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Abstract: The paper presents a mathematical model that can be used to quickly define a nominal 
trajectory for the studied small launcher configuration. The tool developed based on the proposed 
mathematical model can be used separately for trajectory assessments or it can be integrated in a 
multidisciplinary optimisation algorithm for a preliminary small launcher design, together with the 
trajectory optimisation for a maximum orbital performance. 
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1. INTRODUCTION 
Small dedicated launchers have increased in popularity in the last years because of their 
operational flexibility towards the consumers’ orbital request. The launcher nominal mission 
can be now defined by the small cargo (mini or micro satellites) rather than by the medium/ 
large satellites (piggyback missions). 

In the small launcher optimisation context, the efficient way to ensure an overall 
competitive launcher is by using a multidisciplinary design optimisation (MDO) approach. 
The current paper continues the work previously elaborated in [1], [2], [3] by using the same 
MDO tool architecture, as seen in Figure 1. 

The developed MDO tool employs four main disciplines that are assessed in a cascade 
order: Weights and Sizing, Propulsion, Aerodynamics and Trajectory together with secondary 
modules (Inputs, Optimisation variables, Objection function). In this paper a mathematical 
model that can be used for a quick trajectory assessment and optimisation is presented. As 
detailed in [1], MDO solution convergence can occur after hundreds of thousands iterations; 
therefore it is of great interest to reduce the complexity of the used mathematical models. The 
main approach in reducing MDO complexity is to use a 3DOF dynamic model. Several 3DOF 
problem formulations can be used ([4], [5], [6]), this paper employing a null bank angle model. 
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Figure 1 – Block scheme of small launcher MDO tool [1], [2], [3] 

In the Trajectory module the main objective is to integrate the equation of motion to 
accurately simulate the dynamic behaviour of the launcher during its flight. In the small 
launcher optimisation context, the objective expands and also includes the definition of a 
nominal optimal trajectory that maximizes imposed criteria (such as maximizing orbital 
performance). 

2. TRAJECTORY ASSESMENT 
The problem of inserting a satellite into the desired orbit is a difficult one to solve. If the 
launcher's trajectory is not well computed, it can lead to an unsuccessful deployment of the 
payload into its desired orbit but also to flight emergency interruption. This is why it is of great 
importance to use a dynamic model with a high results accuracy, together with a correct 
formulation of the problem of the small launcher flight. 

The equations of motion are written in the quasi-velocity frame because of their simplicity 
in numerical implementation. The quasi-velocity frame has the origin in the launcher centre 
of mass, and participates in the diurnal rotation. The x axis is along the velocity vector, the y 
axis is up in vertical plane and the z axis completes the right trihedral. Detailed presentation 
of the coordinate systems specific to the motion of launch systems is shown in [7] and [8]. 

The 3DOF dynamic equations which describe the centre of mass motion in the quasi-
velocity frame are ([7], [9]): 

𝑉̇𝑉 =
𝑁𝑁𝑥𝑥
𝑚𝑚
− 𝑔𝑔𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 − 𝑔𝑔𝜔𝜔(𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜒𝜒 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾) 

𝛾̇𝛾 =
𝑁𝑁𝑦𝑦
𝑚𝑚𝑚𝑚

−
𝑔𝑔𝑟𝑟
𝑉𝑉
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 −

𝑔𝑔𝜔𝜔
𝑉𝑉

(− 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜒𝜒 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾) +
𝑉𝑉
𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 − 2𝛺𝛺𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜒𝜒 

𝜒̇𝜒 = −
𝑁𝑁𝑧𝑧

𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾
+
𝑔𝑔𝜔𝜔 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜒𝜒

𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾
+
𝑉𝑉
𝑟𝑟
𝑡𝑡𝑡𝑡𝑡𝑡 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜒𝜒 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 + 2𝛺𝛺𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜒𝜒 𝑡𝑡𝑡𝑡𝑡𝑡 𝛾𝛾 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑) 

(1) 

The kinematic equations which complete the 3DOF system are ([10], [12]): 

𝜑̇𝜑 = 𝑉𝑉
𝑟𝑟
𝑐𝑐𝑐𝑐𝑐𝑐 𝜒𝜒 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾, 𝜆̇𝜆 = − 𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠 𝜒𝜒 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾

𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑
, 𝑟̇𝑟 = 𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾 (2) 
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where: 𝑉𝑉 is the launcher velocity, 𝛾𝛾 is the climb angle, 𝜒𝜒 is the path track angle, 𝜑𝜑 is the 
geocentric latitude, 𝜆𝜆 is the relative geocentric longitude, 𝑟𝑟 is the centre of mass – centre of 
Earth distance,  𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦, 𝑁𝑁𝑧𝑧 are the projection of the applied forces along the quasi-velocity 
frame, 𝑚𝑚 is the launcher mass, 𝑔𝑔𝑟𝑟 and 𝑔𝑔𝜔𝜔 are the gravitational acceleration radial and polar 
components, Ω𝑝𝑝 is the Earth angular velocity. 

