An analytical representation of airfoils
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Abstract: An important part of the construction of an aircraft is the shape of the wings. Their
aerodynamics involve numerous evaluations and simulations through fluid dynamics. The reduction of
the evaluation times is achieved by a parametric function. This is represented by the ratio of two
polynomials. This representation will be important in order to reduce computation time for artificial
network applications. The number of parameters is reduced. The analytical shape of the wing section
implies analytical expression for wing parameters: maximum thickness, maximum camber, maximum
camber position, minimum thickness position, and so on. These characteristics have algebraic
expressions that involve arithmetic operations. We have constructed a simple mathematical wing model.
We replace the discrete wing shape with a continuous form, which is described by lacunary polynomials.
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1. INTRODUCTION

In this work, we present a method for airfoil parametrization using a function of the following
form:

i=n i

f) = Bz At
T wi=n, i

Zi:o ajX

We analyze the effectiveness of our method on airfoil parametrization and compare it with
Class Shape Transformation (CST) [1]. We conclude that our method is comparable to CST

in terms of number of parameters used and precision, but it has an advantage on heavily
cambered airfoils, where CST might struggle to achieve high levels of precision.
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Multi-objective optimization problems are a common occurrence in all fields of modern
science and engineering, and aircraft design is no different. The shape of the aircraft wing is
almost always complex, non-linear, and highly optimized for specific conditions, and
computer simulations of fluid flows are a fundamental step in the process.

Aircraft wing sections are shaped like airfoils, so as to maximize lift and minimize drag.
These airfoils often need to be parametrized, meaning having an analytical shape ascribed to
them, in order to be properly optimized.

Niculescu et. al. [2] first came up with the idea of using a ratio of 2 polynomials in order
to parametrize airfoils, using a formula of the following form:

fo) = 52—
X =
x? + I

In this work we expand upon his idea, by using higher degree polynomials for both the
numerator and the denominator, up to the 6th degree, and we will analyze its performance
against other well-known parametrization methods.

2. THEORETICAL METHOD

We start with a given airfoil from publicly available databases [3], and take its coordinates at
different points. The points are then divided into an upper surface, and a lower surface.

Each surface is analyzed separately. The data is then fitted with a function of our form,
for different degrees for both numerator and denominator (2/4, 3/4, 6/4, etc.), as well as CST
using Bernstein basis. Note that for the CST fit, since it would be a non-linear system, we have
used an evolutionary algorithm (CMA-ES [5], [6], with population size 128 and 3000
iterations) to get the best solution available (the lowest RMS error). Note that for the CST fit,
we have used 11 polynomial indices, as well as variable N1 and N2. We have also introduced
a trailing edge thickness and chord angle for the relevant airfoils.

For the rational fit, we obtain it in 2 ways: first, through the same CMA-ES algorithm as
for the CST, and second, through the curve fit function available in python. That way, we
hope to circumvent the limitations of our stochastic algorithm, and see how good our fit would
be for an optimized version of the algorithm.

Two metrics are used to evaluate our method: the max. error as a % of chord, and the max.
error as a % of chord.

A fit is considered acceptable if it satisfies the following 2 criteria:

1. max.error as a % of chord < 0.25% (most CFD simulations only go up to a similar

accuracy)

2. average. error as a % of chord < 0.15%

After both fits are calculated we then compare them on accuracy (if both are acceptable)
and number of parameters used.

The less parameters used, the better. Thus if our fit uses less parameters than the other
methods, with a similar or better precision, then our fit is better.

We have analyzed 50 different airfoils, from a different range of engineering applications
[7]. We chose the lower surface and chose a rational fit with the numerator a 6% degree
polynomial, and a 4™ degree polynomial as the denominator.
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3. RESULTS

We then tabulated the data for both the maximum error and the root-mean-square error.
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Fig 1. RMS error comparison for Rational fit vs. CST fit

Maximum error comparison 6/4 rat fit vs. CST
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Fig 2. Maximum error comparison for Rational fit vs. CST fit

It is worth taking a further look at the outliers for the CST fit, in both RMS error and
maximum error.

