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Abstract: Dry sliding wear plays an important role in selecting material for automotive and aerospace 
applications. Researchers have been exploring novel aluminum matrix composites (AMC), which offer 
minimum wear rate for various tribological applications. The present work involves multi-objective 
optimization for dry sliding wear behavior of Al6061 reinforced with 6 % of Titanium carbide and 4% 
of basalt hybrid metal matrix composites using principal component analysis (PCA)-based grey 
relational analysis (GRA). In this article, the effects of input variables of wear parameters such as 
applied load, sliding speed and sliding distance were investigated on different output responses, namely 
the wear rate, friction force and specific wear rate. Taguchi’s L9 orthogonal array with three-level 
settings was chosen for conducting experiments. Three output responses in each experiment were 
normalized into a weighted grey relational grade using grey relational analysis coupled with the 
principal component analysis. The analysis of variance indicated that sliding distance is the most 
influential parameter followed by load and sliding velocity that contributes to the quality 
characteristics. Optimal results have been verified through additional experiments. 

Key Words: Aluminum matrix composites, Taguchi method, Grey Relational Analysis, Principal 
component analysis, ANOVA 

1. INTRODUCTION 
In the current world, there is an increase in demand for materials which have a high strength-
to-weight ratio and greater wear and corrosion resistance. Hence, a lot of research has been 
dedicated to the development of advanced materials. One of the advanced materials is 
aluminum matrix composites (AMCs). They arouse interest, as they can be used in a wide 
range of applications, due to their low weight and high thermal resistance and conductivity. 
They are used particularly in the manufacturing of automotive components such as cylinder 
liners, pistons, drive shafts, brake rotors, cylinder heads, cylinder blocks, intake manifolds, 
rear axles and differential housings [1-3]. Shorowordi et al. [4] studied the dry sliding wear 
behavior of Al-13 wt% B4Cp and Al-13 wt% SiC composites worn against a commercial 
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phenolic brake pad under varying contact pressures at a constant sliding speed. The results 
show that the wear rate and friction coefficient of Al-B4Cp composite are lower than those of 
Al-SiC MMC. Mahmoud et [5] investigated the dry-sliding wear performance of a 
hypereutectic A390 Al-Si alloy reinforced with graphite particulates (4% and 8%). They found 
that both the wear rate and coefficient of friction of the composites decreased considerably 
with the addition of graphite. Kaur et al. [6] preferred dry sliding wear for the effect of SiC 
reinforcement along with immiscible element in spray formed Al-Si base alloy. They found 
that Al-Si, Al-Si/SiC, Al-Si-5Sn/SiC & Al-Si-10SiC show that the nature of wear changes 
from lower loads to higher loads. The severe deformation wear occurs in spray formed alloy 
at higher loads. Poornesh Mangalorea et al [7] studied the tribological properties of Al 7079 
alloy reinforced with agro waste particles. They found that the hardness and the tensile strength 
of the produced composite specimens are improved because of the synergic of the reinforcing 
particles and that the coconut shell ash is extremely helpful in reducing the wear rate. Alaneme 
et al [8] while studying about the corrosion and wear behavior of aluminum composites when 
reinforced with rice hush ash and alumina concluded that when aluminum alloy was reinforced 
with alumina alone, the resistance to corrosion was much higher than the resistance obtained 
after the addition of rice husk ash. 

