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Abstract: A high-order computational fluid dynamics (CFD) code capable of solving compressible 

turbulent flow problems was developed. The CFD code employs the Flowfield Dependent Variation 

(FDV) scheme implemented in a Finite Element Method (FEM) framework. The FDV scheme is 

basically derived from the Lax-Wendroff Scheme (LWS) involving the replacement of LWS’s explicit 

time derivatives with a weighted combination of explicit and implicit time derivatives. The code utilizes 

linear, quadratic and cubic isoparametric quadrilateral and hexahedral Lagrange finite elements with 

corresponding piecewise shape functions that have formal spatial accuracy of second-order, third-

order and fourth-order, respectively. In this paper, the results of observed order-of-accuracy of the 

implemented FDV FEM-based CFD code involving grid and polynomial order refinements on uniform 

Cartesian grids are reported. The Method of Manufactured Solutions (MMS) is applied to governing 2-

D Euler and Navier-Stokes equations for flow cases spanning both subsonic and supersonic flow 

regimes. Global discretization error analyses using discrete 𝐿2 norm show that the spatial order-of-

accuracy of the FDV FEM-based CFD code converges to the shape function polynomial order plus one, 

in excellent agreement with theory. Uniquely, this procedure establishes the wider applicability of MMS 

in verifying the spatial accuracy of a high-order CFD code. 

Key Words: code verification, spatial order-of-accuracy, flowfield dependent variation scheme, method 

of manufactured solutions, finite element method, CFD code 

1. INTRODUCTION 

The use of computer simulations of physical processes has dramatically increased in the last 

few decades particularly in the areas of designing, modelling, optimization and virtual 

prototyping of engineering systems, among others. Due to the resultant effects of modeling 

and simulation predictions on complex and high-risk engineering systems, the needs for 

substantial improvement in the credibility of the computational results arising thereof are of 

great concern to engineering designers, project managers and the decision makers [1]. 

Verification procedure is one of the tools for building and quantifying confidence in 

computational simulations and computer programs [2]. Verification is essentially a 

mathematical procedure that deals with the assessment of the accuracy of the solution to a 

computational model by comparison with a known solution [1, 3]. Basically, some strategies 

involved in verification include identification, quantification and reduction of errors in the 

computational model and its solution [4]. Code verification is directed towards identifying and 
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removing bugs in the source code, inherent errors in numerical algorithms and improving the 

computer program using software quality assurance practices [1, 2]. The code verification can 

be carried out using grid refinement study to bring out potential errors or through comparison 

between numerical results of two codes, which employ different numerical methods [5]. This 

verification needs to be performed only once for all the code options exercised unless the code 

is modified [5, 6]. A general and versatile approach to code verification is the use of Method 

of Manufactured Solutions (MMS) [3, 7]. Instead of trying to find an exact solution to a system 

of partial differential equations, the fundamental idea is to “manufacture” an exact solution a 

priori. This MMS does not require that the exact solution be related to a physically realistic 

problem [2, 8]. Though, it is necessary that the structure of the exact solution be sufficiently 

complex to exercise all the terms being tested in the governing equations [3]. 

One of the earliest published articles in employing manufactured solutions to identify 

coding errors was the work of Shih [9]. Shih et al. [10] applied the MMS to incompressible 

Navier-Stokes equations for laminar two-dimensional (2-D) flow. The authors generated an 

exact solution to the lid-driven problem for an arbitrary Reynolds number. The coupling of 

manufactured solutions with grid refinement for evaluating the observed order-of-accuracy 

was credited to Roache and Steinberg [5, 11]. In their pioneering code verification study, 

Roache et al. used the MMS to verify a code generating 3-D transformations for elliptic partial 

differential equations. Salari and Knupp [12] have systematically applied the MMS to 

compressible and incompressible Navier-Stokes equations. An extensive discussion of the 

manufactured solutions generated for code verification is presented in a book published by the 

authors [7]. Roy et al. [13] used the MMS to verify two compressible, finite volume-based 

CFD codes, namely Premo and WIND. In their work, the authors successfully verified the 

second-order spatial accuracy of both codes for 2-D inviscid Euler and laminar Navier-Stokes 

equations on uniform Cartesian grids. Based on the few reviewed literature, the need to 

conduct rigorous code verification study as a prerequisite for design, model validation and 

analysis studies cannot be over-emphasized [14]. The present code verification study aims at 

investigating the high-order spatial accuracy of the FDV scheme implemented in a 

compressible, FEM-based CFD code for various grid and polynomial order refinements, 

spanning both supersonic and subsonic flow regimes. Furthermore, this work also seeks to 

establish the wider applicability of MMS to verifying spatial accuracy of a high-order CFD 

code. 

