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Abstract: As airfoil design plays a crucial role in achieving superior aerodynamic performances, 
optimization has become an essential part in various engineering applications, including aeronautics 
and wind energy production. Airfoil optimization using high-fidelity CFD, although highly effective, 
has proven itself to be time-consuming and computationally expensive. This paper proposes an 
alternative approach to airfoil performance assessment, through the integration of a deep learning 
algorithm and a stochastic optimization method. NACA 4-digit parametrization was used for airfoil 
geometry generation, to ensure feasibility and to reduce the number of input variables. An extensive 
dataset of airfoil performance parameters has been obtained using an automated CFD solver, laying 
the foundation for the training of an accurate and robust Artificial Neural Network, capable of 
accurately predicting aerodynamic coefficients and significantly reducing computational time. Due to 
the ANN’s predictive capabilities of efficiently navigating vast search spaces, it has been employed as 
the fitness evaluation method of a multi-objective Genetic Algorithm. Following the optimization 
process, the resulting airfoils demonstrate significant enhancements in aerodynamic performance and 
notable improvements in stall behavior. To validate their increased capabilities, a high-fidelity 
Computational Fluid Dynamics (CFD) validation was conducted. Simulation results demonstrate the 
approach’s efficacy in finding the optimum airfoil shape for the given conditions and respecting the 
imposed constraints. 

Key Words: database, artificial neural network, computational fluid dynamics, hyperbolic mesh, 
automation, genetic algorithm, optimization 

1. INTRODUCTION 
Nowadays, in the field of aeronautics, optimization has become a crucial step in aircraft design, 
driving advancements in aircraft performance, safety, and sustainability. Within this context, 
airfoil optimization stands out as a critical part, as it directly influences an aircraft's 
aerodynamic efficiency, maneuverability, and range. Consequently, optimizing airfoils 
remains a focal point for engineers and researchers committed to pushing the boundaries of 
aviation excellence. The airfoil optimization process using high-fidelity CFD typically is 
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comprised of three main steps: firstly, the airfoil geometry generation using parametrization 
methods such as NACA 4 digits, Class-Shape Transformation [1] or Bézier Curves [2] 
representation; secondly, the computational grid generation through structured or unstructured 
meshing techniques; and finally, the aerodynamic performance determination using high-
fidelity CFD solvers. Among these phases, the performance evaluation using CFD solvers is 
notably the most time consuming [3]. 

Efforts to reduce this computational cost have been undertaken extensively and recent 
advancements in artificial neural networks offer promising alternatives for optimization. 
Specifically, the use of well-trained neural networks provides an opportunity to substitute the 
traditional performance evaluation step, significantly reducing computational costs, as it has 
been mentioned in [4]. This substitution holds potential for expediting the optimization process 
while preserving accuracy, marking a notable advancement in optimization methodologies. 
However, the neural network's performance depends not only on the size of the database but 
also on its quality. In this paper, the database generation is performed using high-fidelity CFD 
performance prediction. 

To minimize the computational time required for database generation, an efficient 
automation process that seamlessly connects airfoil geometry and grid generation has been 
developed in regard to [5], with the aerodynamic performance prediction designed to NACA 
4-digit airfoils. This approach not only ensures the aerodynamic feasibility of airfoils but also 
significantly reduces the size of the database, ultimately optimizing computational efficiency. 
Furthermore, the choice of using opensource packages, such as pyHyp [6] for efficient 
hyperbolic meshing and ADflow [7], as a multiblock structured CFD solver further minimizes 
the computational time required for database generation. Having a well-trained neural network 
enables the use of more complex objective functions and constraints that require multiple 
aerodynamic performance evaluations, thus enabling the use of more feasible optimum airfoils 
in aircraft design. 

2. METHODOLOGY 
The methodology that has been used in this article is comprised of geometry and mesh 
generation automation, coupled with high-fidelity CFD aerodynamic prediction to generate 
the database required for the neural network training. Then, a stochastic optimization approach 
based on genetic algorithm is employed where the aerodynamic performance prediction 
required in the objective function formulation is used to find the optimum airfoil shape. Then 
a CFD validation is performed to further validate the obtained results. 

