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Abstract: Artificial Intelligence (AI) and Machine Learning (ML) are increasingly being adopted across 
various fields, including aerodynamics, exhibiting impressive results in complex computational 
processes and improving prediction accuracy. This study introduces a novel method for airfoil 
performance assessment through the development and training of a deep Artificial Neural Network 
(ANN), used for predicting aerodynamic coefficients and pressure distributions, leveraging 
comprehensive data obtained by using a Computational Fluid Dynamics (CFD) solver. First, an 
automated CFD solver was developed for obtaining the extensive dataset needed for the effective 
training of the ANN. The automation process consisted in the generation of a geometry and a mesh, 
along with the successful integration of the open-source SU2 solver for conducting the aerodynamic 
simulations, chosen for its versatility and straightforward integration. Once various airfoil analyses 
were performed and a comprehensive dataset was obtained, data was normalized and the model was 
trained. Throughout the training process, several model configurations were tested, varying different 
architectures, hyperparameters and layer settings, until the best-performing layout was chosen. After 
broad testing and validation, the optimal configuration was identified as being the one to demonstrate 
the lowest error rates and the most accurate predictions on both training and unseen data, highlighting 
the model’s generalization capabilities. This Machine Learning-based approach, used as a substitute 
for traditional methods, provides remarkable accuracy and robustness, capturing complex behaviors 
and significantly reducing the computational costs associated with CFD simulations. 

Key Words: artificial neural network, machine learning, computational fluid dynamics, automation, 
aerodynamic coefficients 

1. INTRODUCTION 
Accurate airfoil performance assessments are crucial for optimizing designs and understanding 
aerodynamic behaviors, leading to overall improved efficiency and safety across various 
engineering applications. Precise results and detailed interpretations of physical processes 
around airfoils, operating at different conditions, offer essential understanding into how lift 
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and drag generation and pressure distributions alike influence the aircraft's stability and overall 
performance. 
 Several techniques have been developed and used for airfoil analysis, ranging from 
theoretical models, such as those based on potential flow or thin airfoil theory, to numerical 
methods and wind tunnel testing, with the latter offering the most realistic results and highly 
accurate data on aerodynamic parameters. Wind tunnel testing serves not only as a flow 
visualization tool, but also as a validation procedure, confirming accuracy of other models 
used in design processes. Datasets obtained through experimental testing provide reliable, 
empirical results that represent benchmarks meant to validate and refine theoretical and 
numerical models, such being the case for [1], [2]. Regardless, dependency on costly 
equipment and elaborate data-acquisition systems, along with constrained testing ranges and 
capabilities, makes wind tunnel testing less feasible for frequent use and typical 
configurations.  
 Alternatively, numerical methods provide accurate, feasible and flexible simulation 
techniques, capable of capturing complex aerodynamic behavior without using extensive 
experimental setups. As showed in [3], J.G. Coder and M.D. Maughmer compared two low-
fidelity solvers, based on panel methods and integral boundary-layers methods, XFOIL [4] and 
PROFIL [5], and one high-fidelity solver, OVERFLOW 2.2e [6], with wind tunnel results, 
providing valuable insights on the solvers’ capabilities and limitations. Whereas all methods 
exhibit accurate results in low-drag regions with limited computational effort and reasonable 
processing time, they fail at capturing maximum lift, with the RANS solver outperforming 
low-fidelity methods at higher angles of attack. 
 Computational Fluid Dynamics (CFD) methods generate exceptional results, by capturing 
true physical behavior and phenomena even in more complex cases or at higher angles of 
attack, where flow separation effects become more pronounced. Still, CFD simulations are 
time-consuming, computationally expensive and highly reliant on mesh quality and the 
turbulence models used [7]. Consequently, attempts to reduce computational time and effort 
in high-fidelity simulations without lowering accuracy of the obtained results have led 
researchers to explore alternative solutions, leading to the development of Machine Learning 
(ML) based approaches. 
 Several studies have shown promising results in predicting aerodynamic coefficients 
using Artificial Neural Networks (ANN) [8], [9] and Convolutional Neural Networks (CNN) 
[10], [11]. As efficient training and accurate predictions of ANNs are highly dependent on the 
size, consistency and quality of the training data provided to the model, the use of an 
automation process for extracting CFD results has been developed in this study. The airfoil 
geometry is generated by using the NACA 4 digits parametrization technique, not only for 
ensuring aerodynamic feasibility, but also for reducing the number of input parameters of the 
neural network. The given geometry is then automatically replaced into the mesh generator 
and the resulted mesh is exported. The simulation is being performed using the opensource 
CFD solver SU2 (Standford University Unstructured) [12], chosen due to its versatility, 
effortless integration with pre and post-processing tools and parallel computing capabilities.  
 The extensive database obtained through the automation represents the input fed to the 
ANN for the training process. The generated predictions of the trained model present highly 
accurate results in substantially reduced time, with lower computational effort, further proving 
the efficiency of ML based models. Proper training of neural networks offers extensive use for 
real-time applications, such as flight control or on-board systems [13] , as well as optimization 
methods, allowing for more feasible airfoil geometries [14]. 
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2. METHODOLOGY 
The comprised methodology in this paper focuses on the development of the CFD automation 
needed for obtaining an extensive database of airfoil coefficients, consisting of the geometry 
and mesh generation, coupled with an opensource high-fidelity CFD solver used for extracting 
the lift and drag coefficients, as well as the pressure and skin friction coefficient distribution. 
The resulting data serves as the training dataset for a deep neural network (DNN), capable of 
predicting the airfoil characteristics, based on a series of input parameters. Both the DNN 
architecture and the influence of hyperparameters and training settings are presented in this 
section.  