The equations presented in (2) describe the evolution of the position vector 𝑟𝑟, while the 
equations presented in (1) describe the evolution of the velocity vector 𝑣⃗𝑣. 

The employed gravitation model is the J2 model [7], where the gravitational acceleration 
(attraction and centrifugal components), is expressed by two terms, one along radius 𝑟𝑟 (𝑔𝑔𝑟𝑟) and 
the second parallel to the polar axis N-S (𝑔𝑔𝜔𝜔). The following relations are implemented in the 
model: 

𝑔𝑔𝑟𝑟 =
𝑎𝑎00
𝑟𝑟2

−
3
2
𝑎𝑎20
𝑟𝑟4

(5 𝑠𝑠𝑠𝑠𝑠𝑠2 𝜑𝜑 − 1) − 𝛺𝛺𝑝𝑝2𝑟𝑟. .. 

𝑔𝑔𝜔𝜔 = 3
𝑎𝑎20
𝑟𝑟4

𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 + 𝛺𝛺𝑝𝑝2𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 . .. 
(3) 

with: 

𝑎𝑎00 = 3.9861679 ⋅ 1014 
3
2
𝑎𝑎20 = 26.32785 ⋅ 1024 

(4) 

The projection of the applied forces along the quasi-velocity frame 𝑁𝑁𝑥𝑥,𝑁𝑁𝑦𝑦, 𝑁𝑁𝑧𝑧 are 
computed using: 

𝑁𝑁𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞−𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 = �
𝑁𝑁𝑥𝑥
𝑁𝑁𝑦𝑦
𝑁𝑁𝑧𝑧
� = 𝐵𝐵𝜇𝜇𝛽𝛽∗𝛼𝛼 ⋅ ��

𝑋𝑋𝑇𝑇
𝑌𝑌𝑇𝑇
𝑍𝑍𝑇𝑇
� + �

𝑋𝑋𝐹𝐹
𝑌𝑌𝐹𝐹
𝑍𝑍𝐹𝐹
���

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏

 (5) 

where T corresponds to propulsive forces and F corresponds to aerodynamic forces. 
Because it is easier to write the applied forces components in the body frame, the rotation 

matrix 𝐵𝐵𝜇𝜇𝛽𝛽∗𝛼𝛼 is used to transfer data between the body and quasi-velocity frames.  

𝐵𝐵𝜇𝜇𝛽𝛽∗𝛼𝛼 = �
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽∗ − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽∗ 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽∗

𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇 + 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽∗ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽∗ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽∗ 𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇
𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇 − 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽∗ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝜇𝜇 + 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛽𝛽∗ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇 𝑐𝑐𝑐𝑐𝑐𝑐 𝛽𝛽∗ 𝑐𝑐𝑐𝑐𝑐𝑐 𝜇𝜇

� (6) 

For this paper a null bank angle 3DOF model is used, which corresponds with the 
following assumption:  

• The control sequence in the GNC system ensures that the thrust vector is aligned with 
the body axis; 

• Between the launcher and the velocity vector two non-zero aerodynamic angles exist: 
𝛼𝛼 ≠ 0,    𝛽𝛽∗ ≠ 0 ; 

• The bank angle is null 𝜇𝜇 = 0. 
The applied forces can be seen in Figure 2. Due to the assumptions of the implemented 

dynamic model, the projection of the propulsive force along the body frame is defined by: 

𝑇𝑇body = �
𝑋𝑋𝑇𝑇
𝑌𝑌𝑇𝑇
𝑍𝑍𝑇𝑇
� = �

𝑇𝑇
0
0
� (7) 
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with T being the propulsion force. 

