒘�1𝑛𝑛 +

Δ𝑡𝑡
Δ𝑥𝑥2

(−2𝑰𝑰)𝒘𝒘�𝑁𝑁𝑦𝑦+1
𝑛𝑛 +

Δ𝑡𝑡
Δ𝑦𝑦2

(−2𝑰𝑰)𝒘𝒘�𝑁𝑁𝑦𝑦+1
𝑛𝑛 �� (42) 

3. NUMERICAL EXAMPLES AND RESULTS 
We consider the next following problem of the parabolic equation for the 1D case: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

−
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

= 𝑥𝑥𝑒𝑒𝑡𝑡 − 6𝑥𝑥,    0 < 𝑡𝑡 < 𝑇𝑇, 0 < 𝑥𝑥 < 1, (43) 

With the following Dirichlet-type boundary conditions: 

𝑢𝑢(0, 𝑡𝑡) = 0, 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 

𝑢𝑢(1, 𝑡𝑡) = 1 + 𝑒𝑒𝑡𝑡 , 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 
(44) 

Along with the exact solution: 

𝑢𝑢(𝑥𝑥, 𝑡𝑡) = 𝑥𝑥(𝑥𝑥2 + 𝑒𝑒𝑡𝑡),     0 ≤ 𝑥𝑥 ≤ 1, (45) 

To draw valid conclusions, we have chosen the following computation parameters: the 
number of intervals on x equals to 𝑁𝑁𝑥𝑥 = 100 and the final simulation time 𝑇𝑇𝑓𝑓𝑖𝑖𝑛𝑛𝑓𝑓𝑙𝑙 = 0.1𝑠𝑠. For 
the selected time moment, the numerical solution of the equation will be calculated using three 
methods: the classical Crank-Nicolson method, the POD method without basis update, and the 
POD method with basis update. 
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Fig. 1 – Comparison between the exact solution and the solution calculated using the Crank-Nicolson-POD 

method without basis update 

 
Fig. 2 – Comparison between the exact solution and the solution calculated using the Crank-Nicolson-POD 

method with basis update 

Method Time-CPU POD basis ‖𝒆𝒆𝑛𝑛‖2
= ‖𝒖𝒖𝑒𝑒𝑥𝑥𝑓𝑓𝑒𝑒𝑡𝑡 − 𝒘𝒘∗𝑛𝑛‖2 

𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅

= �‖𝒆𝒆𝑛𝑛‖22/(𝑁𝑁 − 1) 

CN-classic 9.76 0 0.073 7.3529e-4 
POD NO 
UPDATE 

4.14 1 0.0412 0.0042 

POD UPDATE 5.72 21 0.9188 0.0928 

We consider the next following problem of the parabolic equation for the 2D case: 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

− 2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑥𝑥2

− 2
𝜕𝜕2𝑢𝑢
𝜕𝜕𝑦𝑦2

= 1 + 2 𝑠𝑠𝑑𝑑𝑛𝑛(𝑥𝑥) + 2 𝑐𝑐𝑐𝑐𝑠𝑠(𝑦𝑦) , 

0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, 0 ≤ 𝑥𝑥 ≤
𝜋𝜋
2

, 0 ≤ 𝑦𝑦 ≤
𝜋𝜋
2

 
(46) 

With the following Dirichlet-type boundary conditions: 

𝑢𝑢(0,𝑦𝑦, 𝑡𝑡) = 𝑡𝑡 + 𝑐𝑐𝑐𝑐𝑠𝑠(𝑦𝑦) ,𝑢𝑢 �
𝜋𝜋
2

,𝑦𝑦, 𝑡𝑡� = 𝑡𝑡 + 1 + 𝑐𝑐𝑐𝑐𝑠𝑠(𝑦𝑦) , 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 

𝑢𝑢(𝑥𝑥, 0, 𝑡𝑡) = 𝑡𝑡 + 1 + 𝑠𝑠𝑑𝑑𝑛𝑛(𝑥𝑥) ,𝑢𝑢 �𝑥𝑥,
𝜋𝜋
2

, 𝑡𝑡� = 𝑡𝑡 + 𝑠𝑠𝑑𝑑𝑛𝑛(𝑥𝑥) , 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇 
(47) 

Along with the exact solution: 

𝑢𝑢(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑡𝑡 + 𝑠𝑠𝑑𝑑𝑛𝑛(𝑥𝑥) + 𝑐𝑐𝑐𝑐𝑠𝑠(𝑦𝑦) ,  0 ≤ 𝑡𝑡 ≤ 𝑇𝑇, 0 ≤ 𝑥𝑥 ≤
𝜋𝜋
2

, 0 ≤ 𝑦𝑦 ≤
𝜋𝜋
2

 (48) 
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To draw valid conclusions, we have chosen the following computation parameters: the number 
of intervals on x equals to 𝑁𝑁𝑥𝑥 = 40, the number of intervals on y equals to 𝑁𝑁𝑦𝑦 = 50 and the 
final simulation time 𝑇𝑇 = 𝑡𝑡𝑓𝑓 = 2 𝑠𝑠. For the selected time moment, the numerical solution of 
the equation will be calculated using three methods: the classical FTCS method, the POD 
method without basis update, and the Crank-Nicolson-POD method with basis update. 

 
Fig. 3 – The exact solution  

 
Fig. 4 – The absolute error between the exact solution and the solution calculated with the POD method without 

basis update 

 
Fig. 5 – The absolute error between the exact solution and the solution calculated with the POD method with 

basis update 
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Method Time-CPU POD basis ‖𝒆𝒆𝑛𝑛‖2
= ‖𝒖𝒖𝑒𝑒𝑥𝑥𝑓𝑓𝑒𝑒𝑡𝑡 − 𝒘𝒘∗𝑛𝑛‖2 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �‖𝒆𝒆𝑛𝑛‖22/(𝑁𝑁 − 1) 

FTCS-
classic 

591.38 0 0.060035 0.00184 

POD-NO 
UPDATE 

46.12 1 0.02707 8.3009e-04 

POD 
UPDATE 

22.67 30 1.24149 0.03806 

4. CONCLUSIONS 
In conclusion, in this work, we utilized the POD basis to derive low-order finite difference 
schemes for the parabolic equation. We analyzed the errors between the exact solution and the 
solution obtained based on the implementation of finite difference schemes, demonstrating 
that our current method has improved and innovated existing approaches. We validated the 
correctness of our theoretical results with numerical examples. 

When solving engineering problems, data can be interpolated or assimilated by acquiring 
information from experiments to organize instantaneous moments (i.e., snapshots) and the 
POD basis. As a result, computational efficiency is significantly increased, and time and 
resource-consuming calculations in the computation process are greatly reduced. The aim of 
future research in this field is to develop and apply the low-order POD method for numerical 
simulations of a realistic system to estimate, in a relatively short time with relatively small 
errors, the behavior of various flows around obstacles. This method can be implemented to 
calculate numerical solutions for more complex partial differential equations, such as the 
Navier-Stokes equations. 

The use of the POD-Galerkin method on finite difference schemes led to increased 
computational efficiency. Dimensionality reduction through the use of POD basis allowed a 
significant acceleration of calculations, enabling the solution of larger and more complex 
problems in a shorter time. 

This approach significantly enhanced computational efficiency, reducing the time and 
resources required in the calculation process. Thus, there is a great potential for many people 
to utilize the techniques presented in this work. 
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