Apasi et al [9] investigated the wear behavior of aluminum alloy reinforced with coconut 
shell ash particles. They found out that, with the increase in the load, the wear rate of the 
composites also increased, since the contact friction between the pin and the disc increases. 
The addition of the ash reinforcement to the matrix was found to be useful since it helped in 
decreasing the wear rate. Shabani et al. [10] studied the effect of the reinforcement of SiC 
particles of varying size and volume fraction on the microstructure and tribological properties 
of Al-based composite. The hardness of material and applied normal load on pin have 
significant influence on tribological properties during dry sliding of Al6061/SiC composites. 
The mechanical properties and wear resistance of composites with a narrow size range of fly 
ash particles were superior to those of composites with a wide size range fly ash particles 
(Sudarshan et al. [11], [12]). Canakci et al. [13] prepared the CuSn10-graphite composite and 
investigated the microstructure, relative density, hardness, and abrasive wear behavior. They 
reported that the abrasive wear resistance increased with increasing graphite content and 
decreased with increasing sliding distance, applied load, and abrasive grit size. Modi et al. [14] 
showed the effect of the applied load on the wear rate of both zinc alloy and the 10 wt. % 
Al2O3 particle-reinforcement composite using statistical analyses of the measured wear rate at 
different operating conditions. The effect of the applied load on the wear rate of composite 
was found to be more severe. Considering the wear mechanisms, oxidative wear, delamination, 
two- or three-body abrasive wear and formation of a stable mechanically mixed layer (MML) 
are reported [15,16]. Mondal et al. [17] studied the influence of the applied load on the dry 
wear behavior of an Al–Zn–Mg alloy reinforced with SiC particles against a steel disc. By 
using the X-ray diffraction (XRD), they identified the presence of iron and aluminum oxides 
(Fe2O3 and Al2O3) together with intermetallic FeAl in the mechanically mixed layer. 

Ezhil Vannan et al. [18] reported that the coefficient of thermal expansion of 
Al7075/basalt fiber metal matrix composites significantly decreases with the addition of basalt 
fiber. Bülent Öztürk et al. [19] studied the hot wear properties of ceramic and basalt fiber 
reinforced hybrid friction materials. Experiments showed that fiber content has a significant 
influence on the mechanical and tribological properties of the composites. The friction 
coefficient of the hybrid friction materials was increased with increasing additional basalt fiber 
content. But the specific wear rates of the composites decreased up to 30 vol% fiber content 
and then increased again above this value. Meenu et al. [20], attempted Taguchi grey relational 



141 An investigation on dry sliding wear behavior of Al6061/ Titanium carbide/ Basalt hybrid metal matrix composites 
 

INCAS BULLETIN, Volume 13, Issue 4/ 2021 

analysis to the experimental results in order to optimize the turning parameters for 
unidirectional GFRP composite and applied PCA to evaluate the weight corresponding to 
different performance characteristics. The principal component, having highest accountability 
proportion, was treated as single objective function for optimization (multi-response 
performance index). Therefore, in recent times the principal component analysis has been 
considered as an analytical tool for the optimization of a system with multiple performance 
characteristics [21-23]. Extensive researches on individual reinforcements of Titanium carbide 
and basalt improving the wear resistance and the strength of hybrid aluminum composites were 
carried out. However, very limited research was conducted in order to explore the combined 
effect of Titanium carbide and basalt particulate reinforcements on hybrid aluminum 
composites. Hence, in this study, an attempt has been made to investigate the wear behavior 
of the composite material under varying load, sliding speed and sliding distance and find the 
optimum parameter. 

2. EXPERIMENTAL METHOD 
Selection of materials and fabrication of composite 

In this investigation, Al6061 was chosen as the base matrix. The percentage chemical 
composition of the Al6061 is given in Table 1. The reinforcement materials were Titanium 
carbide (TiC) and basalt powder. The hybrid metal matrix composite was prepared by 
adding 6% of TiC and 4% of basalt powder with Al6061. 

Table1. Chemical Composition of Al6061 

Mg Si Zn Cu Fe Ti Cr Mn Al 

0.8-1.2 0.4-0.8 0.25 0.15-0.40 0.7 Max. 0.15 0.04-
0.35 

Max. 
0.15 Remainder 

The stir casting technique was employed to prepare the composite specimens. Al7075 
was melted by raising its temperature to 850°C and degassed using a solid dry 
hexachloroethane compound. The titanium carbide and basalt powder particles were 
preheated for 30 min at 400°C for improving the wettability and added to the molten metal, 
and stirred continuously with an impeller at a speed of 600 rpm for 5 minutes. The melt 
with reinforcement particles was poured into a cylindrical permanent metallic mold and 
allowed to solidify. The die was released after 6 hours and the cast specimens were taken out. 