2. GOVERNING EQUATIONS 

The conservative form of 2-D, compressible Euler equations can be written as 

𝜕(𝜌)

𝜕𝑡
+

𝜕(𝜌𝑢)

𝜕𝑥
+  

𝜕(𝜌𝑣)

𝜕𝑦
=  𝑠𝑚 (1) 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2 +  𝑝)

𝜕𝑥
+  

𝜕(𝜌𝑢𝑣)

𝜕𝑦
=  𝑠𝑥 ,

𝜕(𝜌𝑣)

𝜕𝑡
+

𝜕(𝜌𝑣𝑢)

𝜕𝑥
+  

𝜕(𝜌𝑣2 +  𝑝)

𝜕𝑦
 =  𝑠𝑦 (2) 

𝜕(𝜌𝑒𝑡 )

𝜕𝑡
+

𝜕(𝜌𝑢𝑒𝑡 +  𝑝𝑢)

𝜕𝑥
+  

𝜕(𝜌𝑣𝑒𝑡 +  𝑝𝑣)

𝜕𝑦
 =  𝑠𝑒 (3) 

where 𝜌 is the fluid density, 𝑢 and 𝑣  are the Cartesian velocity components, 𝑝 is the static 

pressure, and 𝑒𝑡   is the total energy. The first term in Eq. (1) - (3) is the unsteady term, followed 

by the convective terms in 𝑥 and 𝑦 directions, respectively, and a general source term is added 
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at the right-hand side. Closure is achieved by adding two auxiliary energy relations for a 

calorically perfect gas. Internal energy is given by 

𝑒 =  
1

𝛾 − 1
 𝑅𝑇 (4) 

Total energy is given by 

𝑒𝑡 = 𝑒 +  
𝑢2 +  𝑣2

2
 (5) 

The perfect gas equation of state is assumed and given by 

𝑝 =  𝜌𝑅𝑇 (6) 

where 𝑇 is the temperature (𝑇 = 298K), 𝛾 is the ratio of specific heats (𝛾 = 1.4) and 𝑅 is the 

specific gas constant (𝑅 = 287.0 J/kgK). 

For compressible viscous flows, Eq. (1) for mass conservation is still valid; whereas the 

conservative form of the 2-D momentum and energy equations can be written as 

𝜕(𝜌𝑢)

𝜕𝑡
+

𝜕(𝜌𝑢2 +  𝑝 −   𝜏𝑥𝑥)

𝜕𝑥
+  

𝜕(𝜌𝑢𝑣 −  𝜏𝑥𝑦)

𝜕𝑦

=  𝑠𝑥    
𝜕(𝜌𝑣)

𝜕𝑡
+

𝜕(𝜌𝑣𝑢 −  𝜏𝑥𝑦)

𝜕𝑥
+

𝜕(𝜌𝑣2 +   𝑝 −   𝜏𝑦𝑦)

𝜕𝑦
=  𝑠𝑦 

(7) 

𝜕(𝜌𝑒𝑡 )

𝜕𝑡
+

 𝜕(𝜌𝑢𝑒𝑡 +   𝑝𝑢 −  𝑢𝜏𝑥𝑥 −  𝑣𝜏𝑥𝑦  +   𝑞𝑥  )

𝜕𝑥

+  
𝜕(𝜌𝑣𝑒𝑡 +  𝑝𝑣 −  𝑢𝜏𝑥𝑦 −  𝑣𝜏𝑦𝑦  +   𝑞𝑦)

𝜕𝑦
 =  𝑠𝑒 

(8) 

The 2-D viscous stress tensor 𝜏𝑖𝑗 is given by  

𝜏𝑥𝑥 =  
2

3 
 𝜇 (2

𝜕𝑢 

𝜕𝑥
−  

𝜕𝑣

𝜕𝑦
) , 𝜏𝑦𝑦 =  

2

3 
 𝜇 (2

𝜕𝑣 

𝜕𝑦
−  

𝜕𝑢

𝜕𝑥
)  𝜏𝑥𝑦 =  𝜇 (

𝜕𝑣

𝜕𝑥
+  

𝜕𝑢

𝜕𝑦
)  (9) 

The Fourier’s law of heat transfer by conduction is assumed, the heat flux vector 𝑞𝑖 is given 

by 

𝑞𝑥 =  −𝑘
𝜕𝑇

𝜕𝑥
,     𝑞𝑦 =  −𝑘

𝜕𝑇

𝜕𝑦
 (10) 

For the purpose of viscous flow simulations, the dynamic viscosity is chosen to be a large 

constant value (µ = 10 𝑁𝑠/𝑚2 for subsonic and µ = 20 𝑁𝑠/𝑚2  for supersonic simulations) 

so that the diffusion and the convection terms can be balanced [13]. The thermal conductivity 

is given by: 

𝑘 =  
𝛾𝑅

𝛾 − 1
 

𝜇

𝑃𝑟
 (11) 

where Pr is the molecular Prandtl number taken to be unity (Pr = 1.0). 

