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Section 3. Equations of Mathematical Physics 

Abstract: Within the constitutive framework of second order plasticity, following [4,5], under the 

assumptions that the plastic distortion is not compatible, and the plastic connection is not compatible 

with the plastic distortion and has metric property, we define the lattice defects in crystalline elasto-

plastic materials. The curl of plastic distortion, which defines the Burgers vector, is a measure of the 

dislocations. The disclination is characterized in terms of the second order tensor, which enters the 

expression of the plastic connection and generates the Frank vector. The free energy density is 

postulated to be dependent on the elastic deformation and the measures of the defects. The non-local, 

diffusion-type evolution equations for plastic distortion and the damage tensor are derived to be 

compatible with the dissipation inequality, while the micro stress momenta, associated with the plastic 

and disclination mechanisms, are derived from the free energy function. We restrict the evolution 

equations for defects to small elastic and plastic distortions, considered to be wedge disclinations and 

edge dislocations. The finite element method is applied to numerically study the evolution of the 

defects, when the initial dislocation heterogeneities are considered. 

Key Words: Burgers vector; dislocation density; disclination density; dipole of disclinations; 

diffusion-like evolution for plastic distortion; variational equality; FEM and update algorithm. 

1. INTRODUCTION 

Unlike [8] where the scalar densities of dislocations in slip systems have been considered, 

and to [6,7] where the tensorial densities of dislocations have been also introduced, the 

present model involves the tensorial densities of dislocations and disclinations. We mention 

the theory of dislocation and disclination fields developed in [11,15] within the small elasto-

plastic distortions as being closed to our model. Experimental observation of the continuous 

defects like dislocations and disclinations have been observed within transmission – electron 
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– microscopy, see for instance [2]. The defect densities are related to the incompatibility of 

the plastic distortion, p
F  which is not a gradient, i.e. the dislocation density, and the 

incompatibility of the plastic connection, which involves the disclination tensor, ,Λ  and has 

a non zero curvature, i.e. the disclination density. The defect densities characterize the 

Burgers and Frank vectors defined within the finite deformation framework being reduced to 

curl p
H  and curl  in the case of small distortions. 

In the present paper we consider the constitutive framework developed in paper [10], 

where both type of defects: dislocations and disclinations are considered and the free energy 

density is formulated like in [5] (following the idea of Gurtin [12,13]). The reduced 

dissipation inequality allows us to introduce the viscoplastic-like equations for micro forces 

and derive the appropriate non-local evolution diffusion-like equations for the plastic 

distortion and for the disclination tensor. In paper [10] we derived the non-local diffusion 

like evolution equations for wedge disclinations and edge dislocations (as a part case of the 

general developed theory therein). In [8,9] non-local diffusion-type equations for scalar 

densities of dislocations were represented. 

In the present paper we considered the model of edge dislocations coupled with wedge 

disclinations in the case of small elasto-plastic distortions. We numerically solved the initial 

and boundary value problem. We considered a tensile problem in a rectangular sheet when 

the initial heterogeneity of the defects was prescribed by the dislocation tensor able to induce 

the dipole of disclinations in the process. We emphasized the dislocation-disclination 

interaction and the diffusion effects on the material behavior. 

In paper [10] the problem of the disclination-dislocation interplay was studied under the 

hypothesis that the initial heterogeneity of the defects was prescribed in term of disclination 

tensor . 

The initial and boundary value problem is formulated as follows: Find the displacement 

vector u , the plastic distortion p
H  and the disclination tensor  , as time dependent 

functions defined on the domain occupied by the body, which satisfy the equilibrium 

equation and evolution equations for p
H  and  . 

The corresponding variational equalities for the incremental equilibrium equation and 

for the evolution equations for the plastic distortion and for the disclination tensor were 

formulated. The discretization of the weak forms for the evolution equations are obtained by 

using the Crank-Nicolson method. 

Notations: For a second-order tensor LinA  we denote:   ij

kijk

A

X


 


A  the gradient 

components of the field A ; curlA  is defined by (curl ) pi A ϵ
pk

ijk j

A

X




, where ϵ ijk  denote 

Ricci permutation tensor components;    ,  
S a

A A  are the symmetric and skew-symmetric 

parts of A . 