2.1 CFD Automation 

The implemented CFD automation links the chosen parametrization method for creating the 
airfoil surface, with the generation of an unstructured mesh, integrating SU2 as the high-
fidelity solver. The workflow is integrated through MATLAB, creating the airfoil shape, based 
on the three input parameters, M, P and T, that is automatically passed to Ansys Design 
Modeler for creating the geometric domain. The resulting geometry is then imported in Ansys 
Mechanical and an unstructured, high-quality mesh is generated. The open-source CFD solver 
SU2 is responsible for solving the governing fluid dynamics equations and predicting flow 
characteristics such as lift, drag, and pressure distribution. 

 
Figure 1. Logical scheme of the automation process 

 After the development of the automation loop, the aerodynamic coefficients database was 
obtained by analyzing several NACA 4-digits airfoils, with a maximum camber (M) and the 
position of the maximum camber (P) varying from 1 to 6, and the maximum thickness (T) 
from 8 to 16. Each airfoil was evaluated at 12 angles of attack, from -4 to 7 degrees. For 
optimizing computational time and effort, the simulations were performed using the parallel 
computing capabilities of SU2, running on 16 cores. 

2.1.1 Airfoil Parametrization Technique 

Various airfoil parametrization methods are currently in use, ranging from NACA 4, 5 or 6 
digits, to Bézier Curves [15] and Class-Shape Transformation (CST) [16]. Since the main 
objective was the efficient training of a neural network, the number of input parameters is 
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crucial for accurate results. Therefore, the NACA 4-digit parametrization technique, defined 
by only three parameters: the maximum camber in tenths of chord, (M), the position of the 
maximum camber in tenths of chord (P) and the maximum thickness as a fraction of the chord 
(T), was considered the most suitable. 

Based on parameters M and P, the camber line of the airfoil is defined as: 

𝑦𝑦𝑐𝑐 = �

𝑀𝑀
𝑃𝑃2

(2𝑃𝑃𝑃𝑃 − 𝑥𝑥2),                               0 ≤ 𝑥𝑥 < 𝑃𝑃
𝑀𝑀

(1 − 𝑃𝑃)2
(1 − 2𝑃𝑃 + 2𝑃𝑃𝑃𝑃 − 𝑥𝑥2), 𝑃𝑃 ≤ 𝑥𝑥 ≤ 1

 (1) 

Then, based on the maximum thickness (T), the half thickness is written as: 

𝑦𝑦𝑇𝑇 =
𝑇𝑇

0.2
(𝑎𝑎0𝑥𝑥0.5 + 𝑎𝑎1𝑥𝑥 + 𝑎𝑎2𝑥𝑥2 + 𝑎𝑎3𝑥𝑥3 + 𝑎𝑎4𝑥𝑥4) (2) 

where the coefficients 𝑎𝑎0,  𝑎𝑎1,  𝑎𝑎2,  𝑎𝑎3,  𝑎𝑎4 have the values of:  

𝑎𝑎0 = 0.2969, 𝑎𝑎1 = −0.126, 𝑎𝑎2 = −0.3516, 𝑎𝑎3 = 0.2843, 𝑎𝑎4 = −0.1036 (3) 