3. REVIEW OF FLOWFIELD DEPENDENT VARIATION SCHEME 

The compressible Navier-Stokes system of equations can be expressed in conservative form 

as 
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 𝜕𝑼

𝜕𝑡
+  

𝜕𝑭𝑖

𝜕𝑥𝑖
+

𝜕𝑮𝑖

𝜕𝑥𝑖
= 0 (12) 

where  𝑼 =  [

𝜌
𝜌𝑣𝑗

𝜌𝑒𝑡

],  𝑭𝒊 =  [

𝜌𝑣𝑖

𝜌𝑣𝑖𝑣𝑗 + 𝑝𝛿𝑖𝑗

𝑣𝑖(𝜌𝑒𝑡 + 𝑝)
],  𝑮𝑖 =  [

0
−𝜏𝑖𝑗

−𝜏𝑖𝑗𝑣𝑗 + 𝑞𝑖

] (13) 

From Eqs. (12) and (13), U, 𝑭𝑖 and 𝑮𝑖 stand for the vectors of conserved variables, convective 

flux and diffusive flux, respectively. Basically, the Flowfield Dependent Variation (FDV) 

scheme may be considered as a variant of the Lax-Wendroff Scheme (LWS) that is obtained 

through replacement of LWS’s explicit time derivatives by a weighted combination of explicit 

and implicit time derivatives [15, 16]. This replacement is carried out to ensure numerical 

stability and monotonicity of the FDV scheme [17]. 

Performing a Taylor series expansion of 𝑼𝑛+1 about 𝑼𝑛 yields 

𝑼𝑛+1 =  𝑼𝑛 +  ∆𝑡
𝜕𝑼𝑛

𝜕𝑡
+

∆𝑡2

2

𝜕2𝑼𝑛

𝜕𝑡2
 + 𝑂(∆𝑡3) (14) 

where ∆t is the time step between solutions 𝑼𝑛/𝑼𝑛+1 and n denotes the time index. 

Furthermore, replacing the explicit time derivatives in Eq. (14) with a weighted explicit-

implicit combination of FDV parameters, sa and sb, gives 

𝑼𝑛+1 =  𝑼𝑛 +  ∆𝑡 [(1 − sa)
𝜕𝑼𝑛

𝜕𝑡
+ sa

𝜕𝑼𝑛+1

𝜕𝑡
] +

∆𝑡2

2
[(1 − sb)

𝜕2𝑼𝑛

𝜕𝑡2
+ sb

𝜕2𝑼𝑛+1

𝜕𝑡2
]  

+ 𝑂(∆𝑡3) 

(15) 

where 0 ≤ sa ≤ 1  and 0 ≤ sb ≤ 1. 

These FDV parameters act as weighting functions between explicit and implicit methods. 

If sa = sb = 0 (e.g., in the regions of zero gradients in a flowfield), the method is fully explicit 

similar to LWS; whereas if sa = sb = 1 (e.g., in the regions of high gradients in flow 

variables), the method becomes fully implicit. 

By rearranging Eq. (12) through the separation of time and partial derivatives, the 

following equation results 

 𝜕𝑼

𝜕𝑡
=  −

𝜕𝑭𝑖

𝜕𝑥𝑖
−

𝜕𝑮𝑖

𝜕𝑥𝑖
 (16) 

Taking a time derivative of Eq. (16), interchanging spatial and time derivatives, and 

recognizing that 𝑭𝑖 =  𝑭𝑖(𝑼), and 𝑮𝑖 =  𝑮𝑖(𝑼, 𝑼,𝑗), where 𝑼,𝑗 = 𝜕𝑼 𝜕𝑥𝑗⁄ , gives 

 𝜕𝑼

𝜕𝑡
=  

𝜕

𝜕𝑥𝑖
[(𝒂𝑖 + 𝒃𝑖) {

𝜕𝑭𝑗

𝜕𝑥𝑗
+

𝜕𝑮𝑗

𝜕𝑥𝑗
}] +

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[𝒄𝑖𝑗 {

𝜕𝑭𝑘

𝜕𝑥𝑘
+

𝜕𝑮𝑘

𝜕𝑥𝑘
}] (17) 

where 

 𝒂𝑖 =  
𝜕𝑭𝑖

𝜕𝑼
 , 𝒃𝑖 =  

𝜕𝑮𝑖

𝜕𝑼
 , 𝒄𝑖𝑗 =  

𝜕𝑮𝑖

𝜕𝑼,𝑗
 (18) 

Note that  𝒂𝑖, 𝒃𝑖 and 𝒄𝑖𝑗 are the Jacobians of convection, diffusion and diffusion gradient, 

respectively. 

Substituting Eqs. (16) and (17) into Eq. (15), and neglecting the product of 𝒄𝑖𝑗 with the 

third-order spatial derivatives of 𝑭𝑘 and 𝑮𝑘 yields 
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∆𝑼𝑛+1 = ∆𝑡 [{−
𝜕𝑭𝑖

𝑛

𝜕𝑥𝑖
−

𝜕𝑮𝑖
𝑛

𝜕𝑥𝑖
} + sa {−

𝜕∆𝑭𝑖
𝑛+1

𝜕𝑥𝑖
−

𝜕∆𝑮𝑖
𝑛+1

𝜕𝑥𝑖
}] +

∆𝑡2

2

𝜕

𝜕𝑥𝑖
[(𝒂𝑖 + 𝒃𝑖) {

𝜕𝑭𝑗
𝑛

𝜕𝑥𝑗
+

𝜕𝑮𝑗
𝑛

𝜕𝑥𝑗
}] +

∆𝑡2

2
sb

𝜕

𝜕𝑥𝑖
[(𝒂𝑖 + 𝒃𝑖) {

𝜕∆𝑭𝑗
𝑛+1

𝜕𝑥𝑗
+

𝜕∆𝑮𝑗
𝑛+1

𝜕𝑥𝑗
}] 

(19) 

where ∆𝑼𝑛+1 =  𝑼𝑛+1 −  𝑼𝑛, ∆𝑭𝑛+1 =  𝑭𝑛+1 −  𝑭𝑛 and  ∆𝑮𝑛+1 =  𝑮𝑛+1 −  𝑮𝑛. 