A. Airfoil Parametrization Technique  

To this date, many parametrization methods have been developed such as Class-Shape 
Transformation, Hick-Henne, Parsec, Bezier or Spline based curve representations but none 
of them can impose geometric constraints useful in designing feasible airfoils such as 
maximum thickness or camber value or position except for the NACA parametrization 
methods. Thus, NACA 4 digits parametrization method has been chosen for airfoil shape 
generation defined by three parameters: (M) the designated maximum camber, (P) the position 
of the maximum camber and (T) the maximum thickness. 

B. Mesh Generation 

After the geometry is obtained, hyperbolic grid generation is employed for a smooth, 
orthogonal and high-quality mesh. Moreover, hyperbolic extrusion law ensures smooth and 
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finer mesh near the wall while preserving local good grid quality criteria for all cells. This 
meshing technique is used with the help of the open-source package pyHyp, swiftly generating 
multiblock grids based on a given surface grid, which in this case are the points that define the 
airfoil’s geometry. In the figure below, a grid representation is shown for a NACA0012 airfoil 
where the mesh near the leading and trailing edge is highlighted. 

 
Figure 1. Mesh generation representation highlighting the leading and trailing edge surface point clustering 

The use of pyHyp enables the export of structured multiblock grids in CGNS format used 
by ADflow solver, a high-fidelity CFD solver that was designed to be used in conjunction with 
this meshing tool, thus making it the most suitable choice for an efficient and easy coupling in 
the automation process that was needed in our work. It is based on the compressible Reynolds-
averaged Navier-Stokes (RANS) equations with a turbulence modelling based on the Spalart-
Allmaras equations. The efficient use of Newton-Krylov algorithm for aerodynamic 
performance prediction minimized the computational time required for individual evaluation, 
thus further improving the overall computational efficiency of the automation loop. 

Having the automation loop developed, a database is constructed using NACA 4 digits 
airfoils at a Reynolds number of 6 million. The parameters were varied as follows: the 
maximum camber (M) from 0 to 6, the position of the maximum camber from 1 to 6 and the 
maximum thickness from 9 to 16, all with an increment of 1, making the total data base 
consisting in 336 airfoils. Every airfoil was evaluated at 17 angles of attack ranging from -8 
to 15 degrees. 

C. Artificial Neural Networks 

Neural networks represent nature-inspired computational models, capable of learning complex 
patterns and accurately reproducing non-linear data behavior. Due to their extensive 
capabilities of modeling input-output data consisting of several independent parameters, 
ANNs are suitable for predicting aerodynamic coefficients of different airfoils, without any 
previous knowledge of the underlying physical processes [8]. 

A deep neural network has been implemented using the Deep Learning Toolbox in 
MATLAB. The training dataset provided to the ANN is based on the generated data base based 
on CFD predictions. For each airfoils available for analysis, the coefficients of the NACA 4 
digits parametrization method were used as input data as well as the lift and drag coefficient 
at the specified range of angles of attack. To assess the model’s generalization performance, 
the dataset was split into a training data set, consisting of 80% of the initial data, and a testing 
one, containing the remainder 20% of the data. 

The preferred deep neural network consists of an input layer and 4 hidden layers, enabling 
the model to learn complex patterns and relationship between the data, and an output layer, 
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providing the prediction. A visual representation of the network’s architecture is presented in 
the figure below. 

 

 

(a) (b) 

Figure 2. Automation loop (a) and architecture of the neural network (b) 

The input layer consists of six (M, P, T, AoA, 𝐶𝐶𝐿𝐿, 𝐶𝐶𝐷𝐷) artificial neurons, one for every 
training variable. After being passed through the input layer, to each neuron is assigned a 
weight value and a bias by the first hidden layer. Each hidden layer disposes of an activation 
function, introducing non-linearity into the model and enabling it to approximate complex 
functions [8]. During the backpropagation process, the network iteratively repeats the forward 
and backward passes on training data, adjusting weights and biases to improve prediction 
accuracy. 

𝑦𝑦 = 𝑓𝑓 ��𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = 𝑓𝑓(𝑊𝑊𝑇𝑇 ∙ 𝑋𝑋 + 𝐵𝐵) (1) 

where 𝑊𝑊𝑇𝑇 denotes the matrix of weights. 𝑋𝑋 is the vector of inputs, 𝐵𝐵 is the bias and 𝑓𝑓 the 
activation function. ReLU (Rectified Linear Unit) was used as the activation function in both 
the hidden and the output layer, due to its effectiveness in regression models and computational 
capability [8]. 