 
Figure 2 – Body frame and applied forces 

The projection of the aerodynamic force along the body frame is defined by: 

𝐹𝐹𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
𝑋𝑋𝐹𝐹
𝑌𝑌𝐹𝐹
𝑍𝑍𝐹𝐹
� = �

−𝐴𝐴
𝑁𝑁
−𝑌𝑌

� = �
−𝑞𝑞 ⋅ 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝐶𝐶𝐴𝐴
   𝑞𝑞 ⋅ 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝐶𝐶𝑁𝑁
−𝑞𝑞 ⋅ 𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟 ⋅ 𝐶𝐶𝑌𝑌

� (8) 

where: 𝐴𝐴 si the axial force, 𝑁𝑁 is the normal force, 𝑌𝑌 is the side force. 
The aerodynamic characteristics of the studied launcher are analysed in the Aerodynamic 

module of the MDO tool. For this paper, the mathematical models described in [2] and [13] 
are used. The active control of the launcher is realised by orienting the thrust vector with 
respect to the velocity vector. Because of the model assumptions, the orientation of the 
launcher can be modified if one considers the aerodynamic angles 𝛼𝛼 and  𝛽𝛽∗ as being command 
parameters of the system. With these command parameters the climb angle and path track 
angle (cinematic azimuth) can be controlled based on feedback control loops such as: 

𝛼𝛼 = −𝑘𝑘1(𝛾𝛾 − 𝛾𝛾𝑑𝑑) 
𝛽𝛽∗ = −𝑘𝑘1(𝜒𝜒 − 𝜒𝜒𝑑𝑑) 

(9) 

where reference sizes are 𝛾𝛾𝑑𝑑 and 𝜒𝜒𝑑𝑑. 
In order to carry out a correct analysis of the trajectory-specific orbital performances 

obtained by integrating the differential system of 6 equations corresponding to the 3DOF 
model used, it is necessary to convert the position vector 𝑟𝑟 and the velocity vector 𝑣⃗𝑣 into the 
classical orbital parameters of 𝑎𝑎, 𝑒𝑒, 𝑖𝑖, 𝛺𝛺, 𝜔𝜔, 𝑓𝑓 (semi major axis, eccentricity, inclination, 
longitude of the ascending node, argument of perigee and true anomaly). The first two 
parameters define the trajectory of the studied body in the orbital plane, the next three define 
the orientation of the orbital plane in space, while the latter defines the position of the body on 
the orbit. 

First, the position and velocity vectors obtained in the quasi-velocity frame must be 
transposed in an inertial frame, the most used being ECI (Earth Centred Inertial). 

As detailed in [8], the position vector in ECI is described by: 
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𝑋𝑋𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑎𝑎 
𝑌𝑌𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑟𝑟 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆𝑎𝑎 

𝑍𝑍𝐸𝐸𝐸𝐸𝐸𝐸 = 𝑟𝑟 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 
(10) 

with the absolute geocentric longitude 𝜆𝜆𝑎𝑎 = 𝜆𝜆 + 𝛺𝛺𝑝𝑝𝑡𝑡. 
Also, from [8], the velocity in ECI is described by: 

�
𝑉𝑉𝑥𝑥𝐸𝐸𝐸𝐸𝐸𝐸
𝑉𝑉𝑦𝑦𝐸𝐸𝐸𝐸𝐸𝐸
𝑉𝑉𝑧𝑧𝐸𝐸𝐸𝐸𝐸𝐸

� = 𝐵𝐵𝐺𝐺 ⋅ �
𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑐𝑐𝑐𝑐𝑐𝑐 𝜒𝜒

𝑉𝑉 𝑠𝑠𝑠𝑠𝑠𝑠 𝛾𝛾
−𝑉𝑉 𝑐𝑐𝑐𝑐𝑐𝑐 𝛾𝛾 𝑠𝑠𝑠𝑠𝑠𝑠 𝜒𝜒 + 𝑟𝑟𝛺𝛺𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑

� (11) 

with the rotation matrix: 

𝐵𝐵𝐺𝐺 = �
− 𝑠𝑠𝑠𝑠𝑠𝑠𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑎𝑎 − 𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆𝑎𝑎
−𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜆𝜆𝑎𝑎 𝑐𝑐𝑐𝑐𝑐𝑐 𝜆𝜆𝑎𝑎

𝑐𝑐𝑐𝑐𝑐𝑐 𝜑𝜑 𝑠𝑠𝑠𝑠𝑠𝑠 𝜑𝜑 0
� (12) 

Now that the position vector 𝑟𝑟 and the velocity vector 𝑣⃗𝑣 are obtained in ECI frame, we 
can obtain the six orbital parameters, based on the work done in [11]. First, the angular 
momentum vector ℎ�⃗  , the node vector 𝑛𝑛�⃗   and the eccentrticity vecior 𝑒𝑒 are computed: 

