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Abstract: The paper shows the importance of the dispersion relation in characterizing the capillary 
waves seen on liquid jets. Several theoretical models are given to better understand the stability of 
cylindrical interfaces when various parameters are considered, such as confinement, bulk elasticity, or 
the viscosity ratio between the two liquid phases. Theoretical predictions are compared with 
experimental data in terms of the fastest-growing mode for several liquid-in-air systems. Capillary-
wave decay factors are also investigated, for stationary wave trains created at the impact of a liquid jet 
on a horizontal liquid bath, via the dispersion relation. 
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1. INTRODUCTION 
When a liquid is injected through a capillary tube at a constant flow rate, which ensures the 
formation of a liquid jet, the free surface naturally develops waves. 

This is an example of hydrodynamic instability which is known as Rayleigh-Plateau 
instability triggered by capillary forces acting at the free surface of the jet. 

The ultimate effect of the perturbations, which dominate free surfaces, is the formation of 
droplets. Perturbations grow until their amplitude reaches the value of the unperturbed thread's 
radius, at which point a droplet is created. 

In this way, the system naturally evolves towards a state which lowers the surface energy. 
The process is periodic, making jets a reliable and predictable “machine” at creating drops. 

The growth rate will affect the length of the jet, whilst the dominant wavelength will give 
the diameter of the droplet. 

Any perturbation can grow, decay, or persist with the same magnitude, describing 
unstable, stable, or neutrally stable regimes. 

Figure 1 shows a series of unstable interfaces where perturbations grow in a wave-like 
manner. This type of instability is known as Rayleigh-Plateau instability. 

The perturbation grows in time and, due to its oscillatory nature, it induces a local decrease 
in diameter which increases the capillary pressure. When the perturbation amplitude reaches 
the unperturbed thread's radius, breakup occurs. 
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Fig. 1 Series of unstable interfaces as Rayleigh-Plateau instability develops: a) water jet in air; b) coalescent 

liquid volumes; c)  immersed viscoelastic jets ; d), e), f) immersed water jets in sunflower-seed oil; g) burst of a 
water ''double'', a thin water interface surrounded on each side by a viscous oil (the name is extrapolated from 

soap bubble, which is a thin liquid interface having air on both sides) 

The breakup length represents the distance from the capillary to the point of breakup. One can 
show that the breakup length 𝐿𝐿𝑏𝑏 can be estimated by knowing the growth rate 𝜔𝜔 of the 
dominant mode (𝐿𝐿𝑏𝑏 ∝ 𝑉𝑉/𝜔𝜔, where 𝑉𝑉 is the average flow velocity) and that the diameter of the 
main drop 𝐷𝐷𝑑𝑑 is directly related to the wavenumber 𝑘𝑘 of the perturbation (𝐷𝐷𝑑𝑑3 ∝ 𝑅𝑅02/𝑘𝑘, where 
𝑅𝑅0 is the unperturbed jet radius). Due to the nonlinearity of the final stages of breakup, often 
one also observes satellite droplets, much smaller in diameter than the main drop. 

Dispersion relations (growth rate 𝜔𝜔 as a function of the wavenumber𝑘𝑘) describe the 
instability of liquid threads under the action of the surface tension. A series of examples of 
unstable interfaces is given in figure 1. The first who derived a dispersion relation for a 
cylindrical liquid jet was Rayleigh [1]. For the case of an infinitely long cylindrical thread in 
a quiescent external gas, the dispersion relation is given by  

𝜔𝜔2 =
𝜎𝜎
𝜌𝜌𝑅𝑅03

𝑘𝑘𝑅𝑅0(1− 𝑘𝑘2𝑅𝑅02) 𝐼𝐼1(𝑘𝑘𝑅𝑅0)/𝐼𝐼0(𝑘𝑘𝑅𝑅0),    (1) 

where 𝐼𝐼1,2 are the modified Bessel functions of the first kind, 𝑘𝑘 is the wavenumber, 𝑅𝑅0 is the 
unperturbed jet’s radius, 𝜌𝜌 is the fluids density, and 𝜎𝜎 the superficial tension. 

Rayleigh extends the stability analysis for viscosity dominated flows and gives an 
approximation of the dispersion relation as [2] 

𝜔𝜔 =
𝜎𝜎

6𝜂𝜂𝑅𝑅0
(1 − 𝑘𝑘2𝑅𝑅02), (2) 

where 𝜂𝜂 is the viscosity of the liquid. 
The predictions of equations (1) and (2) can be combined in a single dispersion relation 

[3] given by 
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The above equation yields an exact expression for the critical wavenumber, given by 

1
𝑘𝑘𝑅𝑅0

= �2 + 3√2𝑂𝑂ℎ (4) 

where 𝑂𝑂ℎ is the Ohnesorge number �𝑂𝑂ℎ = 𝜂𝜂/�𝜌𝜌𝜌𝜌𝑅𝑅0�. 
In the case of a hollow jet one finds [3] 

𝜔𝜔2 =
𝜎𝜎
𝜌𝜌𝑅𝑅03

𝑘𝑘𝑅𝑅0(1 − 𝑘𝑘2𝑅𝑅02) 𝐾𝐾1(𝑘𝑘𝑅𝑅0)/ 𝐾𝐾0(𝑘𝑘𝑅𝑅0),    (5) 

Usually, the effect of gravity is neglected since the phenomena is dominated by capillarity 
(i.e. Bond numbers lower than unity). 