The model’s accuracy was evaluated by the loss function, Mean Square Error (MSE), 
quantifying the difference between the predicted and the initial values. Adaptive Moment 
Estimation (ADAM) was used as the optimization function, as it enables individual learning 
for each of the parameters. The network was trained for 20000 epochs in multiple batches of 
data, each consisting of 100 samples. 

D. Genetic Algorithm 

Genetic algorithms represent stochastic optimization techniques inspired by the process of 
natural selection. Although many optimization methods are in use [9], [10], this type of 
evolutionary algorithms prove themselves particularly efficient in solving complex problems, 
with multiple optimization variables and large design space exploration requirements. Airfoil 
optimization is often achieved through GA, due to the method’s stochastic character and 
increased performance in complex problems [11], [12]. In order to obtain the most suitable 
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airfoil shape for the given conditions, a multi-objective, constrained optimization program has 
been implemented in MATLAB, using genetic algorithms. 

 
Figure 3. Genetic Algorithm optimization flow chart 

The chosen optimization variables represent the three parameters dictating the airfoil 
geometry 𝑀𝑀, 𝑃𝑃 and 𝑇𝑇. The fitness functions are evaluated by using the already trained neural 
network, predicting aerodynamic coefficients at different angles of attack. Therefore, the three 
objective functions the algorithm must preserve are:  minimizing 𝐶𝐶𝐷𝐷  as well as 𝑑𝑑𝐶𝐶𝐷𝐷/𝑑𝑑𝑑𝑑 at 2°, 
maximizing the lift-to-drag coefficient 𝐶𝐶𝐿𝐿/𝐶𝐶𝐷𝐷 at an angle of attack of 15°. 

During each generation, a random initial population is selected for evaluation, and, based 
on their performance, only the individuals with the lowest fitness value survive to the next 
generation. This step represents the selection, providing a stochastic mechanism that 
introduces diversity and allows an efficient exploration of the search space. Stochastic 
Universal sampling was used in as the selection type in this optimization, due to the method’s 
accuracy and computational advantages over other models [12]. A subset of individuals was 
chosen to undergo a Gaussian mutation, to ensure diversity and avoid premature convergence. 
Due to the low number of decision variables, a mutation rate of 0.15 was chosen, to prevent 
the algorithm from converging into local minima. 

For ensuring faster convergence of the algorithm and a well-defined set of optimal 
solutions on the Pareto front, constraints and boundaries have been implemented. 

Table 1. Boundary conditions 

+Boundary Type M P T 
Lower 1 1 9 
Upper  5 6 14 

As the optimization is performed with respect to multiple objective functions, no single 
optimum solution is possible. Therefore, several best individuals are selected, their 
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performance being subject to a trade-off between the two objective functions and the respected 
constraints. The imposed constraints allow only the most-feasible, best-performing individuals 
to define the Pareto front. 

Table 2. Optimization objective and constraints 

Objective 

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑪𝑪𝑫𝑫(𝜶𝜶),𝜶𝜶 = 𝟐𝟐° 
𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑪𝑪𝑫𝑫/𝑪𝑪𝑳𝑳(𝜶𝜶),𝜶𝜶 = 𝟏𝟏𝟏𝟏° 

𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 �
𝒅𝒅𝑪𝑪𝑫𝑫
𝒅𝒅𝒅𝒅 �

𝜶𝜶=𝟐𝟐
 

Constraint 𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂 ≥  𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝑵𝟎𝟎𝟎𝟎𝟎𝟎𝟎𝟎 

3. RESULTS 

The following chapter presents the numerical results and interpretation of the airfoil 
optimization process through the integration of Artificial Neural Networks (ANNs) and 
Genetic Algorithm (GA). 

Results are divided into two parts: the initial part presents the accuracy level of the trained 
neural network, while the latter shows the optimization process, emphasizing the optimization 
convergence and results interpretation. 