ℎ�⃗ = 𝑟𝑟 × 𝑣⃗𝑣 

𝑛𝑛�⃗ = �
0
0
1
� × ℎ�⃗  

𝑒𝑒 =
1
𝜇𝜇
𝑣⃗𝑣 × ℎ�⃗ −

𝑟𝑟
𝑟𝑟
 

(13) 

with 𝜇𝜇 being the standard gravitational parameter. 
The following scalars are now computed (including eccentricity): 

𝑟𝑟 = ‖𝑟𝑟‖,  𝑣𝑣 = ‖𝑣⃗𝑣‖,  𝑒𝑒 = ‖𝑒𝑒‖,  ℎ = �ℎ�⃗ �,  𝑛𝑛 = ‖𝑛𝑛�⃗ ‖ (14) 

The semi major axis is obtained from: 

𝑎𝑎 = − 𝜇𝜇
2𝐸𝐸

 ,         𝐸𝐸 = 𝑣𝑣2

2
− 𝜇𝜇

𝑟𝑟
 (15) 

The inclination is now computed: 

𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
ℎ�⃗
ℎ
⋅ �

0
0
1
�� (16) 

The longitude of the ascending node is obtained from: 

𝛺𝛺 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 ��
0
0
1
� ⋅
𝑛𝑛�⃗
𝑛𝑛
� (17) 

with the following quadrant correction (𝑦𝑦� = [0 1 0]): 

𝛺𝛺 = �
𝛺𝛺,                  𝑖𝑖𝑖𝑖         𝑦𝑦� ⋅ 𝑛𝑛�⃗ ≥ 0
360°− 𝛺𝛺,     𝑖𝑖𝑖𝑖         𝑦𝑦� ⋅ 𝑛𝑛�⃗ < 0 (18) 
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The argument of perigee is obtained from: 

𝜔𝜔 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
𝑛𝑛�⃗ ⋅ 𝑒𝑒
𝑛𝑛 ⋅ 𝑒𝑒�

 (19) 

with the following quadrant correction (𝑧̂𝑧 = [0 0 1]): 

𝜔𝜔 = �
𝜔𝜔,                 𝑖𝑖𝑖𝑖     𝑧̂𝑧 ⋅ 𝑒𝑒 ≥ 0
360° −𝜔𝜔,    𝑖𝑖𝑖𝑖     𝑧̂𝑧 ⋅ 𝑒𝑒 < 0 (20) 

Finally, the true anomaly can be computed: 

𝑓𝑓 = 𝑐𝑐𝑐𝑐𝑐𝑐−1 �
𝑟𝑟 ⋅ 𝑒𝑒
𝑟𝑟 ⋅ 𝑒𝑒�

 (21) 

with the following quadrant correction: 

𝑓𝑓 = �
𝑓𝑓,                 𝑖𝑖𝑖𝑖     𝑟𝑟 ⋅ 𝑣⃗𝑣 ≥ 0
360° − 𝑓𝑓     𝑖𝑖𝑖𝑖     𝑟𝑟 ⋅ 𝑣⃗𝑣 < 0 (22) 

3. FLIGHT PHASES 
For small launchers, it is preferable to use a direct trajectory (DATO - Direct ascent to orbit), 
this being the simplest method of inserting a satellite into Low Earth Orbit. Even though the 
payload mass is lower than for a two-burn trajectory, the DATO is a preferred strategy, because 
the complexity of rocket engines is lower, no successive stops and restarts required. 
Furthermore, the time required for the launcher to accomplish its mission is minimal, thus 
reducing the occurrence of any eventual risks. 

To define the launcher mission, several flight phases occur, which have impact on the 
system of equations or control definition numerical implementation. For simplicity and also 
correlation with studied configuration a two-stage launcher DATO mission will be detailed 
and its flight phases presented. Thus, the following flight phases occur for a two-stage small 
launcher aiming a DATO mission, as seen in Figure 3: 

(a) Vertical flight: corresponds to the period immediately after launch, period in which the 
axis of symmetry of the launcher is aligned with the velocity vector. The aerodynamic 
angles α and β∗ are zero. The climb angle γ is 90°. 