Plan of experiment 

Experiments have been conducted as per L9 orthogonal array for finding out the optimum test 
parameters. The main factors are the applied load (A), the sliding velocity (B), and the sliding 
distance (C). The levels of various control parameters are shown in Table 2. 

Table 2. Process and Parameters and Levels 

Level Load (N) Sliding Velocity (m/s) Sliding Distance(m) 
1 20 1.5 1000 
2 30 2.3 1500 
3 40 3.1 2000 

The second column was assigned for the applied load (A), the third column for the sliding 
velocity (B), and the fourth column for the sliding distance (C). The response variables are 
the wear volume loss and the coefficient of friction of composites. 
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Experimental procedure 

The dry sliding wear test of the specimens were conducted on a pin-on-disc (Fig. 1) wear 
testing machine (TR-20, DUCOM) according to ASTM G99-95 standards. 

 
Fig. 1 Pin on disc apparatus 

The cylindrical pin specimens having 10 mm diameter and 30 mm length machined out 
from the castings were used as test samples. Then, the ends of the specimens were polished 
metallographically. 

The initial weight of the specimen was measured in the electronic weighing machine with 
the least count of 0.0001 g. 

During the test, the pin was pressed against the counterpart rotating against the EN31 steel 
disc with the hardness of 65HRC by applying the load. After running through a fixed sliding 
distance, the specimens were removed, cleaned with acetone, dried and weighed to determine 
the weight loss due to the wear. 

The results for various combinations of the parameters were obtained by conducting the 
experiment as an average of at least three runs as per the orthogonal array. It is presented in 
Table 3. 

From the initial and final weight of the specimen, the initial and final volumes of the 
specimen are calculated using equations 1 and 2. 

 Initial volume of the specimen =
Initial weight of the specimen

Density of the specimen
 (1) 

Initial volume of the specimen =
Initial weight of the specimen

Density of the specimen
 (2) 

Then final volume loss of the specimen, the wear rate and the specific wear rate are calculated 
using eq. 3, 4, and 5 and are shown in table 3. 

Volume loss of the specimen =   
Final volume of the specimen- Initial volume of the specimen     

(3) 

Wear rate =
Volume loss

Sliding distance
  

mm3

m
 (4) 

Specific wear rate =
Wear rate

Load
  

mm3

Nm
 (5) 
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Table 3. Experimental plan and results 

Expt 
no 

Load 
(N) 

Sliding 
Speed 
(m/s) 

Sliding 
Distance 

(m) 

Initial  
mass 
(g) 

Final  
mass  
(g) 

Wear rate 
(mm3/m) 

Friction 
force 
(N) 

Specific  
wear rate 

(mm3/Nm) 
1 20 1.5 1000 6.854 6.84 0.005049 6.82 0.0002525 

2 20 2.3 1500 6.148 6.131 0.004087 3.43 0.0002044 

3 20 3.1 2000 6.598 6.58 0.003246 8.05 0.0001623 

4 30 1.5 1500 6.00 5.98 0.004808 11.36 0.0001603 

5 30 2.3 2000 6.59 6.57 0.003606 11.58 0.0001202 

6 30 3.1 1000 6.96 6.94 0.007212 11.51 0.0002404 

7 40 1.5 2000 6.61 6.58 0.005409 6.72 0.0001352 

8 40 2.3 1000 6.59 6.53 0.021637 16.57 0.0005409 

9 40 3.1 1500 6.53 6.512 0.004327 15.42 0.0001082 

3. OPTIMIZATION STEPS 
Signal-to-noise ratio 

In Taguchi method, the signal-to-noise (S/N) ratio is used to represent a performance 
characteristic and the largest value of the S/N ratio is required. There are three types of 
S/Nratio -the lower-the-better, the higher-the-better, and the nominal-the-better. The S/N ratio 
with the lower-the-better characteristics (wear rate, coefficient of friction) can be calculated 
using eq. (6). 