2. CONSTITUTIVE FRAMEWORK 

The tensorial measure of the defects will be the disclination tensor   and the dislocation 

tensor curl p
H  , both of them second order tensor fields dependent on material particle 

and time. The disclination tensor ,Λ  generates the non-zero curvature of the so-called plastic 

connection and measures the discrepancy between the plastic connection and Bilby type 

https://www.google.ro/search?rlz=1C1AVNG_enRO650RO650&espv=2&biw=1058&bih=546&q=hypothesis&spell=1&sa=X&ved=0CBgQvwUoAGoVChMIxsmYidu3yAIVTJEsCh27wAOK
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plastic connection,
(p)

,A  [3] which is compatible with the plastic distortion, 

namely
(p)

1( )p p F FA . The models involve the multiplicative decomposition of the 

deformation gradient F  in the elastic and plastic distortions, .e pF F F  The free energy 

imbalance principle describes the dissipative nature of the defects such as dislocations and 

disclinations. In the model considered here we assume that the free energy density   in the 

reference configuration is given by 

2 3 4

1 1 1 1
ψ ( )·( ) β · β · β · ,

2 2 2 2

p p p p       C C C C S S ΛΛ Λ ΛE  (1) 

where E  is the elastic stiffness tensor. The following notations were introduced 

1 1

( ) ,  ( ) ,   ( ) ( ) ,   vectors,

with  ( ) curl ( ) (tr ) ( )

 

.( )

T p p T p p p

p p p p T 

    

  

C F F C F F S v u u v u v

F F C Λ I Λ

N

N
 (2) 

Here the second order torsion tensor is denoted by, pN , and is associated with the Cartan 

torsion p
S , a third order tensor. 

We introduce a tensorial measure of dislocations as:  
1

curlp p


F F  . 

Within the finite deformation elasto-plastic framework the non-local evolution equations 

for plastic distortion and disclination tensor were derived to be compatible with the 

dissipation inequality, corresponding to the adopted expressions of the free energy density. 

Here we restrict ourselves to the case of small elastic and plastic distortions. The 

linearized expressions for the finite deformation fields are given by 

(p)

, 1, , { } ,

, 1, , { } ,

2( ), 2 ,

S

p p p p p S

p p p p

    

     

    

F I H H H u ε H

F I H H H ε H

C C ε ε C I ε

∣ ∣

∣ ∣ A  (3) 

where u  is the displacement vector. The Cartan torsion ,p
S  and the second order, ,pN are 

given by 

( ),  

curl (tr ) ( )( ).

p p

p p T

Skw Skw   

  

S H Λ I

H Λ I ΛN
 (4) 

The influence of defects is described by the presence of the dislocation density, 

curl pα H , and the disclination tensor, ,Λ with the mention that curl p
H  and Λ  are 

independent terms in (4) and have the same order of magnitude. 

The Cauchy stress tensor is given by the formulae    
1

2
ˆ

S p T


 T F C C FE , and in 

the case of small distortions it takes the following form:  
1

ˆ

p


 T  E . ̂  represents the 

mass density in the current configuration. 
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3. WEDGE DISCLINATIONS AND EDGE DISLOCATIONS 

We recall that a wedge disclination is developed within the body if 
3 3(curl ) || .Λ e e  We 

consider that 1 2

3 3 ( , ), 1,2 s s x x s    are non-vanishing only, and 

32 31
3 31 2

curl : .
x x

 
  

 

 
 
 

Λ e e  The edge dislocation, which generates a Burgers vector in the 

plane, is characterized by the plastic components p

ijH  with , 1,2,i j   being function of 

1 2( , ),x x  and 

12 11 22 21
1 3 2 31 2 1 2

curl .
p p p p

p H H H H

x x x x

    
      

   

 
 
  

H e e e e  (5) 

The evolution equations for the plastic distortion and the disclination tensor were derived in 

[10] and take the following form: 

Proposition The fields p
H  and Λ  are described by the following evolution equations 