In a bid to handle the effects of the FDV parameters on convection and diffusion terms 

separately, sa and sb are split into sa,conv/sa,diff and sb,conv/sb,diff, respectively and 

reassigned as follow: 

sa∆𝑭𝑖 ⇒ 𝑠a,conv∆𝑭𝑖 ,  sa∆𝑮𝑖 ⇒ 𝑠a,diff∆𝑮𝑖 (20) 

sb∆𝑭𝑖 ⇒ 𝑠b,conv∆𝑭𝑖 , sb∆𝑮𝑖 ⇒ 𝑠b,diff∆𝑮𝑖 (21) 

These implicitness parameters are apportioned physical functions when their values are 

calculated from relevant flow quantities like Mach number (𝑀) for convection and Reynolds 

number (𝑅𝑒) for diffusion. The first-order FDV parameters, 𝑠a,conv and 𝑠a,diff, are dependent 

on the flowfield, while the second-order parameters, 𝑠b,conv and 𝑠b,diff, have a power-law 

dependence on the first-order parameters as presented in Eqs. (22) – (25). 

𝑠a,conv = {
min(𝑟, 1)          𝑟 > 𝛼

0      𝑟 > 𝛼,  𝑀min ≠ 0
1                    𝑀min = 0 

 (22) 

𝑠b,conv =
1

2
(1 + 𝑠𝑎,conv

𝜂
),   where   𝑟 = √𝑀max

2 − 𝑀min
2 /𝑀min (23) 

 𝑠a,diff = {
min(𝑟, 1)          𝑟 > 𝛼

0      𝑟 < 𝛼,  𝑅𝑒min ≠ 0
1                    𝑅𝑒min = 0 

 (24) 

𝑠b,diff =
1

2
(1 + 𝑠a,diff

𝜂
),   where   𝑟 = √𝑅𝑒max

2 − 𝑅𝑒min
2 /𝑅𝑒min (25) 

The highest and lowest values of 𝑀 and 𝑅𝑒 are evaluated from the nodal values within the 

element. For this present study, the parameters 𝛼 = 0.001 and 𝜂 = 0.1 are used. The 

modification to the variation parameters, sa and sb, helps in maintaining the second-order 

temporal accuracy of the scheme, thereby enhancing stability of flows with stronger shocks 

[18]. All the FDV parameters are updated iteratively at each time step. 

By rewriting Eq. (19) in terms of FDV parameters  𝑠a,conv,  𝑠a,diff  and  𝑠b,diff,  𝑠b,diff, one 

obtains 

∆𝑼𝑛+1 = −∆𝑡 [{
𝜕𝑭𝑖

𝑛

𝜕𝑥𝑖
+

𝜕𝑮𝑖
𝑛

𝜕𝑥𝑖
} + {𝑠a,conv

𝜕∆𝑭𝑖
𝑛+1

𝜕𝑥𝑖
+ 𝑠a,diff

𝜕∆𝑮𝑖
𝑛+1

𝜕𝑥𝑖
}] +

∆𝑡2

2

𝜕

𝜕𝑥𝑖
[(𝒂𝑖 +

𝒃𝑖) {
𝜕𝑭𝑗

𝑛

𝜕𝑥𝑗
+

𝜕𝑮𝑗
𝑛

𝜕𝑥𝑗
}] +

∆𝑡2

2

𝜕

𝜕𝑥𝑖
[(𝒂𝑖 + 𝒃𝑖) {𝑠b,conv

𝜕∆𝑭𝑗
𝑛+1

𝜕𝑥𝑗
+ 𝑠b,diff

𝜕∆𝑮𝑗
𝑛+1

𝜕𝑥𝑗
}] 

(26) 

Replacing ∆𝑭𝑗
𝑛+1 and ∆𝑮𝑗

𝑛+1 with their respective Jacobians stated in Eq. (18) gives 

[𝑰 + 𝑫𝑖

𝜕

𝜕𝑥𝑖
+ 𝑬𝑖𝑗

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
] ∆𝑼𝑛+1 = 𝑸𝑛 (27) 

where 𝑰 is the identity matrix. 