A. Neural Network Results 

For the aerodynamic prediction of both lift and drag coefficients, two independent deep neural 
networks have been implemented and trained on the CFD generated database. Figure 4 (a)-(f) 
provides a comparative analysis between the initial and the predicted values, for a wide range 
of angles of attack, alongside the variation of the input parameters M (Figure 4 (a) and 4(b)), 
P (Figure 4(c) and (d)) and T (Figure 4 (e) and (f)). 

The proposed NACA 4-digit parametrization method allows for the data to be visualized 
in representative planes, which, in turn, enhances data interpretation. This approach facilitates 
the assessment of essential aerodynamic airfoil properties, including parameters like 
maximum curvature (M), thickness (T), and the location of maximum camber (P), as well as 
the assessment of the neural network training performance. 

  

(a) 𝐶𝐶𝐿𝐿 vs AoA vs M, for P = 4 and T = 12 (b) 𝐶𝐶𝐷𝐷 vs AoA vs M, for P = 4 and T = 12 
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(c) 𝐶𝐶𝐿𝐿 vs AoA vs P, for M = 2 and T = 12 (d) 𝐶𝐶𝐷𝐷 vs AoA vs P, for M = 2 and T = 12 

  
(e) 𝐶𝐶𝐿𝐿 vs AoA vs T, for M = 2 and P = 4 (f) 𝐶𝐶𝐷𝐷 vs AoA vs T, for M = 2 and P = 4 

Figure 4. Comparative parametric analysis between CFD and Neural Network predicted data 

The reduced order of the root mean square error for both lift and drag representations 
prove the efficiency of the chosen method as a way of generating aerodynamic coefficients, as 
the trained Neural Network exhibits feasible results for the chosen angles of attack. 

Certain inconsistencies exist for higher AoA values, notably regarding the drag 
coefficient, due to the non-linear behavior of the provided training data. Nevertheless, the 5% 
error bar is only surpassed for AoA values higher than 16°, demonstrating the performance of 
the trained model. 

The accuracy of the NN model is evaluated not only throughout the comparison between 
the initial and the predicted values, but also through the training process. 

This assessment is shown in Figure 5, (a) displays the histogram representing the gradient 
loss function over the course of training epochs. 

As the gradient guides the weight updates during the training process, the performance on 
the neural network increases. 
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A decrease in the descent rate below 10−6 indicates an improved convergence of the 
algorithm and reduced weight adjustments, signaling an increased efficiency of the regression 
model. 

  
 

(a) (b) (c) 

Figure 5. Gradient vs Epochs (a), Error Histogram (b) and MSE vs Epochs (c). 

Figure 5 (b) and (c) present the error distribution during the training process. The narrow-
centered, Gaussian-like distribution of the Error Histogram indicates reduced error values and 
efficient learning. 

Alternatively, the Mean Square Error (MSE) is plotted with respect to the number of 
epochs, proving the convergence to optimality of the Training, Validation and Testing data 
alike. The MSE decrease rate stabilizes after 30 epochs, indicating optimal weights and an 
efficient training process. 

As the trained deep neural network consistently demonstrates enhanced performance 
throughout training, validation, and testing, with reduced errors across extensive datasets 
covering a wide range of angles of attack, it has been deemed sufficiently robust to serve as 
the fitness evaluation function for the optimization algorithm. 

B. Genetic Algorithm Multi-Optimization Results 

The multi-objective optimization algorithm reached convergence at around 100 generations 
with a population size of 50 and a minimum variation of the Pareto front less than 10−4. 

Figure 6 displays the Pareto front representing a series of optimum individuals with 
different values for their respective objective functions. 

In addition, the smooth behavior of the Pareto front combined with the relatively limited 
range of variation in the objective function across all points within the Pareto set, demonstrates 
efficient space exploration. 

The optimization algorithm performed 100 generations before reaching the Pareto front 
shown in Figure 7, displaying a series of optimum solutions. The smooth curve formed by the 
displayed points indicates an efficient space exploration, ensuring viable results. 
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Figure 6. Pareto Front Representation 

As a multi-objective GA displays multiple optimum solutions, each of them representing 
a trade-off between the objective performances, more than one result must be considered when 
inspecting efficiency. Table 3 presents three individual solutions, representing the points 
situated closest to each axis. As expected, the extreme solutions exhibit minimum values for 
one of the objective functions, but also perform well in the others. Therefore, every point on 
the Pareto front represents a suitable, viable solution to the presented optimization.  