1 2 2

2 2

.
3

2 4 3 2 2 4 3

3

4 3

curl( curl ) ( )

           4 2 ( ) ( )

( 2 ) 2 ( )

(tr )
             ,   , , {1,2}

( ) 

p p T

T T p T p

p

qsp T s
qk k

p
q

qk k

curl

curl curl

H
curl

x x

s q k
x x

  

 

     



    

  


      

 

 
  

 





H H Λ T

Λ Λ Λ H H Λ

Λ Λ Λ H e e

H
e e

 (6) 

PROBLEM. Solve the quasi-static, initial and boundary value problems associated to the 

incremental equilibrium equation ( ) 0( )pdiv  ε εE  and coupled with the flow rules (6). 

The variational problem, which defines the velocity field at time, t , is numerically 

solved by finite element method, and the current state in the sheet is defined via an update 

algorithm connected with the non-local evolution equations (6). 

 In our example it is assumed that the initial existing defects inside the microstructure are 

reduced to an area of dislocations, which is characterized by the dislocation tensor 0 ( )x . In 

the formulated boundary problem defining the initial conditions for ( )p
H x  is essential. We 

follow the procedure proposed by [1] and [15]: 

0

0 0 0curl , div 0, ,    , .p p p      H H x H 0 x  (7) 

This means that the following problems has to be satisfied by ,p

ijH , {1,2}i j , respectively 

0 0

11 13,2 11 12 13,1 12

0 0

21 23,2 21 22 23,1 22

  ,    0,  ;     ,   0,   ;

 ,    0,  ;    ,    0,   .

p p p p

p p p p

H H H

HH

H

H H









          

      

  

      





x x x x

x x x x
 (8) 

In order to build a rotation with opposites signs in Burgers vector at the initial time (see 

Fig. 8) we consider  0curl T g= x . 

The function  g x  is defined by the formulae 
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 

2 2

1 0 2 0
max 1 2 12 2

2 2

1 0 2 0
1 2 max 1 2 22 2

1 2 1 2

inf inf

( ) ( )
exp[ ( )], ( , )

( ) ( )
( , ) exp[ ( )], ( , )

0,  ( , ) \ ,

sup sup

x y

x y

x x x y
g k x x

a a

x x x y
g x x g k x x

a a

x x

  
  


  

    

   



 (9) 

where 
1 2,   are two open disjoints sets: 

  2 2 2 2

1 1 0 21 2 0( ) ( ), / / / 1s u

x

up s p

yx x a ax xx y     ,

  i 2 2 2 2

1 0 2 0

nf inf

2 1 2 ( ), / / / 1( ) yxx x a ax xx y     . 

To find the initial condition for the dislocation tensor 0  we solve the following problem: 

  0

0 0div 0,   curl , ,     , T T g     = x 0x x   . (10) 

Equivalently the following problems have to be solved for unknowns 0 0

13 23,  : 

0 0 0

13 ,2 13 23 ,1

0

23  ,    0,  ;     ,    0,  .g g                 x x x x  (11) 

4. THE WEAK FORMULATION IN THE CASE OF SMALL DISTORTIONS 

The weak form of the evolution equation written above can be characterized for any pairs 

( , )G Ψ  

1 2 2· d ( curl )·(curl )d (curl )p p p  
  

    H G x H G x H (ϵ )· ds n G  

 2 2

2

                       + ( ) 4 · d

                    2 ( ) ( ) · d( )

T T

T p T p

curl

curl curl

 







  

 





Λ T Λ Λ G x

Λ H H Λ G x
 

(12) 

 

2 4 4

3 2 2

33
4 4 3

· d · d ( ) · d

                    ( 2 ) 2 ( ) · d

(tr )
                   · d

p T

p p
qs qs

qk k k k

x s

curl

H

x x x x

  

  

 

  





      

   

   
        

  





ΛΨ Λ Ψ x Λ nΨ

Λ H Ψ x

H
e e Ψ x

 
(13) 