Finally, presenting Eq. (26) in residual form results in the following expression: 
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𝑹 =  ∆𝑼𝑛+1 +  𝑫𝑖
𝑛∆𝑼,𝑖

𝑛+1 +  𝑬𝑖𝑗
𝑛 ∆𝑼,𝑖𝑗

𝑛+1 −  𝑸𝑛 =  𝑂(∆𝑡3) (28) 

such that   𝑫𝑖
𝑛 =  ∆𝑡(𝑠a,conv𝒂𝑖 +  𝑠a,diff𝒃𝑖 ) (29) 

𝑬𝑖𝑗 
𝑛 =  ∆𝑡𝑠a,diff𝒄𝑖𝑗 −  

∆𝑡2

2
[(𝒂𝑖 +  𝒃𝑖)(𝑠b,conv𝒂𝑗 +  𝑠b,diff𝒃𝑗 )] (30) 

𝑸𝑛 =  ∆𝑡(𝑭𝑖,𝑖
𝑛 +  𝑮𝑖,𝑖

𝑛 ) −  
∆𝑡2

2
(𝒂𝑖 +  𝒃𝑖)(𝑭𝑗,𝑗𝑖

𝑛 +  𝑮𝑗,𝑗𝑖
𝑛 ) (31) 

Numerical stability mechanisms are inbuilt into FDV scheme a priori using the implicitness 

parameters, hence finite element discretization is sufficient. By employing standard Galerkin 

method, the following expression is obtained: 

∫
𝛺

𝛷𝛼𝑹(𝑼, 𝑭𝑖 , 𝑮𝑖)𝑑𝛺 = 0 (32) 

Note that 𝛷𝛼 stands for nodal shape function with global index 𝛼. By substituting Eq. (28) into 

Eq. (32), integrating by parts and arranging compactly yields the assembled finite element 

equations in global form, which can be expressed as: 

(𝐴𝛼𝛽𝑟𝑠
𝑛 +  𝐵𝛼𝛽𝑟𝑠

𝑛 )∆𝑈𝛽𝑠
𝑛+1 =   𝐻𝛼𝑟

𝑛 +  𝑁𝛼𝑟
𝑛  (33) 

  𝐴𝛼𝛽𝑟𝑠
𝑛 = ∫

𝛺
(𝛷𝛼𝛷𝛽𝛿𝑟𝑠 − 𝛷𝛼,𝑖𝛷𝛽𝐷𝑖𝑟𝑠

𝑛 −  𝛷𝛼,𝑖𝛷𝛽,𝑗𝐸𝑖𝑗𝑟𝑠
𝑛 )𝑑𝛺 (34) 

𝐵𝛼𝛽𝑟𝑠
𝑛 = ∫

𝛤
(𝛷𝛼

∗

𝛷𝛽

∗

𝐷𝑖𝑟𝑠

∗ 𝑛

+ 𝛷𝛼

∗

𝛷𝛽,𝑗

∗

𝐸𝑖𝑗𝑟𝑠

∗ 𝑛 

) 𝑛𝑖𝑑𝛤 (35) 

𝐻𝛼𝑟
𝑛 = ∫

𝛺
(∆𝑡𝛷𝛼,𝑖(𝐹𝑖𝑟

𝑛 +  𝐺𝑖𝑟
𝑛 ) −

∆𝑡2

2
𝛷𝛼,𝑖(𝑎𝑖𝑟𝑠 + 𝑏𝑖𝑟𝑠)(𝐹𝑗𝑠,𝑗

𝑛 + 𝐺𝑗𝑠,𝑗
𝑛 )) 𝑑𝛺 (36) 

𝑁𝛼𝑟
𝑛 = ∫

𝛤
(−∆𝑡𝛷𝛼

∗
(𝐹𝑖𝑟

∗ 𝑛

+  𝐺𝑖𝑟

∗ 𝑛

) +
∆𝑡2

2
𝛷𝛼

∗
(𝑎𝑖𝑟𝑠 + 𝑏𝑖𝑟𝑠) (𝐹𝑗𝑠,𝑗

∗ 𝑛

+ 𝐺𝑗𝑠,𝑗

∗ 𝑛

)) 𝑛𝑖𝑑𝛤 (37) 

In Eqs. (34) - (37), 𝛼 and 𝛽 stand for global nodal indices; 𝑖, 𝑗 = 1, 2, 3 represent physical 

coordinate indices; 𝑟, 𝑠 = 1, 2, … ,5 denote indices for the five conserved variables; 𝛿𝑟𝑠 stands 

for Kronecker delta; the superscript * denotes variable along the inter-element contour; 𝑛𝑖 is 

normal to the element surface, the integral over Ω and 𝛤 represent the element and contour 

integral, respectively. In Eqs. (35) and (37), the contour integrals cancel out each other along 

inter-element boundaries insuring flux conservation. Through these contours, Neumann 

boundary conditions can be implemented. Similarly, Dirichlet boundary conditions can be 

imposed through element-by-element discretization procedure. 

4. ORDER-OF-ACCURACY ANALYSIS 

The code verification test determines whether the observed order-of-accuracy of the 

discretized solutions converges to the formal order-of-accuracy of the discretization method 

as the grid is refined [2, 6, 13]. The formal order-of-accuracy of the discretization method may 

be unattainable due to coding mistakes, defective numerical algorithms, subtleties in nonlinear 

problems, non-attainment of asymptotic grid convergence range, among others [19,20]. For 

FEM employed in the CFD code, the formal order-of-accuracy is determined by interpolation 

theory. In order to reduce computational time and memory requirements, the code utilizes 
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higher order FEM that can use much smaller grids to accurately capture complex physics such 

as laminar instabilities and turbulent phenomena. 