(b) First stage active guidance: the climb angle γ is reduced towards a target value γd1 and 
kept it constant for a short period (to align the velocity vector with that of the thrust/body 
of the launcher). If the imposed launch direction does not allow the satellite to be placed 
in an orbit of a certain inclination, then a path track angle χd1 is also required. The 
aerodynamic angles α and β∗ can be non-zero. 

(c) First stage gravitational turn: is characterized by a lack of normal direction applied 
forces components, the normal load factor being zero. The climb angle naturally 
decreases due to gravitational acceleration. The aerodynamic angles α and β∗are zero. 

(d) First stage separation: after fuel burnout, the stage is separated to decrease the launcher 
mass. 

(e) Fairing jettison: the fairing is separated from the launch vehicle when one or more 
separation conditions imposed prior to launch (e.g. Altitude>50km, Dynamic 



123 Trajectory assessment and optimisation in the context of small launcher design 
 

INCAS BULLETIN, Volume 12, Issue 2/ 2020 

pressure<0.5 kPa, Thermal flux<1.135kW/m2) are satisfied. For good controllability, 
fairing jettison is preferable when the rocket engines are not running.  

(f) Second stage ignition: is performed after a coasting phase, period in which the launcher 
loses kinetic energy (velocity), but gains potential energy (altitude). 

(g) Second stage gravitational turn: the movement with natural control (null aerodynamic 
angles) is continued, the thrust force now being generated by the second stage engine. 

(h) Second stage active guidance - orbital insertion: corresponds to the end of the powered 
flight, finalized by detaching and inserting the payload into the desired orbit. The climb 
angle of the trajectory approaches the second imposed value γd2, the path track angle 
approaches χd2  and the aerodynamic angles α and β∗ are non-zero. The aerodynamic 
effects are very small due to the high altitude at which the launcher is located. 

 
Figure 3 – DATO mission flight phases (two-stage small launcher) 

4. TRAJECTORY OPTIMISATION 
As for any optimisation problem, the criteria which will be used to select good over bad 
trajectories must be clearly mathematically defined. For the current case, when discussing the 
optimisation of a nominal trajectory, the launcher configuration will be considered frozen, 
input data being obtained from reference documents. 

The objective is to obtain the maximum payload mass that can be inserted into a 
predefined orbit. In addition, any kind of constraint applied to the trajectory (load factors, 
failure to reach the target parameters and others) must be respected. Iteratively, the objective 
function will converge to its minimum value (or maximum, depending on how it is defined). 

The following objective function is proposed to be minimised: 

𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �
𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
+ 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜� ⋅ 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (23) 



Alexandru-Iulian ONEL, Teodor-Viorel CHELARU 124 
 

INCAS BULLETIN, Volume 12, Issue 2/ 2020 

where: 𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 is obtained from launcher user manual (if not available, a value of 1 can be 
used), 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is the payload mass subject to maximisation, 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 is the orbit performance 
index, 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the constraints index. 

The orbit performance index is used to quantify the quality of the payload-inserted orbit 
compared to that imposed prior to launch. 

Thus, it is of interest to introduce the orbital parameters previously presented in the 
mathematical formula. For a circular orbit of altitude 𝐻𝐻𝑑𝑑 and inclination 𝑖𝑖𝑑𝑑, the following 
formula is used for the orbit performance index:   

𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = �𝑤𝑤𝑎𝑎(𝑎𝑎 − 𝑎𝑎𝑑𝑑)2 + 𝑤𝑤𝑉𝑉(𝑉𝑉 − 𝑉𝑉𝑑𝑑)2 + 𝑤𝑤𝛾𝛾(𝛾𝛾 − 𝛾𝛾𝑑𝑑)2 + 𝑤𝑤𝑖𝑖(𝑖𝑖 − 𝑖𝑖𝑑𝑑)2 (24) 

with: 𝑤𝑤𝑎𝑎 = 1,𝑤𝑤𝑉𝑉 = 1,𝑤𝑤𝛾𝛾 = 10,𝑤𝑤𝑖𝑖 = 10 parameter weights. 
The target semi major axis is computed with: 

𝑎𝑎𝑑𝑑 = 𝑅𝑅𝑃𝑃 + 𝐻𝐻𝑑𝑑 (25) 

where 𝑅𝑅𝑃𝑃 = 6378137𝑚𝑚. 
The target velocity, for a circular orbit, is computed with: 

𝑉𝑉𝑑𝑑 = �
𝜇𝜇
𝑟𝑟𝑑𝑑

= �
𝜇𝜇
𝑎𝑎𝑑𝑑

 (26) 

Finally, 𝛾𝛾𝑑𝑑 = 0 for a circular orbit. The desired eccentricity 𝑒𝑒𝑑𝑑 = 0 was replaced with 𝑉𝑉𝑑𝑑 
and 𝛾𝛾𝑑𝑑, for a better convergence of the solution ([1], [5]). 