Thus, the coordinates for the upper and lower surface of the airfoil are obtained using the 
following relations: 

𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥𝑢𝑢 = 𝑥𝑥𝑐𝑐 − 𝑦𝑦𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦𝑢𝑢 = 𝑦𝑦𝑐𝑐 + 𝑦𝑦𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑥𝑥𝑙𝑙 = 𝑥𝑥𝑐𝑐 + 𝑦𝑦𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑦𝑦𝑙𝑙 = 𝑦𝑦𝑐𝑐 − 𝑦𝑦𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

 (4) 

where: 

𝜃𝜃 = atan �
𝑑𝑑𝑑𝑑𝑐𝑐
𝑑𝑑𝑑𝑑

� (5) 

2.1.2 Automated Mesh Generation  

Once the airfoil is created and imported into the geometry using Ansys Design Modeler, the 
computational domain and mesh are created using Ansys Meshing. The two-dimensional 
discretized volume consists of an unstructured, circular mesh, with domain boundaries placed 
250 chord lengths from the airfoil surface, for reducing the effect of the domain boundary on 
the obtained solution. 

 
Figure 2. Computational domain around the airfoil  



95 A Machine Learning-Based Approach for Predicting Aerodynamic Coefficients Using Deep Neural Networks 
 

INCAS BULLETIN, Volume 16, Issue 4/ 2024 

Triangular elements with the maximum size of 15 meters have been used for the mesh 
near the outer domain, whereas quadrilaterals elements were chosen for the region adjacent to 
the airfoil surface. Mesh spacing at the solid surface was 1 × 10−6, along with a growth rate 
of 1.2 and a total number of 40 quadrilateral element layers ensured a 𝑦𝑦+ < 1 over the airfoil 
surface. This configuration proved itself to be both well-performing and computationally 
inexpensive, allowing the generation of a high-quality dataset in a reasonable calculation time. 

 
Figure 3. Mesh around the airfoil  

2.1.3 Solver Settings and Simulation  

In order to ensure proper results and overall accurate aerodynamic predictions, the chosen flow 
conditions represent the classic NACA 0012 validation case [17]. This case is widely used for 
benchmarking CFD solvers due to its availability of high-quality experimental data. Before 
proceeding with the automated simulation process, an extensive validation study was 
conducted, comparing the results obtained with SU2 with the outputs from CFL3D. This 
comprehensive validation confirmed the accuracy of SU2 in predicting key aerodynamic 
parameters, providing confidence in the automated simulation workflow. 

Table 1. NACA 0012 free-stream conditions 

𝑴𝑴𝒊𝒊𝒊𝒊𝒊𝒊 0.15 
𝑹𝑹𝒆𝒆𝒊𝒊𝒊𝒊𝒊𝒊 6 × 106 
𝑻𝑻𝒊𝒊𝒊𝒊𝒊𝒊 300 K 
𝛂𝛂 10∘, 15∘ 

In accordance with the validation procedures in [18], the simulation was preformed using the 
Spalart-Allmaras turbulence model, for capturing turbulent flows in aerodynamic cases, paired 
with a first-order scalar upwind method. Additionally, the default Verkatakrishnan slope 
limiter [19] in SU2 was employed to effectively dampen any non-physical oscillations that 
typically arise in regions with sharp gradients, thus improving both numerical stability and 
overall solution accuracy. This combination of turbulence modeling, numerical methods, and 
slope limiting is essential for maintaining the reliability of the simulation, particularly in cases 
with high flow gradients, ensuring accurate and consistent aerodynamic predictions. 

2.2 Artificial Neural Network 

Neural networks (NN) are a class of machine learning models designed to approximate 
complex, non-linear relationships between inputs and outputs. Structurally, they consist of 
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multiple layers of interconnected nodes called neurons, each representing a mathematical 
function. The neurons are organized in layers: an input layer, one or more hidden layers, and 
an output layer. An artificial neural network consisting of multiple hidden layers is referred to 
as a Deep Neural Network (DNN). In order to achieve accurate predictions of aerodynamic 
coefficients, based on the previously generated training database, several deep neural networks 
have been trained using the Deep Learning Toolbox in MATLAB, varying architectures and 
hyperparameters. Each of them was checked according to the efficiency and time of the 
training process and the accuracy of the output results, determining one optimal configuration 
for every aerodynamic coefficient. 