In a bid to evaluate the observed order-of-accuracy, there is need to calculate the 

discretization errors in the simulation results. Discretization Error (DE) is a measure of the 

difference between the exact solution to the governing equations and the numerical solution 

to the discretized equations [6]. Considering a series expansion of the discretization error in 

terms of ℎ𝑗 , a measure of the element size on grid level j, then DE can be written as 

𝐷𝐸𝑗 =  φ𝑗 −  φ𝑒𝑥𝑎𝑐𝑡 = 𝐶ℎ𝑗 
𝑛𝑝

+  𝐻𝑂𝑇 (38) 

where φ𝑗  is the numerical solution on grid level j, φ𝑒𝑥𝑎𝑐𝑡 is the exact solution, C is the 

coefficient of the leading-error term, np is the observed order-of-accuracy and HOT are the 

higher order terms. Generally, it is assumed that the leading-order error term dominates the 

total discretization error, thus the grid spacing, h, is in the asymptotic range [3]. Therefore, 

HOT can be neglected. The DE equation for a fine and coarse grid levels k and k+1, 

respectively, can be expressed as 

𝐷𝐸𝑘 =  φ𝑘 −  φ𝑒𝑥𝑎𝑐𝑡 = 𝐶ℎ𝑘 
𝑛𝑝

  and    𝐷𝐸𝑘+1 =  φ𝑘+1 −  φ𝑒𝑥𝑎𝑐𝑡 = 𝐶ℎ𝑘+1 
𝑛𝑝

 (39) 

Since the exact solution φ𝑒𝑥𝑎𝑐𝑡 is known, these two equations can be solved for the observed 

order-of-accuracy np. Let the grid refinement ratio, ratio of coarse grid to fine grid spacing, be 

denoted by 𝑟 = ℎ𝑘+1/ℎ𝑘, then an expression for the observed order-of-accuracy takes the 

form: 

𝑛𝑝𝑘 =
𝐼𝑛(𝐷𝐸𝑘+1 𝐷𝐸𝑘⁄ )

𝐼𝑛(𝑟)
 (40) 

Fundamentally, the formal order-of-accuracy, 𝑓𝑛𝑝, and the shape function polynomial 

order, 𝑝, are related by 𝑓𝑛𝑝 ≈ 𝑝 + 1 from FEM theory [21]. The observed order-of-accuracy 

can be evaluated either locally within the solution domain or globally through the use of any 

appropriate error norms. In the present code verification study, the discrete 𝐿2 norm is used to 

examine the behaviour of global discretization error. Knowing that the computation of 𝐿2 norm 

involves some averaging and the computed results tend to give better plots. The discrete 𝐿2 

norm for grid level k is written as 

𝐿2,𝑘 = √∑ |𝐷𝐸𝑘,𝑖|𝑁
𝑖=1

𝑁

2

 (41) 

where index i varies over all the grid nodes N in space with exception of the Dirichlet boundary 

nodes where DE is identically zero [22]. 

5. FORMS OF MANUFACTURING SOLUTIONS 

Code verification is principally a mathematical procedure to ascertain that the numerical 

solution is a good representation of the exact solution to the continuum governing equations 

being solved [22]. The manufactured solutions employed herein have been chosen with no 

recourse for their physical reality, but the solution structures are sufficiently complex and 

smooth to exercise all the terms in the governing equations. In accordance with Roy et al. [13, 

22, 23], the chosen manufactured solutions used in the present code verification test take the 

form:  
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𝜙(𝑥, 𝑦) =  𝑎0 +  𝑎1𝜃𝑠 (
𝑏1𝜋𝑥

𝐿
)  + 𝑎2𝜃𝑠 (

𝑏2𝜋𝑦

𝐿
) + 𝑎3𝜃𝑠 (

𝑏3𝜋𝑥𝑦

𝐿2
) (42) 

where 𝜙 = [𝜌, 𝑢, 𝑣, 𝑝]𝑇represents any of the primitive variables, 𝜃𝑠(.) denotes the sine or 

cosine functions, L is the domain length and 𝑎𝑖 and 𝑏𝑖 are constant coefficients. The specific 

form of the primitive variables for both Euler and Navier-Stokes equations for all test cases 

considered in this study are listed below: 