Table 3. Comparison between distinct points in the Pareto front 

Point on the 
Pareto front 

M P T Objective 1 
(𝑪𝑪𝑫𝑫(𝟐𝟐)) ∙ 𝟏𝟏𝟎𝟎−𝟒𝟒 

Objective 2 
(𝑪𝑪𝑫𝑫/𝑪𝑪𝑳𝑳(𝟏𝟏𝟏𝟏)) 

Objective 3 

�
𝒅𝒅𝑪𝑪𝑫𝑫
𝒅𝒅𝒅𝒅 �

𝜶𝜶=𝟐𝟐
 

Point 1 1.85 3.07 11.94 95 0.0151 0.1064 
Point 2 2.35 3.13 13.12 101 0.0144 0.1123 
Point 3 4.57 3.35 12.17 108 0.0175 0.0877 
The visual representation in Figure 7 of the optimized airfoils demonstrates the influence 

of geometric parameters in airfoil performance. Although the location of the maximum camber 
remains consistent among the three positions, there is a significant difference in the magnitude 
of the maximum camber between them. Point 1 exhibits the lowest maximum camber, denoted 
as M, as well as the lowest maximum thickness, resulting in the least amount of drag among 
the three positions as shown in Figure 7. However, when examining the lift-to-drag ratio curve, 
the superior drag performance translates into a comparatively inferior lift-to-drag ratio when 
compared to the last individual. 

 
Figure 7. Comparison between the geometry of the selected individuals from the Pareto front  

Point 3, which boasts the highest maximum camber and maximum thickness among the 
three, excels in terms of lift coefficient. Nevertheless, it comes with a notable drawback in the 
form of the drag coefficient, particularly at angles of attack ranging from 4 to 16 degrees. 
When comparing all three points, we observe similar behaviors between Points 1 and 2, but 
Point 3 stands out with significant different performance highlighted in the favorable stall 
characteristics. All results have been obtained using the same Neural Network employed in 
the optimization method. Furthermore, a CFD validation has been performed on the airfoil 
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represented as Point 1, proving not only the efficiency of the Genetic Algorithm optimization, 
but also the high accuracy of the trained Neural Network. 

 
 

(a) 𝐶𝐶𝐿𝐿 vs AoA (b) 𝐶𝐶𝐷𝐷 vs AoA 

  
(c) 𝐶𝐶𝐿𝐿 vs 𝐶𝐶𝐷𝐷 (d) CL/CDvs AoA 

Figure 8. Comparative performance of the optimized airfoils 

4. CONCLUSIONS 
The aim of this paper was to propose an alternative approach to airfoil optimization, based on 
the integration of a deep-learning neural network algorithm coupled with a multi-objective 
stochastic optimization algorithm. The Artificial Neural Network was trained on a 
comprehensive dataset of NACA 4-digit airfoil performances, obtained using an automated 
CFD procedure. The chosen parametrization method and automation process have proven to 
be a convenient coupling, generating an extensive training database. 
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The employed ANN impressive performance represents an effective, yet robust and 
computationally efficient regression model. Nonetheless, the Neural Network’s performance 
is crucially influenced by its architecture, any variation in the network’s hyper parameters 
leading to changes in the model’s prediction capabilities. As the trained ANN represents a 
reliable and time efficient prediction method, its integration in a multi-objective Genetic 
Algorithm optimization has enabled us a significant computational effort reduction. 
Furthermore, the efficiency of this approach allows us to use multiple objective functions with 
minimal computational time added, enabling us to define and employ complex optimization 
processes with more relevant objective functions and constraints. 

Consequential to the type of objective functions of the optimization method, a series of 
suitable solutions have been found. All these cases represent relevant solutions and should be 
taken into account, allowing for the selection of the most suitable individual based on the 
specific requirements from the Pareto front. 

To conclude with, the integration of a deep learning neural network model in a constrained 
multi-objective Genetic Algorithm airfoil optimization has resulted in valid, highly performant 
solutions. This approach’s success lays the foundation for further exploration and future work, 
exploring with different parametrization methods, various objective functions, and constraints. 
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