As stated above, these will be the airfoils that require the introduction of a trailing edge
thickness, as well as a chord angle for the CST evolutionary algorithm. Since it is clear that
the rational fit obtained with the curve fit function in Python is much better than the one
obtained through the CMA-ES evolutionary algorithm, we shall compare the improved CST
fit with it, and not the other rational fit.

After modifying the algorithm to account for these variables, we get the following
results:
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RMS error comparison improved CST vs rat_fit
with curve_fit function
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Fig 3. RMS error comparison for improved CST fit vs. Rational fit obtained through the curve_fit function

Maximum error comparison improved CST vs
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Fig 4. Maximum error comparison for improved CST fit vs. Rational fit obtained through the curve_fit function

We present here an example, as a proof-of concept (for sd7037), for the lower surface:
Rational fit (6/4), for a total of 11 parameters:

ay+ a;x + ax? +azx’ + ax? + asx’ + agx’
I+ b;x+ byx?+ bzx? + byx?

f) =
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Rational 6/4
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Fig. 5. Rational fit. The numerator of the fraction is a polynomial of degree 6, the denominator is a polynomial of
degree 4. Rms_ error = 0.00185% of chord; Max_error = 0.00314% of chord

The values of the 11 parameters are:
a0=0.0170418694880304

al=-49.6688070077132
a2=-10158.5833249589
a3=-157200.433447991
a4=389201.112168681
a5=-204092.114481554
a6=-17669.7386052767
b1=10968.789053471
b2=647270.779409408
b3=4308287.49187513
b4=-3860183.54224129

CMA-ES Fit Comparison - CST (N=10)

0.0 +
—0.5 -
—1.0 4
1.5 4
Target
204 N = CST (N=10)

T T T T T T
o 20 40 60 80 100
x (original scale)

Fig. 6 CST fit (11 indexes, plus variable N1, N2 and trailing edge thickness and chord angle variables). Rms_
error = 0.01547%; Max_ error = 0.0645%
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4. DISCUSSIONS

From the results, we can clearly see that our fit has the potential to be much better than the
CST fit, if the evolutionary algorithm is properly optimized. This comes from the fact that the
rational fit obtained through the curve_fit function gives lower rms and maximum errors than
both fits obtained through the evolutionary algorithm. We can also see that even the rational
fit obtained through the evolutionary algorithm performs comparable to the CST fit.

These observations also hold up when considering the improved CST fit that takes into
account the trailing edge thickness and chord angle. From fig. 3 and fig. 4, we can see that
while our fit has similar performance to the CST in terms of the rms errors, it performs
consistently better in terms of the maximum error.

5. CONCLUSIONS

Following our data analysis, we can make the following statements:

Our fit can be used to characterise airfoils, especially airfoils where CST might struggle
(such as heavily cambered ones) to a very high degree of accuracy

Thus, it can be concluded that our rational fit would be superior for airfoil parametrization
in applications where heavily cambered airfoils are generally used and would be worth using
over other methods.
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List of all airfoils used, and their corresponding numbers:

sd7037
ag35
fx60126
s6063
mhl14
rgls

€205
naca643618
. nhaca633618
10. nacad4415
11. naca23015
12. 1s417

WP NN kWD
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13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44.
45.
46.
47.
48.
49.
50.

1s413
sc20414
sc20712
s4053
sc20714
sc20610
sc20410
sg6051
sg6050
$g6042
$g6040
mh120
mhl112
du861372
du84132v
s2055
s2048
s1210
s1223
goe703
fx66s196
fx79w151a
e210

e423
clark-y
naca632615
naca65210
naca65206
n64800a
naca64a010
naca6412
naca6409
naca662415
naca0015
naca0009
naca23012
nacad4412
naca2412
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