𝜌(𝑥, 𝑦) =  𝜌0 +  𝜌1𝑠𝑖𝑛 (
𝑏1𝜋𝑥

𝐿
)  + 𝜌2𝑐𝑜𝑠 (

𝑏2𝜋𝑦

𝐿
) + 𝜌3𝑐𝑜𝑠 (

𝑏3𝜋𝑥𝑦

𝐿2
), 

𝑢(𝑥, 𝑦) =  𝑢0 +  𝑢1𝑠𝑖𝑛 (
𝑏1𝜋𝑥

𝐿
)  + 𝑢2𝑐𝑜𝑠 (

𝑏2𝜋𝑦

𝐿
) + 𝑢3𝑐𝑜𝑠 (

𝑏3𝜋𝑥𝑦

𝐿2
), 

𝑣(𝑥, 𝑦) =  𝑣0 +  𝑣1𝑐𝑜𝑠 (
𝑏1𝜋𝑥

𝐿
)  + 𝑣2𝑠𝑖𝑛 (

𝑏2𝜋𝑦

𝐿
) + 𝑣3𝑐𝑜𝑠 (

𝑏3𝜋𝑥𝑦

𝐿2
), 

𝑝(𝑥, 𝑦) =  𝑝0 +  𝑝1𝑐𝑜𝑠 (
𝑏1𝜋𝑥

𝐿
)  + 𝑝2𝑠𝑖𝑛 (

𝑏2𝜋𝑦

𝐿
) + 𝑝3𝑠𝑖𝑛 (

𝑏3𝜋𝑥𝑦

𝐿2
). 

(43) 

All constants used in the simulations of subsonic and supersonic Euler and Navier-Stokes 

cases are obtained from cited references [13] and [22]. 

6. RESULTS AND DISCUSIONS 

The observed order-of-accuracy results for 2-D Euler and Navier-Stokes equations, spanning 

both supersonic and subsonic flow regimes, are presented and discussed in this section. The 

test cases were chosen to investigate the effects of both h- and p-refinements. For all the four 

test cases considered, the numerical solutions are obtained on the computational domain 

comprising uniform Cartesian grids such that: 0 ≤ 𝑥/𝐿 ≤ 1 and 0 ≤ 𝑦/𝐿 ≤ 1 with 𝐿 = 1.0 𝑚. 

Five different computational grids with grid refinement ratio of two ( 𝑟 = 2) are used for the 

grid convergence test and the shape function polynomial order p is varied between 1 and 3. 

The grid sizes are given in Table 1 where the grid spacing, ℎ/ℎ𝑚𝑖𝑛, is the ratio of element 

sizes at the kth grid level to the finest grid level. 

Table 1 - MMS grid and polynomial order refinements 

Grid Level h-refinements ℎ/ℎ𝑚𝑖𝑛 p-refinements 

1 1292 1 1, 2, 3 

2 652 2 1, 2, 3 

3 332 4 1, 2, 3 

4 172 8 1, 2, 3 

5 92 16 1, 2, 3 

6.1 EULER EQUATIONS 

The MMS approach is applied to the Euler equations given by Eqs. (1) - (3), which constitute 

the conservation of mass, momentum and energy for an inviscid fluid, coupled with the 

auxiliary relations stated in Eqs. (4) - (6). The general form of the chosen manufactured 

solution is given in Eq. (42), while the specific form for the primitive variables for all the test 

cases considered are listed in Eq. (43). The constants used in the simulation of the supersonic 

and subsonic Euler cases were obtained from cited references [13] and [22]. The manufactured 

solution for density (𝜌) and the generated mass source term in supersonic Euler case are shown 

in Fig. 1.  
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(a)                                                   

 
                           (b)  

Fig. 1 - Manufactured solution of (a) 𝜌 and (b) mass source term for supersonic Euler case 

The Euler equations were applied to the chosen manufactured solutions using a code 

written in symbolic processing with MATLAB™ to generate the analytical source terms, 

which were later converted to FORTRAN code. The governing equations (Eqs. (1) - (6)) 

coupled with the analytical source terms were then discretized and solved numerically. The 

numerical solutions obtained were compared to the exact (manufactured) solution to determine 

the discretization error in the solutions. All the solutions presented in this study were integrated 

in time until the 𝐿2 norm of the iterative error approached the iterative convergence tolerance 

of 1.0𝐸 − 10. 

For the supersonic Euler case, the 𝐿2 norm of density (𝜌) discretization error evaluated 

from Eq. (41) is presented in Fig. 2 for the five grid levels plotted on a log-log scale.  The 

norm shows trends of second-order, third-order and fourth-order slopes, respectively, for the 

linear, quadratic and cubic isoparametric finite elements used for spatial discretization as the 

grid is refined. Also shown in Fig. 2 is the second-order slope for easy comparison. The 

computed results of the observed order-of-accuracy calculated from Eq. (40) are shown in Fig. 

3. These plots confirm that the formal order-of-accuracy of the numerical scheme for linear 

(second-order), quadratic (third-order) and cubic (fourth-order) elements is reproduced with 

corresponding h- and p-refinements. Similar behaviour was observed for the other conserved 

variables as well (i.e.,  𝜌𝑢, 𝜌𝑣 and 𝜌𝑒𝑡). 

 

Fig. 2 - Behaviour of density discretization error norm with ℎ- and 𝑝-refinements for supersonic Euler case 
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Fig. 3 - Observed order-of-accuracy of density discretization error norm with h- and p-refinements for supersonic 

Euler case 

Figure 4 shows the behaviour of  𝐿2 norm for x-momentum (𝜌𝑢) discretization error for the 

subsonic Euler case. Again, the plots of the computed error norm exhibit second-order, third-

order and fourth-order behaviour on all grid levels. The observed order-of-accuracy, plotted 

in Fig. 5, confirms that the code is reproducing the formal spatial order-of-accuracy of the 

numerical scheme. In fact, the observed order-of-accuracy of the quadratic finite element 

appears to be slightly higher than third-order in this subsonic Euler case. The error norms of 

the other conserved variables showed similar behaviour as well. 