The parameters 𝑎𝑎, 𝑉𝑉, 𝛾𝛾, 𝑖𝑖 are obtained following the integration of the proposed dynamic 
model, using the data from the moment of payload deployment, at the end of the second stage 
burn. For ideal insertion 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0. 

The constraints index is used to quantify the validity of the obtained trajectory in relation 
to the imposed requirements. The following formula is proposed: 

𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = � 𝐼𝐼𝑐𝑐𝑖𝑖

𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑖𝑖=1

 (27) 

where: 𝑁𝑁𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the number of imposed constraints, 𝐼𝐼𝑐𝑐𝑖𝑖 is the index for the 𝑖𝑖 constraint. 
If the constraint is not respected, the term associated with this constraint 𝐼𝐼𝑐𝑐𝑖𝑖 would take 

over unity values, which would increase the objective function. If the constraint is respected 
then 𝐼𝐼𝑐𝑐𝑖𝑖 = 1. 

Typical constraints include, but are not limited to: maximum axial and normal load 
factors, maximum heat flux, maximum deviation from imposed control parameters, maximum 
aerodynamic angles. 

The optimisation variables are those data used by the genetic algorithm function to 
advance the solution of the MDO iterative process, based on an objective function ranking 
system. 

For the current case, when optimising a nominal trajectory for a known launcher, based 
on the dynamic model detailed in trajectory assessment chapter, the number of optimisation 
variables that are needed to be used is presented in Table 1. 
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Table 1 – Optimisation variables needed for n-stage launcher 

Type of optimisation 
variable 

Number of 
optimisation variables 

Total number of 
optimisation variables 

𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 1 

4𝑛𝑛 + 1 

𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛 − 1 
𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1 

𝛾𝛾𝑑𝑑 𝑛𝑛 
𝜒𝜒𝑑𝑑 𝑛𝑛 
𝛥𝛥𝛥𝛥 𝑛𝑛 

For a two-stage small launcher, a total of 9 optimisation variables are needed: 1 vertical 
time, 1 coast time, 1 payload mass, 2 desired climb angles and 2 desired path track angles at 
the end of the active guidance phases, 2 ratios between active guidance and total stage burn 
time (𝛥𝛥𝛥𝛥). 

5. TEST CASES 
To validate the mathematical model for the trajectory assessment, together with the proposed 
associated control scheme and optimisation technique, the Falcon 1 small launcher developed 
by SpaceX will be analysed. Reference data will be taken from [14](User Manual), [15] and 
[16]. Based on the mathematical models presented in this paper a Matlab tool has been 
developed. The minimization the objective function detailed in equation (23) is desired, which 
is equivalent to maximizing the payload mass that can be inserted in a predefined orbit. For 
the equations of motion integration an adaptive method of Runge-Kutta type will be used, in 
which the time step is automatically selected according to the integration error. 

The input data for the Falcon 1 launcher are shown in Table 2, together with a graphical 
representation in Figure 4. 

Table 2 – Falcon 1 input data [14], [15] 

Input Stage I Stage II Fairing Launcher 

Length [m] 15 2.7 3.63 21.33 

Diameter [m] 1.67 1.67 1.52 1.67 

Dry mass [kg] 1360.77 544.31 145.14 2050.22 
Propellant 

[kg] 21491.20 4036.97 - 25528.17 

Total mass 
[kg] 22851.98 4581.28 - 27578.4 

Engine type 1 x Merlin 1C 1 x Kestrel 2 - - 

Thrust [kN] 346.96 kN 
(sea level) 

30.69 kN 
(vacuum) - - 

Specific 
impulse [s] 

300  
(vacuum) 

317 
(vacuum) - - 

Burn time [s] 169 418 - 587 
 

 
Figure 4 – Falcon 1 

geometry [16] 
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The Falcon 1 payload vs altitude performance for DATO missions will be subject to 
analysis, circular orbits of 9.1° inclination and altitudes between 200 km and 600 km being 
investigated. 

The reference data from [14] are extracted with the aid of a plot digitizer tool [19] and 
shown in Table 3. 