For each individual combination of geometric parameters (M, P, T) and angle of attacks 
in the database, the preferred DNNs are capable of predicting aerodynamic coefficients as well 
as the distribution of the pressure coefficient (𝐶𝐶𝑃𝑃) and the skin friction coefficient �𝐶𝐶𝑓𝑓�. 
Regarding the first two coefficients, the optimal neural network configuration consists of four 
input parameters and two hidden layers of neurons, for outputting the given coefficients. Due 
to the extensive database and training process, for the two distributions of pressure and skin 
friction coefficients, multiple architectures were tested. In order to reduce training time and 
optimize predictions, the training has been divided into two distinctive datasets, representing 
the distributions of upper and lower surface. Moreover, the data has been sorted by the value 
of the maximum camber (M), resulting in 6 different trained models, each having 4 input 
parameters: the two remaining geometry defining ones, P and T, the angle of attack 𝐴𝐴𝐴𝐴𝐴𝐴 and 
the position x from the leading edge along the chord line. 

 
Figure 4. Deep Neural Network architecture for pressure and skin friction coefficients distributions  

Once the network’s architecture has been established, the data was normalized using Z-
score normalization, improving the performance and accuracy of the machine learning 
algorithm by ensuring that all features contribute equally to the model. Standardization 
improves gradient descent convergence, prevents feature domination, eliminating any biased 
model learning caused by the larger magnitudes in the dataset. Z-score normalization is 
obtained by adjusting data (𝑋𝑋) to a normal distribution, with a mean (μ) of 0 and a standard 
deviation (σ) of 1. 

𝑋𝑋′ =
𝑋𝑋 − μ
σ

 (6) 
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After the normalization, the data is split into a training and a validation dataset, to ensure 
the generalization capabilities of the model and prevent overfitting. The training process is 
done using a technique known as backpropagation in conjunction with gradient descent. Each 
neuron in a layer processes information by multiplying the vector of inputs (𝑋𝑋) with a vector 
of weights ( 𝑊𝑊) and passing the result through an activation function (𝑓𝑓), introducing non-
linearity, optimally and iteratively adjusting the weights and biases (B) to improve given 
predictions.  

𝑦𝑦 = 𝑓𝑓 ��𝑤𝑤𝑖𝑖 ∙ 𝑥𝑥𝑖𝑖 + 𝑏𝑏𝑖𝑖

𝑛𝑛

𝑖𝑖=1

� = 𝑓𝑓(𝑊𝑊𝑇𝑇 ∙ 𝑋𝑋 + 𝐵𝐵) (7) 

For evaluating the model’s efficiency, the training process has been closely supervised, 
analyzing the loss, gradient value and overall performance of the network. The mean squared 
error (MSE) was calculated to measure the difference between the predicted (𝑦𝑦𝚤𝚤�) and the actual 
value (𝑦𝑦𝑖𝑖), with respect to the number of points (𝑛𝑛):  

MSE =
1
𝑛𝑛
�(𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2
𝑛𝑛

𝑖𝑖=1

 (8) 

Furthermore, another metric used is 𝑅𝑅2, representing the proportion of the variance in the 
independent variable from the mean of the actual values (y�) 

R2 = 1 - 
∑ �yi - yi��

2n
i=1  

∑ �yi - y��
2n

i=1  
 (9) 

3. RESULTS 
3.1 CFD Validation 

The computed results for the pressure coefficient distributions for NACA0012 are presented 
in Figure 4. The solutions obtained with SU2 are in good agreement with those obtained with 
CFL3D, for both angles of attack investigated. The stagnation point, as well as the recovery 
region are correctly captured in both cases, proving the accuracy of the run simulation. 

  
(a) (b) 

Figure 5. Pressure Coefficient Distribution versus Normalized Chord Length at α =  0° (a) and α =  10° (b) 
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The skin friction coefficient distribution obtained on the upper surface through the 
simulation with SU2 matches the aspect of the CFL3D solution, as was the case with the 
coefficient of pressure. Although a certain inconsistency appears around the leading edge for 
the zero angle of attack, the distribution recovers its aspect along the chord and the mismatch 
disappears, leading to overall good accuracy of the solution. Furthermore, no such 
nonconformance is present at 10° angle of attack. 