 
Fig. 4 - Behaviour of x-momentum (𝜌𝑢) discretization error norms with ℎ- and 𝑝-refinements for subsonic Euler 

case 
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Fig. 5 - Observed order-of-accuracy of x-momentum (𝜌𝑢) discretization error norm with ℎ- and 𝑝-refinements for 

subsonic Euler case 

6.2 NAVIER-STOKES EQUATIONS 

The MMS approach is similarly applied to the Navier-Stokes equations comprising of Eqs. 

(1), (7) and (8) along with the auxiliary relations given in Eqs. (4) - (6) and (9) - (11). The 

constants used in the manufactured solutions for the test cases involving supersonic and 

subsonic flows were obtained from cited references [13] and [22]. 

In the case of supersonic Navier-Stokes simulations, the dynamic viscosity was chosen as 

µ = 20 𝑁𝑠/𝑚2 in a bid to strike a balance between the convective and diffusive terms, this 

will minimize any possibility of a “false positive” on the order-of-accuracy test  [2, 21]. The 

behaviour of the computed 𝐿2 norm of discretization error for the conserved variable (𝜌𝑒𝑡) is 

shown in Fig. 6. The norm shows trends of second-order, third-order and fourth-order 

behaviour in nearly all grid levels, except for some deviations observed in quadratic finite 

element plot. The observed order-of-accuracy results are plotted in Fig. 7. The entire plots 

asymptotically approach the formal order-of-accuracy of the linear, quadratic and cubic 

isoparametric elements used for the discretization as the grid is refined. Similar behaviour was 

observed for other conserved variables. 

 
Fig. 6 - Behaviour of energy (𝜌𝑒𝑡) discretization error norm with h- and p-refinements for supersonic Navier-

Stokes case 
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Fig. 7 - Observed order-of-accuracy of energy (𝜌𝑒𝑡) discretization error norm with h-and p-refinements for 

supersonic Navier-Stokes case 

In the subsonic Navier-Stokes case, the dynamic viscosity was chosen as µ = 10 𝑁𝑠/𝑚2. 

Again, this is done to ensure that the viscous terms are of the same order of magnitude as the 

convective terms [13]. 

Figure 8 depicts the manufactured solution of conserved variable (𝜌𝑣) and the generated y-

momentum source term for subsonic Navier-Stokes case. 

 

(a) 

 

(b) 

Fig. 8 – Manufactured solution of (a) 𝜌𝑣 and (b) y-momentum source term for subsonic Navier-Stokes case 

The 𝐿2 error norm for the conserved variable (𝜌𝑣) is plotted in Fig. 9. The norm exhibits 

second-order, third-order and fourth-order slopes, respectively, for linear, quadratic and cubic 

isoparametric elements as the grid is refined. 

The behaviour of the error norm for spatial convergence is confirmed by the trends of the 

observed order-of- accuracy shown in Fig. 10. 

In fact, the observed order-of-accuracy of the cubic finite element appears to be slightly higher 

than fourth-order in this subsonic Navier-Stokes case. Other conserved variables exhibited 

similar behaviour. 
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Fig. 9 - Behaviour of y-momentum (𝜌𝑣) discretization error norms with h- and p-refinements for subsonic 

Navier-Stokes case 

 
Fig. 10 - Observed order-of-accuracy of y-momentum (𝜌𝑣) discretization error norms with h- and p-refinements 

for subsonic Navier-Stokes case 

7. CONCLUSIONS 

The method of manufactured solutions has been applied to verify the spatial order-of-accuracy 

of Flowfield Dependent Variation scheme implemented in a compressible CFD code that 

employs finite element method framework, which supports higher order quadrilateral and 

hexahedral isoparametric Langrange elements. 

The code verification test was carried out by comparing the numerical solutions to the 

manufactured solutions on a series of five different consistently-refined grid levels and three 

different shape function polynomial order. Four test cases examined are governed by 2-D Euler 

and Navier-Stokes equations spanning both subsonic and supersonic flow regimes with varied 

h- and p-refinements on uniform Cartesian grids. 
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In all the four test cases considered, the observed order-of-accuracy converges to the 

formal order-of-accuracy of the FDV FEM-based CFD code with corresponding h- and p-

refinements in excellent agreement with finite element theory. Furthermore, this code 

verification study establishes the wider applicability of the MMS approach in the verification 

of formal order-of-accuracy of a high-order CFD code. This procedure enhances credibility 

and confidence that there are no coding mistakes in spatial discretization of the CFD code on 

uniform Cartesian grids. 

The coding options verified by the MMS approach employed in the current code 

verification study include: inviscid Euler and viscous Navier-Stokes equations, FDV FEM-

based scheme’s spatial accuracy and the Dirichlet boundary conditions in both subsonic and 

supersonic flow regimes. Some options that are not verified include solver stability, curvilinear 

grids and temporal accuracy, among others. 
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