Table 3 – Falcon 1 payload vs. altitude reference data [14], 𝑖𝑖 = 9.1° 

Altitude Reference payload mass 
200 km 414 kg 
300 km 370 kg 
400 km 300 kg 
500 km 221 kg 
600 km 130 kg 

The launch location is SpaceX platform in Omelek Island (𝜑𝜑𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 9.04771, 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
167.74299), launch direction is Eastward (𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = −90°). The fairing jettison condition is 
𝑞̇𝑞𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 < 1135 𝑊𝑊

𝑚𝑚2. Heat flux is computed based on analytic expression detailed in [17] and 
[18]. 

Other initial conditions used are: 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0 𝑚𝑚, 𝛾𝛾𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 90°, 𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 1𝑚𝑚
𝑠𝑠

. The 
maximum load factors, from [14] are: 𝑛𝑛𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 7.7, 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 < 0.75. For the feedback control 
loop parameter from equation (9) a value of 𝑘𝑘1 = 7 will be used. The following constraints 
have been used for the aerodynamic angles: −7° ≤ 𝛼𝛼 ≤ 7°, −7° ≤ 𝛽𝛽∗ ≤ 7°. For low altitude 
orbits, 𝐻𝐻 ≤ 300𝑘𝑘𝑘𝑘, only in the orbital injection phase, the limits will be extended to 𝛼𝛼 ≤ 14° 
for better insertion accuracy. 

The aerodynamic impact is low because the dynamic pressure and the aerodynamic forces 
have values very close to 0. 

The search interval for optimisation variables shown in Table 4 has been implemented in 
the tool developed. Because of the clear launch direction, no path track angle control is needed 
for the first stage active guidance phase. 

Table 4 – Search interval for optimisation variables 

Lower bound Optimisation variable Upper bound Unit 
0 𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 100 [s] 
0 𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 100  [s] 

0.75 ⋅ 𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 1.25 ⋅ 𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 [kg] 
50 𝛾𝛾𝑑𝑑1 85 [°] 
-1 𝛾𝛾𝑑𝑑2 1 [°] 
- 𝜒𝜒𝑑𝑑1 - [°] 

𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 5 𝜒𝜒𝑑𝑑2 𝜒𝜒𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 + 5 [°] 
0 𝛥𝛥𝑡𝑡1 0.5 [-] 
0 𝛥𝛥𝑡𝑡2 0.5 [-] 
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6. RESULTS 
Following the optimization process for the Falcon 1 launcher nominal trajectories, the 
following values, presented in Table 5, were obtained for the optimization variables used. 

Table 5 – Results, optimisation variables 

Optimisation variable 
Optimal value 

H=200 km H=300 km H=400 km H=500 km H=600 km 
𝑡𝑡𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 [s] 33.5053 40.0359 48.3401  46.8796 47.0148 
𝑡𝑡𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 [s] 8.3439 13.5917 26.0342  59.4350 77.5048 

𝑚𝑚𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 [kg] 455.4528 388.7862 319.7552  214.0494 126.2177 
𝛾𝛾𝑑𝑑1 [°] 67.3517 60.1784 70.2436  76.2830 73.2213 
𝛾𝛾𝑑𝑑2 [°] 0.8333 0.7114 0.4887  0.3764 0.0727 
𝜒𝜒𝑑𝑑1 [°] - - - - - 
𝜒𝜒𝑑𝑑2 [°] -93.5161 -93.5621 -93.3435  -93.2957 -93.1885 
𝛥𝛥𝑡𝑡1  0.3105 0.4530 0.2186  0.1802 0.3264 
𝛥𝛥𝑡𝑡2 0.4937 0.4842 0.2290  0.2499 0.2836 

Table 6 presents the duration of key flight phases, deduced based on the optimisation 
variables from Table 5. 

Table 6 – Results, flight phases 

Flight phase 
Duration [s] 

H=200 km H=300 km H=400 km H=500 km H=600 km 
Vertical flight 33.51 40.04 48.34 46.88 47.01 

1st stage  
active guidance 42.07 58.42 26.38 22 39.82 

1st stage  
gravity turn 93.43 70.55 94.28 100.12 82.17 

Coasting 8.34 13.59 26.03 59.43 77.5 
2nd stage 

gravity turn 211.63 215.61 322.29 313.54 299.45 

Orbital insertion 206.37 202.39 95.71 104.46 118.55 
Total mission time 595.34 600.59 613.03 646.43 664.5 

From the results shown above, we can observe a tendency to increase the duration of the 
vertical flight and the coasting times with altitude. Increasing the duration of these phases is 
necessary to reach a higher altitude. At the same time, the need for longer active guidance 
phases (1st and 2nd stages) can be observed for lower altitudes circular orbits. Typical mission 
duration is of 10-11 minutes. 