 In order to obtain a boundary value problem we attach the boundary condition for the 

incremental equilibrium equation, for the evolution equation for the plastic distortion and for 

the disclination tensor. Let   be the domain occupied by the body B  at the moment t  and 

    be the boundary of .  We assume the following boundary conditions for the 

incremental equilibrium equation: 

*

1 2on , on ,   Tn t v v  (14) 

where 1 2 1 2  and  ,       and for the evolution equation for the plastic 

distortion: 
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α (ϵ ) (curl )pn H (ϵ ) onp n h  (15) 

For the evolution equation for the disclination tensor we considered the following boundary 

condition: 

   on . n   (16) 

In the above conditions, n  is the outward normal to the boundary of the domain   and ϵ 

represents Ricci permutation tensor. The corresponding variational equality for the 

incremental equilibrium equation is given by: 

 
1

T 01
( ( ) ) { } · d · d 0, .

2

Sp S

ads
 

  
          

  
 v v H w x t w w VE  (17) 

The unknown  3 *

2: onad    v v R v vV ∣  and  0 3

2: on .ad    w R w 0V ∣  

4.1 The discretization of the weak form for the evolution equations 

Let us consider 1( )n n Nt    a partition of the time interval  0,T  and 1d n nt t t   be the 

increment of time. Let n  be the domain occupied by the body on the  1,n nt t   interval. For 

the discretization we apply the Crank-Nicolson method (see for instance [16]). The time 

derivative of the plastic distortion and of the disclination tensor are both approximated by 

formulas 1

d

p p
p n n

t

 


H H
H  and 1

d

n n

t

 

Λ Λ

Λ . We approximate the plastic distortion and 

the disclination tensor in linear terms, by 1 1,   
2 2

p p
p n n n n  
 

H H Λ Λ
H Λ  and in nonlinear 

terms, by 1 1

3 1 3 1
,   

2 2 2 2

p p p p

n n n n n n      H H H H Λ Λ Λ Λ . 

With these considerations (in the 0, 0p  h   hypotheses) the discretization of the 

weak forms for the plastic distortion  and for the disclination tensor becomes: 

1 1
1 2

1 1
2 2

1 1
2

· d curl ·(curl )d
d 2

curl 4 · d
2 2

2 curl curl · d
2 2

p p p p

n n n n

T T
Tn n n n

n n

T
p p p p

T n n n n
n n

t
 

 



 

 

 



 



  
   

 

    
     

   

       
       

       

 





H H H H
G x G x

Λ Λ Λ Λ
T Λ G x

H H H H
Λ Λ G x

 (18) 

1 1
2 4

1 1
3 2 2

11
3 33 34 4

3

· d · d
2

( 2 ) 2 · d
2 2

( ) ( )( ) (tr )
· d

2 2

n n

n

n

n n n n

T
p p

n n n n

p n nn n p
qs n q qs s n

qk k k k

dt

curl

H

x x x x

 

  

 

 

 

 







  
     

 

     
       

     

         
        

 





Λ Λ Λ Λ
Ψ x Ψ x

Λ Λ H H
Ψ x

H
e e Ψ x

 (19) 
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4.2 The discretization of the weak form for the incremental  equilibrium equation type 

In the same way we obtain the discretization for the variational equality (7): 

 
1

1 1T1
( ( ) ) · d  

d
· d 0

2 dn n

S
p p

Sn n n
n n

n A
t t









   
         



     
 

H H
v v w w

t t
xE  (20) 

The algorithm for solving the system of the equations (20), (18) and (19): The elastic 

problem is resolved until the averaged value of the equivalent stress state becomes equal or 

larger than a critical value, i.e.  d / 2 / 3 y


    xT T A . Assume that at time 
0t  the stress 

reached the yield condition. We mention that  A  represents the area of the domain  . 

At this moment we solve problems (8) together with (11) by employing the finite 

element method (FEM). The fields  0 ,ij

pH t  represent the initial conditions for the evolution 

equations (18) and (19). We consider no disclinations at the 
0t  moment 

(    31 0 32 0 0t t   ). For 
0nt t  

- We suppose that at the moment 
nt  one knows the current state of the body, namely: 

, ,p

n n nH v . Applying the Crank-Nicolson method (see [19]) we find the solutions for 

,p
H  at the moment of time 

1,nt 
 namely 1 1,p

n n H  ; 

- We return at the discretisation of the weak form for equilibrium equation for the rate of 

displacement v and we find the solution at the moment of time 1,nt   namely 1.nv  

- One can update the mesh and all the measures calculated on the previous mesh, 

knowing the velocity field 
1nv . The procedure continues. 