  
(a) (b) 

Figure 6. Skin Friction Coefficient Distribution versus Normalized Chord Length at α =  0° (a) and α =  10° 
(b) 

3.2 Neural Network Results 

Before investigating the displayed predictions of the DNN, it is crucial to carefully monitor 
the training process to ensure the model’s performance and reliability. By observing training 
and validation loss, accuracy, and learning curves, issues can be detected and corrected early, 
preventing misleading results, ensuring the model generalizes well and performs optimally on 
later applications. 

  

Figure 7. MSE versus Number of Epochs (a) and Gradient versus Number of Epochs (b)  

The MSE versus Number of Epochs graph proves a successful training process, with error 
rates decreasing as the weights get optimally adjusted and the model learns data behavior. 
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During initial training, the error rate decreases rapidly, suggesting a quick improvement in 
prediction capabilities. After around 1000 epochs, the MSE continues declining at a slower 
rate, later hitting a plateau where further training yields less significant improvements. At 
approximately 1600 epochs, the model reaches the best point, marked by the circle, where the 
MSE for the validation and test sets is minimized. This is a crucial indicator of the optimal 
model performance in terms of generalization, as it represents the point in training where the 
validation error starts increasing. The model is stopped early, in order to prevent the overfitting 
phenomenon, where the neural network only replicates previously learned training data, 
without correctly capturing behaviors of unseen data. 

The effective learning of the model is furthermore indicated by the gradual gradient 
decrease, dictating the direction and magnitude of updates made to the model’s weights. 
Gradients have a descending trend along the training process, until around 1500 epochs, where 
values set to a constant mean that indicates the convergence of the neural network. The absence 
of sudden spikes or large fluctuations in the gradient towards the end of the training further 
suggests that the model is not encountering major instability, being the indicative of a smooth 
learning process that results in a well-trained network. 

  
(a) (b) 

  
(c) (d) 

Figure 8. R Values for Training (a), Validation (b), Test (c) and overall fitting (d)  
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Presented regression plots assess the model's performance by comparing the predicted 
values (outputs) with the true values (targets). The correlation coefficient (R) measures how 
well the outputs correlate with the targets, values closer to 1 indicating better fitting of 
predicted data. A value of R of 0.999799 on the validation dataset indicates remarkable 
generalization, whereas high values, of 0.99903 and 0.99981 on training and testing data 
suggests effective training of the DNN, represented by the close fitting to the ideal values, 
displayed by the dotted line (Y=T). The chosen model architecture has shown exceptional 
correlation values, as well as low error rates on all subsets of data after 2000 epochs, where 
the model has been considered converged and training was stopped for preventing overfitting.  

Table 2. Training parameters on the upper-surface datasets after 2000 epochs 

Maximum 
Camber 

Aerodynamic 
(Coefficient) 

R-Value 
(Training) 

R-Value 
(Testing) 

R-Value 
(Validation) 

R-Value  
(Entire 

Dataset) 
MSE 

𝑴𝑴 =  𝟏𝟏 𝑪𝑪𝑷𝑷 0.99915 0.99725 0.99901 0.99847 0.0041 
𝑪𝑪𝒇𝒇 0.999481 0.99921 0.99942 0.99937 0.00374 

𝑴𝑴 =  𝟐𝟐 𝑪𝑪𝑷𝑷 0.99981 0.99903 0.999799 0.999872 0.0032 
𝑪𝑪𝒇𝒇 0.999499 0.99941 0.999451 0.99945 0.0039 

𝑴𝑴 =  𝟑𝟑 𝑪𝑪𝑷𝑷 0.99923 0.99914 0.99914 0.99917 0.00412 
𝑪𝑪𝒇𝒇 0.99936 0.99931 0.999355 0.99934 0.00402 

𝑴𝑴 =  𝟒𝟒 𝑪𝑪𝑷𝑷 0.99929 0.99917 0.99914 0.9992 0.00406 
𝑪𝑪𝒇𝒇 0.99971 0.99964 0.99968 0.99968 0.00343 

𝑴𝑴 =  𝟓𝟓 𝑪𝑪𝑷𝑷 0.99941 0.999451 0.99947 0.99944 0.00385 
𝑪𝑪𝒇𝒇 0.9995 0.99953 0.99951 0.99952 0.00287 

𝑴𝑴 =  𝟔𝟔 𝑪𝑪𝑷𝑷 0.99936 0.99936 0.999345 0.99935 0.00341 
𝑪𝑪𝒇𝒇 0.999405 0.99939 0.99941 0.9994 0.0029 

Furthermore, a comparative parametric analysis has been performed for investigating the 
performance of the trained DNN with respect to the generated results. Geometric parameters 
P and T have been varied for a fixed M and the resulting distributions of pressure and skin 
friction coefficient have been plotted for analyzing the difference between the CFD and the 
predicted data. 