To check the orbital insertion accuracy, it is necessary to present the values associated 
with the 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  performance index. According to equation (24), we have a total of 4 terms that 
appear explicitly in the expression of this performance index. The 4 orbital insertion errors are 
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numerically presented in Table 7. Very good insertions can be observed for high altitude orbits, 
the insertion errors being slightly increased for the 200km altitude orbit, still maintaining 
within reasonable limits. 

Table 7 – Results, orbital insertion errors 

Target parameter 
Insertion error 

H=200 km H=300 km H=400 km H=500 km H=600 km 

Semimajor axis 
 𝑎𝑎𝑑𝑑 4·10-1 [km] 2·10-3 [km] -3·10-5 [km] -2·10-4 [km] 4·10-5 [km] 

Inertial velocity 
 𝑉𝑉𝑑𝑑 -7·10-1 [m/s] -2·10-3 [m/s] 2·10-5 [m/s] 1·10-4 [m/s] -4·10-5 [m/s] 

Climb angle 
 𝛾𝛾𝑑𝑑 -6·10-1 [°] -8·10-4 [°] 5·10-5 [°] 1·10-5 [°] -4·10-7 [°] 

Inclination 
 𝑖𝑖𝑑𝑑 -5·10-2 [°] -1·10-2 [°] -1·10-5 [°] -2·10-5 [°] -3·10-6 [°] 

The maximum payload masses that can be placed into the desired orbits obtained with the 
method presented in this paper compared to the reference data are shown in Figure 5. The 
mean absolute error of the data obtained with the proposed model is 5.5%. For 3 out of the 5 
studied cases superior values for the payload mass have been found. 

 
Figure 5 – Results, maximum payload mass, 𝑖𝑖 = 9.1° 

Solution convergence was obtained after at least 100.000 iterations, the fastest being 
obtained for the 400 km altitude orbit (114.000 iterations). For the 400 km orbit, the code run 
time was approximately 5 hours. For this case, the objective function minimum value was 
found to be 𝑓𝑓𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.9388, corresponding to an orbit performance index 𝐼𝐼𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 0.0006 
and a constraints index 𝐼𝐼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1 (all constraints have been respected). The 5 nominal 
trajectories computed for the 5 test cases are now shown together: altitude vs. time is shown 
in Figure 6, eccentricity vs. time is shown in Figure 7, climb angle vs. time is shown in Figure 
8 and inclination vs. time is shown in Figure 9. These figures contain both the nominal 
launcher mission (solid lines) and the first 5 minutes of payload orbit (dotted lines). 
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Figure 6 – Results, altitude vs. time 

 
Figure 7 – Results, eccentricity vs. time 

 
Figure 8 – Results, climb angle vs. time 

 
Figure 9 – Results, inclination vs. time 
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A more detailed view is now provided for the 400km altitude mission. Figure 10 presents 
the nominal trajectory of the launcher from launch (T0) until payload insertion (Ti). Figure 11 
presents the nominal trajectory together with the first 5 minutes of payload orbit. Figure 12 
presents the nominal trajectory together with the first 1.5 hours of payload orbit (almost 1 
period). Finally, Figure 13 presents the first 24 hours after payload separation. 

  
Figure 10 – Mercator projection 2D and Globe 3D views, Falcon 1 T0 – Ti 

  
Figure 11 – Mercator projection 2D and Globe 3D views, Falcon 1 T0 – Ti+5min 

  
Figure 12 – Mercator projection 2D and Globe 3D views, Falcon 1 T0 – Ti+1.5h 
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Figure 13 – Mercator projection 2D and Globe 3D views, Falcon 1 Ti – Ti+24h 

7. CONCLUSIONS 
The paper continues the work previous done in [1], [2], [3] extending the capabilities of a 
multidisciplinary optimisation tool for small launchers design. Mathematical models for 
trajectory assessment and optimisation are presented, results being validated with the aid of 
Falcon 1 reference data. A 3DOF dynamic model with null bank angle has been used, together 
with a feedback control scheme for climb angle and path track angle active guidance. The 
mean absolute error found was 5.5%, a higher payload mass being found in 3 out of the 5 test 
cases analysed [13]. 
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