5. NUMERICAL SIMULATION 

In the numerical simulations, a square domain,  
2

0 00, ,  = 5nmL L , occupied by an 

aluminum crystal has been considered. In the tensile test, the edge 1 0x   (left side) is fixed. 

The rectangular sheet is subject to a displacement vector applied with a constant velocity on 

the right hand side of the plate. We suppose that the left-hand edge is not deformed in the 1x  

− direction, but it can be freely deformed in the direction of 2x  - axis, while the other sides 

of the plate are free of stress. The edge 1 0x L  (right side) is moved with a constant speed 
2

1 5.0 10 nm / μsv    applied along the axis 1Ox  and it can be freely deformed in the 

direction of 2x .  The time integration step (time increment) 4d 10 μst   generates an 

incremental elongation 6

11d 10  . 

 The numerical algorithms were performed using the Finite Element Method, with the 

FreeFem++ programming environment [14]. The programme ParaView 4.0.1 has been used 

to plot the numerical results. 

The procedures for the  mesh refinement have been used in the zones with a maximum 

value intensity, allowing  for the optimization of the number of FEs considered herein, at the 

same time increasing the computation speed. 
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 The values of the material parameters for aluminum [12] are as follows: 

   3μ 27·10 MPa , 0.3, σ 70 MPa ,  y  
1111 2222

2μ(1- )
= = ,  

1-2




E E 1122 2211

2μ
= = ,

1-2




E E

1221 1212 2112 2121= = = =μ.E E E E  The parameters appearing in the evolution equations are 

numerically evaluated in [10]: 
4

1ξ 5.7·10 [μsMpa] , 3 2

2ξ 1.7·10 nm MPa ,s     

3 2

2β 5.7·10 [nm MPa] , 3

3 2 4β β ,   β 75 MPa .nm      The geometrical parameters which 

characterize the initial values of the dislocations area are: 0.1xa  , 0.08ya  , 

inf inf

0 0 0 0/ 2,   / 2 0.15,   x L y L   sup sup

0 0 0 0/ 2,   / 2 0.15x L y L   , 4.6k  , 2

max 11.7 rad nmg    
. 

5.1 Comments of the numerical simulation 

Fig. 1(a) represents the initial inhomogeneities described by the scalar dislocation density 
2 2

13 23    . The initial heterogeneities in the distribution of the tensorial dislocation 

density can be characterized by the Burgers vectors identified by 0 0 0

13 1 23 2 b = e e  with 

   0 0

13 0 23 013 23
curl , curl ,p p  H H  and they are plotted in Fig. 8. Such orientation of 

Burgers vectors induces a dipole of disclinations in the deformation process which is defined 

by the disclination density  
333 3

curl  Λ (see Fig. 1(b)). The disclinations dipole area is 

very small in the immediately initial plastic state of the deformation. The dipole area is 

extending during the deformation process (see Fig. 2(b)). The initial plastic distortion 

component distributed on the sheet is represented in Fig. 1(c). 
 

 

 
 

 (a) (b) (c) 

Fig.1 (a) The distribution of the dislocations density on the sheet (measured in 1
nm

 ) at the 

initial plastic deformation that corresponds to
11 0.1%  .  (b) The occurrence of disclinations 

dipole in the immediately initial plastic state of the deformation. (c) The distribution of the 

plastic tensor component 11

pH  on the sheet at the initial plastic state. 

One can observe two adjacent areas of opposing signs in the distribution of plastic 

distortion component 11

pH  (see Fig. 1(c)) and in the distribution of the stress tensor 

component 11T  (see Fig. 3(c)). At the border line of the two adjacent areas, the shear 

component of the plastic distortion and of the Cauchy stress tensor takes extreme values (see 

Figs. 5(a,b)). 