ηij = −10log �
1
n
��yij

2
n

j=1

 (6) 

where ηij is the jth S/N ratio of the ith experiment, yij is the ith experiment at the jth test, n is the 
total number of tests. 
The S/N ratio with a higher-the-better characteristic can be expressed as 

ηij = −10log �
1
n
��

1
yij

2

n

j=1

 (7) 

The S/N ratio with a nominal-the-better characteristic can be expressed as 

ηij = −10log�
1
ns
�yij

2
n

j=1

� (8) 

where ηij is the jth S/N ratio of the ith experiment, yij is the ith experiment at the jth test, n is the 
total number of tests, and s is the standard deviation. 
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Data pre-processing 

In the GRA, the S/N ratio of quality characteristics is normalized first, to reduce the variability. 
Data preprocessing is a process of transferring the original sequence to a comparable sequence. 
For this purpose, the experimental results are normalized in the range 0 to 1. The normalization 
can be done from three different approaches. 

In the present investigation, the main objective is to minimize the quality characteristics. 
Therefore, the lower-the-better criterion was selected for the normalization of experimental 
data, which is done by the following equation (eq. (9)): 

𝑋𝑋𝑖𝑖∗(𝑘𝑘) =
max𝑋𝑋𝑖𝑖0 (𝑘𝑘) − 𝑋𝑋𝑖𝑖0(𝑘𝑘)

max𝑋𝑋𝑖𝑖0 (𝑘𝑘) − min𝑋𝑋𝑖𝑖0 (𝑘𝑘)
 (9) 

where 𝑋𝑋𝑖𝑖0(𝑘𝑘) is the value after the grey relational generation (data preprocessing), max 𝑋𝑋𝑖𝑖0(𝑘𝑘) 
is the largest value of 𝑋𝑋𝑖𝑖0(𝑘𝑘), min𝑋𝑋𝑖𝑖0(𝑘𝑘) is the smallest value of 𝑋𝑋𝑖𝑖0(𝑘𝑘), and 𝑋𝑋0 is the desired 
value. 

Grey relational coefficient and grey relational grade 

After data pre-processing is carried out, the grey relational coefficient might be calculated to 
express the relationship between the ideal and actual normalized experimental results. The 
grey relational coefficient can be expressed as follows: 

𝜉𝜉𝑖𝑖(𝑘𝑘) =
Δmin + 𝜁𝜁Δmax

Δ𝑜𝑜𝑜𝑜(𝑘𝑘) − +𝜁𝜁Δmax
 (10) 

where ζ(є 0,1) = distinguished coefficient, ς=0.5 is generally used 𝜉𝜉𝑖𝑖(𝑘𝑘) is the grey relational 
coefficient, Δmin is the smallest value of Δoi(k), Δmax is the largest value of Δoi(k) Δ𝑜𝑜𝑜𝑜(𝑘𝑘) is the 
deviation sequence of the  reference sequence 𝑋𝑋𝑜𝑜∗(𝑘𝑘), and the comparability sequence 𝑋𝑋𝑖𝑖∗(𝑘𝑘), 
namely 

𝛥𝛥𝑜𝑜𝑜𝑜(𝑘𝑘) = ‖𝑋𝑋𝑜𝑜(𝑘𝑘) − 𝑋𝑋𝑖𝑖(𝑘𝑘)‖ 

Δmax = max
      ∀j εi

  max
∀k
�𝑋𝑋𝑜𝑜∗(𝑘𝑘) − 𝑋𝑋𝑗𝑗∗(𝑘𝑘)� 

Δmin = min
      ∀j εi

  min
∀k
�𝑋𝑋𝑜𝑜∗(𝑘𝑘) − 𝑋𝑋𝑗𝑗∗(𝑘𝑘)� 

Finally, the grey relational grade (GRG) in each experiment is evaluated through its 
corresponding average-GRCs as given in eq. 11. 

GRG is for showing the correlation among the experimental data.The higher the GRG, 
the better the experimental plan. 

γi =
1
n
�wnξi

n

k=1

(k)  where �wn

n

k=1

= 1 (11) 

where γi is the weighted grey relational grade for the ith experiment and n is the number of 
performance. 
In this study, PCA was used to obtain the wn. 