  
(a) Cf vs. T vs. x/c for M=2, P=4 and α = 4° (b) Cf vs. P vs. x/c for M=2, T=12 and α = 4° 
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(c) Cf vs. T vs. x/c for M=2, P=4 and α = 4° (d) Cf vs. P vs. x/c for M=2, T=12 and α = 4° 

Figure 9. Comparative parametric analysis between CFD and AI predicted skin friction coefficient for the 
upper (a-b) and lower surface (c-d) 

The 𝐶𝐶𝑓𝑓 distributions reflect the high accuracy of the trained neural network, predictions 
being in good agreement with CFD data for both upper and lower surfaces. Maximum values 
near leading edge, as well as the aspect along the chord and near the trailing edge are correctly 
captured for all displayed distributions. Certain inconsistencies appear on the lower surface, 
for values close to the leading edge, as the model fails to capture extreme points, despite data 
normalization. Still, such points do not yield any relevant physical relevance, the neural 
network correctly predicting relevant aerodynamic behavior. 

  
(a) CP vs. T vs. x/c for M=2, P=4 and α = 4° (b) CP vs. P vs. x/c for M=2, T=12 and α = 4° 

Figure 10. Comparative parametric analysis between CFD and AI predicted pressure coefficient  
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In accordance with the skin friction coefficient, the pressure coefficient distribution 
predicted by the DNN reflects the true physical data behavior, matching CFD data for both 
upper and lower surface. 

The main discrepancies between computed and predicted data lays in the representation 
of the stagnation point on certain airfoils, especially for lower thickness values, where minimal 
𝐶𝐶𝑃𝑃 values are reached, inconsistencies are due to the model’s incapacity of capturing extreme 
values in the training set. 

For better visualization, the NACA2412 at an angle of attack of 4 degrees was chosen for 
comparison. For both 𝐶𝐶𝑃𝑃 and 𝐶𝐶𝑓𝑓, the model has successfully replicated CFD data with minimal 
error rates. 

The DNN accurately captures both extreme values and distributions along the chord and 
close to the leading and trailing edge.  

Table 3. Mean RMSE values for NACA2412, at α = 4° 

Aerodynamic Coefficient Surface RMSE 
𝑪𝑪𝑷𝑷 Upper Surface 0.00185 

Lower Surface 0.00312 
𝑪𝑪𝒇𝒇 Upper Surface 0.00032 

Lower Surface 0.000305 
 

 

  

(c) CP vs. x/c  (d) Cf vs. x/c 

Figure 11. Comparative analysis between CFD and DNN predicted data for NACA2412 at α = 4°  
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4. CONCLUSIONS 
The main purpose of this study was the development of a Machine Learning approach for 
predicting aerodynamics coefficients. Firstly, for generating the extensive dataset needed for 
the training process, an automation process was created, coupling the geometry replacement 
with the mesh generation and the CFD simulation run with the open-source solver SU2. Then, 
after a solution validation was performed, confirming the fidelity of the obtained results, a 
database was constructed by investigating a series of NACA 4-digit airfoils at various angles 
of attack. 

The resulting dataset was normalized and divided before being fed as input to the neural 
network. After the training process has proved its effectiveness, the predicted results were 
closely investigated, demonstrating the algorithm’s high accuracy and low error rates. This 
approach was able to accurately replicate the original dataset in a significantly reduced 
computational time, based on only four input parameters, without the need for mesh 
generation, solving of mathematical equations or turbulence models. 

Still, the approach’s success is highly dependent on the size and quality of the training set, 
any inconsistencies leading to alternating gradient values during training, poor fitting and 
inaccuracies in the results. Moreover, no optimal neural network configuration exists, the 
iterative adjustment of hyper-parameters being the only method in identifying the best 
performant architecture.  

To conclude with, this approach has shown promising results, its success laying the 
foundation for further analysis and development, exploring with different parametrization 
techniques and datasets, and allowing for the training of Convolutional Neural Networks, 
capable of predicting pressure or Mach contours trained on visual representations of 
aerodynamic coefficients. 
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