O
 

1x  

2x
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(a) (b) (c) 
 

Fig. 2 The distribution on the sheet  of (a) the dislocation density (in 1
nm

 ), 

(b) the disclination density (in 2
nm

 ) and (c) the plastic component 
11

pH , at the total deformation of 
11

1%   

The distributions on the sheet of the disclination tensor components 
31 , 

32  in the 

immediately initial plastic state of the deformation and at the total deformation of 1% are 

represented in Figs. 3(a,b) and Figs. 4(a,b). 

Due to the diffusion effect the disclination components are extending on the entire sheet. 

The values increase during the deformation process until the total deformation of 0.3%, after 

which their values decrease until the total deformation of 2%. One can see this effect also in 

the diagram plotted in Fig. 7(b). 

 
 

(a) (b) (c) 
 

Fig. 3 The distribution on the sheet of the disclination tensor components (a) 
31 ,  (b) 

32  in the immediately 

initial plastic state of the deformation.  (c) The distribution on the sheet the tensor stress component 
11T  at the 

initial state of plastic deformation. 

 
 

(a)   (b)        (c) 
 

Fig. 4 The distribution on the sheet of  (a) the disclination tensor components 31 , (b) 32  and (c) the tensor 

stress component 11T , at the total deformation of 11 1%  . 

With increasing strain the axial stress and axial plastic distortion components are 

strongly influenced. The significant variations for the axial stress and axial plastic distortion 

have been numerically emphasized: the tensile behavior becomes dominant (no significant 

changes in shear component are observed). 
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(a) (b)      (c) 

Fig. 5 The distribution on the sheet at the initial plastic state that corresponds to
11 0.1%  , for: 

  (a)  the shear stress component 
12T ; (b)  the shear plastic component 

12

pH . 

(c) The distribution on the sheet of the plastic distortion component 
11

pH  at the total strain of 
11 2%  . 

 
 

(a) (b) (c) 

Fig. 6 The distribution on the sheet at the total strain to
11 1%  , for:  

(a)  the shear stress component 
12T ; (b) the  shear plastic component 

12

pH .  

(c) The distribution of the stress tensor component 
11T  at the total strain of 

11 2%  . 

In the deformation process 11T  tends to become homogeneous on the entire plate (the 

difference between the extreme values is decreasing) (see Fig. 4(c) and Fig. 6(c)). The 11

pH  

component has a tendency to change its aspect Fig. 2(c). In the central zone two opposing 

sign areas appear. This effect is due to the influence of the stress (see Fig. 3(c)). At the total 

deformation of 2%, the aspect of the plastic distortion component 11

pH  in the sheet is entirely 

similar to the stress tensor component 11T  (compare Fig. 4(c) to Fig. 5(c)). The plastic 

deformation tends to homogenize until the total deformation of  about 1.8%, after which 

       
 (a) (b) 

 

Fig. 7. (a) Time variation of the average dislocation density versus total strain. 

 (b) Time variation of the average disclination density versus total strain. 
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Fig. 8 The distribution of the Burgers vectors in the central 

zone of the sheet at the initial plastic deformation state. 

11

pH  tends to become more inhomogeneous (see Fig. 5(c)). One can observe this effect 

in Fig. 7(a). 

6. CONCLUSIONS 

We used an elasto-plastic constitutive model, in order to describe the behaviour of crystalline 

materials, with microstructural defects such as dislocations and disclinations. 

In the case of small distortions, the equations describing the evolution for the plastic 

distortion and the disclination tensor were considered to be non-local diffusion-like evolution 

equations. These equations can describe the interaction between dislocations and 

disclinations. 

The initial and boundary value problem concerning the tensile test of a rectangular sheet 

was formulated. This problem was solved numerically, using the FEM method. For the 

initial state we assumed the existence of defects inside the microstructure, modelled by the 

dislocation tensor. We observed the occurrence of a dipole of disclinations starting from a 

punctual central zone and the diffusion in time of the defects.  

From this numerical experiment we observed that the plastic deformation covered the 

entire plate, comparing to the case described in paper [10]. 
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