Through the linear combinations among the responses, the PCA explores the structure of 
the variance-covariance. 

The procedure of PCA is explained in the following section. 
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Principal component analysis (PCA) 

Principal Component Analysis (PCA) was proposed by Pearson [24], and developed as a 
statistical tool by Hotelling [25]. 

Initially, this technique has been applied to quantify and identify phenomena in social 
sciences where it was difficult to directly measure the phenomenal changes. 

PCA is useful in reduction of data and interpretation of multi-objective sets of data. 
Currently, PCA is finding wide applications in various scientific fields. The procedure is 
described as follows. 

1. The original multiple performance characteristic array 

𝑋𝑋 =

⎣
⎢
⎢
⎢
⎡
 x1(1)   x1(2)   ......    ..... x1(𝑛𝑛)
 x2(1)   x2(2)   ......    ..... x2(𝑛𝑛)
   .            .            ......    .....     .
   .            .           ......    .....     .
 xm(1)  xm(2)  ......    ..... xm(𝑛𝑛) ⎦

⎥
⎥
⎥
⎤

, xi(j), i = 1,2,.........m;   j = 1,2,.........n  (12) 

where m is the number of experiment and n is the number of the performance characteristic.  
In this paper, X is the grey relational coefficient of each performance characteristic and 

m=9 and n=3. 

2. Correlation coefficient array 

The correlation coefficient array is evaluated as follows: 

𝑅𝑅jl = �
𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑖𝑖(𝑗𝑗), 𝑥𝑥𝑖𝑖(𝑙𝑙))
𝜎𝜎𝑥𝑥𝑖𝑖(𝑗𝑗) × 𝜎𝜎𝑥𝑥𝑖𝑖(𝑙𝑙)

� , j = 1,2,3 … … n, l = 1,2,3 … … . n (13) 

where Cov(xi(j), xi(l)) is the covariance of sequences xi(j) and xi(l), σxi(j) is the standard 
deviation of sequence xi(j) and σxi(l) is the standard deviation of sequence xi(l). 

3. Determining the eigenvalues and eigenvectors 

The Eigenvalues and Eigenvectors are determined from the correlation coefficient array, 

(R-λkIm)Vik = 0 (14) 

where λk = Eigen values, ∑ λk = n,n
k=1  k=1,2……n; Vik= [ak1 ak ak2 .... akn]T Eigen vectors 

corresponding to the Eigen value λk. 

4. Principal components 

The principal component is formulated as: 

Ymk = �Xm(i).Vik

𝑛𝑛

i=1

 (15) 

where Ym1 is called the first principal component, Ym2 is called the second principal 
component, and so on. 

The principal components are aligned in descending order with respect to variance, and 
therefore, the first principal component Ym1 accounts for most variance in the data. 
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Analysis and discussion of experimental results 

In this study, wear rate, the friction force and the specific wear rate of TiC and basalt based 
aluminum MMC for different combination of wear parameters of nine experimental runs are 
considered. The following sequential steps are adopted to determine the optimal combinations 
of the wear parameters based on grey relational analysis coupled with principal component 
analysis: 
1. The S/N ratios for the experimental data were calculated. 
2. The S/N ratios were normalized. 
3. The corresponding grey relational coefficients were calculated. 
4. PCA was used and the grey relational grades were calculated. 
5. The optimal levels of wear parameters were obtained. 
6. Finally, the confirmation experiments were conducted. 

As per the optimization procedure, the S/N and normalized S/N ratios for the wear rate, 
the friction force and the specific wear rate were calculated and the results are tabulated in 
Table 4.  

Table 4. S/N ratio values and normalized S/N ratio values 

Ex 
no 

S/N ratio Normalized S/N ratio 

Wear rate 
(mm3/m) 

Friction 
Force 
(N) 

Specific wear 
rate 

(mm3/Nm) 

Wear rate 
(mm3/m) 

Friction 
Force 
(N) 

Specific wear 
rate 

(mm3/Nm) 
1 45.93589259 -16.675687 71.9564925 0.232879 0.436371 0.52652808 
2 47.77190725 -10.705882 73.7925072 0.12145 0 0.39519846 
3 49.77302969 -18.115917 75.7936296 0 0.541647 0.25205874 
4 46.36071082 -21.107566 75.9031359 0.207096 0.760325 0.24422578 
5 48.85948555 -21.274171 78.4019107 0.055444 0.772504 0.06548913 
6 42.83888564 -21.221506 72.3813107 0.420839 0.768654 0.49614095 
7 45.33766037 -16.547385 77.3788602 0.269186 0.426993 0.13866764 
8 33.29605910 -24.386450 65.3372589 1 1 1 
9 47.27626210 -23.761687 79.3174619 0.151531 0.954332 0 

Table 5. Gray relational co-efficient  

Ex. no Grey relational coefficient 
Wear rate Friction Force Specific wear rate 

1 0.682241 0.533976 0.48707874 
2 0.80457 1 0.55853536 
3 1 0.480009 0.66484169 
4 0.707117 0.396723 0.67183913 
5 0.900181 0.392926 0.8841903 
6 0.542983 0.394118 0.501937 
7 0.650038 0.539379 0.78287981 
8 0.333333 0.333333 0.33333333 
9 0.767423 0.3438 1 

PCA was adopted to determine the corresponding weighting values for each performance 
characteristic to reflect its relative importance in the grey relational analysis. The elements of 
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the array for multiple performance characteristics listed in Table 5 represent the grey relational 
coefficient of each performance characteristic. These data were used to evaluate the correlation 
coefficient matrix and to determine the corresponding Eigenvalues from Eq. (14). The 
Eigenvalues are shown in Table 6. 

Table 6. The eigenvalues and explained variation for principal components 

Principal components Eigenvalues Explained variation (%) 
First 1.0682 35.61 
Second 0.9460 31.53 
Third 0.9858 32.86 

The Eigenvector corresponding to each Eigenvalue is listed in Table 7. The square of the 
Eigenvalue matrix represents the contribution of the respective performance characteristic to 
the principal component. The contribution of the wear rate, the friction force and the specific 
wear rate is shown in Table 8. 

Table 7. The eigenvectors for principal components 

Performance 
characteristics 

First principal 
component 

Second principal 
Component 

Third principal 
component 

Wear rate -0.6361 -0.6937 0.3379 
Friction force -0.4176 -0.0587 -0.9067 
Specific wear rate -0.6489 0.7179 0.2523 

Table 8. The most variance contribution of each individual performance characteristic for the principal 
component 

Performance characteristics Contribution/weighted value 
Wear rate 0.405 
Friction force 0.174 
Specific wear rate 0.421 

The contributions of each individual performance characteristic for the principal 
component are 0.405, 0.174 and 0.421. Moreover, the variance contribution for the first 
principal component characterizing the three performance characteristics is as high as 35.61%. 
Hence, for this study, the squares of its corresponding Eigenvectors were selected as the 
weighting values of the related performance characteristic, and coefficients w1, w2, and w3 in 
Eq. 11 were thereby set as 0.405, 0.174 and 0.421, respectively. Based on Eq. 11 and data 
listed in Table 6, the grey relational grades were calculated and shown in Table 9. 

Table 9. Grey relation grades (GRG’s) and its rank 

Ex no Grey relation grades (GRG) Rank 
1 0.19142655 7 
2 0.24499813 4 
3 0.25613998 3 
4 0.21275219 6 
5 0.26839556 1 
6 0.16660012 8 
7 0.2289032 5 
8 0.11111111 9 
9 0.26387593 2 
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Thus, the optimization design was performed with respect to a single grey relational grade 
rather than complicated performance characteristics. According to performed experimental 
design, it is clearly observed from Table 9 that the wear parameters setting of experiment no. 
5 has the highest grey relational grade. 

Thus, the fifth experiment gives the best multi-performance characteristics among the 
nine experiments. 

From the value of grey relational grade in Table 9, the main effects are tabulated in Table 
10 and the factor effects are plotted in Fig. 2. 

From table 9 and Fig. 2, the optimum factors for both the wear rate and the coefficient of 
friction obtained for the hybrid composite are 20 N load (level 1), 3.1 m/s sliding speed (level 
3), and 2000 m sliding distance (level 3) combination. 

Table 10. Main effects on grey grades 

Level Load Sliding velocity Sliding distance 
1 0.2309* 0.2110 0.1564 
2 0.2159 0.2082 0.2405 
3 0.2013 0.2289* 0.2511* 

Delta 0.0296 0.0207 0.0948 
Rank 2 3 1 

*Optimum level 

 
Fig. 2 Effect of wear parameter levels on the multi-performance 

Analysis of variance 

The purpose of the analysis of variance (ANOVA) is to find which wear parameters 
significantly affect the performance characteristic. This is accomplished by separating the total 
variability of the grey relational grades, which is measured by the sum of the squared 
deviations from the total mean of the grey relational grade, into contributions by each wear 
parameters and the error. 

This analysis was carried out for a level of significance of 5%, i: e., the level of confidence 
95%. Results of ANOVA (Table 11) for the GRG, indicate that the sliding distance (74.504%) 
influences more on the multi-performance characteristics of Al6061/TiC/basalt hybrid 
composite followed by load (6.038 %) and sliding velocity (3.477%). 
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Table 11. Results of ANOVA for GRG 

Source DF Adj SS Adj MS F P %C 
Load 2 0.001311 0.000655 0.38 0.726 6.038 
Sliding velocity 2 0.000755 0.000378 0.22 0.821 3.477 
Sliding distance 2 0.016177 .008088 4.66 0.177 74.504 
Residual Error 2 0.003470 0.001735   15.981 
Total 8 0.021712    100 

Confirmation Experiments and Coclusions 

After the optimal level of parameters is identified, a confirmation experiment is carried out to 
predict and verify the improvement of the quality characteristic using the optimal level of the 
design parameters. The predicted grey relational grades of using the optimum level of the dry 
sliding parameters are calculated using Eq. 16. 

γ� = 𝛾𝛾𝑚𝑚 + �(𝛾𝛾𝑖𝑖 − 𝛾𝛾𝑚𝑚)
𝑞𝑞

𝑖𝑖=1

 (16) 

where 𝛾𝛾𝑚𝑚 is the total mean grey relational grade, 𝛾𝛾𝑖𝑖 is the mean grey relational grade at the 
optimum level, and ‘q’ is the number of main parameters that significantly affect the 
coefficient of friction and wear rate. Table 12 shows the comparison of the predicted grey 
relational grade with the actual grey relational grade obtained in the experiment using the 
optimal process parameters. 

Table 12. Results of confirmation experiments 

 Initial testing parameters Optimum testing parameters 
Prediction Experiment 

Combination of testing 
parameters A1B1C1 A1B3C3 A1B3C3 

Wear rate 0.005049  0.003606 
Friction force  6.82  11.58 
Specific wear rate 0.0002525  0.0001202 
Grey relational grade 0.19142655 0.278828083 0.26839556 

From Table 12, it is clear that the optimal data obtained from the confirmation test, which was 
conducted with the level settings parameters of load (20 N) (level 1), sliding velocity (3.1 m/s) 
(level 3) and sliding distance (2000 m) (level 3) had good agreement with the predicted model. 
Hence, the grey relational analysis based on Taguchi method for the optimization of the multi 
response problems is a very useful tool for predicting the wear rate and the coefficients wing 
conclusions were drawn: 
– The Al6061/Titanium carbide/ Basalt hybrid composites have been successfully produced 

by the stir casting route. 
– The principal component analysis (PCA) based grey relational analysis (GRA) for the 

optimization of the multi-response problems is a very useful tool for predicting the wear 
rate, the friction force and the specific wear rate of Al6061/Titanium carbide/ Basalt 
hybrid Metal Matrix Composites. 

– From, ANOVA, it is revealed that the sliding distance (74.504%) influences more on the 
multi-performance characteristics of hybrid composite followed by load (6.038%) and 
sliding velocity (3.477%). 
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