At large length scales, the gravitational induced collapse of a cylindrical fluid structure is 
given by [4]  

𝜔𝜔2 = 4𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝑅𝑅0  
𝐼𝐼1(𝑘𝑘𝑅𝑅0)
𝐼𝐼0(𝑘𝑘𝑅𝑅0) �

1
2
− 𝐾𝐾0(𝑘𝑘𝑅𝑅0)𝐼𝐼0(𝑘𝑘𝑅𝑅0)�,    (6) 

where 𝐺𝐺 is the gravitational constant. 
For a viscous thread surrounded by another viscous immiscible liquid, Tomotika [5] 

showed, in the limit of Stokes flow, that 

𝜔𝜔 =
𝜎𝜎

2𝜂𝜂𝑒𝑒𝑅𝑅0
(𝑘𝑘2𝑅𝑅02 − 1)𝑓𝑓(𝑘𝑘𝑅𝑅0,𝛽𝛽),    (7) 

a dispersion relation which is also dependent on the viscosity ratio 𝛽𝛽 = 𝜂𝜂𝑖𝑖/𝜂𝜂𝑒𝑒 , where 𝜂𝜂𝑖𝑖 is the 
viscosity of the inner phase and 𝜂𝜂𝑒𝑒 the viscosity of the external one. Further details about 
dispersion relations and their derivation can be found in [6]. 

Positive values for the growth rate imply instability, whereas negative values imply stable 
fluid threads (see figure 2-b). Figure 2-c shows the dispersion relations for an inviscid, a highly 
viscous, and a hollow jet. 

2. CHARACTERISTIC PARAMETERS 
The instability can manifest spatially, where perturbations can move in the opposite direction 
of the flow and cause a dripping regime near the capillary tip. 

Figure 3 depicts the dripping to jetting transition and the atomization of a liquid water jet 
submerged in viscous oil. 

As the flow rate is increased, convective forces will overcome the surface tension and a 
jetting regime will settle. 

In this regime, the breakup length increases linearly with the average flow velocity. By 
increasing the flow rate even further, the viscous stresses become important, the breakup 
length decreases, and the atomization of the jet occurs. 
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Fig. 2 a) Growth rate 𝜔𝜔 as a function of the dimensionless wavenumber 𝑘𝑘𝑅𝑅𝑜𝑜. In some cases, the occurrence of 

satellite droplets can be avoided if one drives the jet at a wavenumber above the critical threshold. Only positive 
values imply instability (b), the dominant wave being set by the dispersion curve's maximum. c) Dispersion 

curves for: an inviscid jet given by eqn. (1), a viscous jet when 𝑂𝑂ℎ = 0.5 given by eqn. (3), a hollow jet given by 
eqn. (5) and a highly viscous jet,  𝑂𝑂ℎ = 5,  given by eqn. (2). Here, 𝑡𝑡𝑅𝑅 = (𝜌𝜌𝑅𝑅03/  𝜎𝜎)0.5 is the Rayleigh time scale. 

 
Fig. 3 Different types of unstable jets as the Weber number increases; from dripping, to jetting, to buckling and 

atomization 

The nondimensional parameter which describes the limit between dripping and jetting is 
the Weber number,  
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𝑊𝑊𝑊𝑊 =
𝜌𝜌𝑉𝑉2𝑅𝑅0
𝜎𝜎

,    (8) 

the ratio between the convective forces and the surface tension forces, or the ratio between the 
average flow velocity and the capillary velocity 𝑉𝑉𝑐𝑐 = [𝜎𝜎/ (𝜌𝜌𝑅𝑅0)]0.5, 𝑊𝑊𝑊𝑊 =  (𝑉𝑉/𝑉𝑉𝑐𝑐)2. 

If 𝑊𝑊𝑊𝑊 ≫ 1 one usually observes a jet-like structure of the ejected liquid. The ratio of 
viscous stresses to capillary pressure yields the capillary number,  

𝐶𝐶𝐶𝐶 =
𝜂𝜂𝜂𝜂
𝜎𝜎

,    (9) 

an important parameter when viscous forces dominate inertia. 
One can combine 𝑊𝑊𝑊𝑊 and 𝐶𝐶𝐶𝐶 numbers in a single, kinematic-free, parameter which is 

known as the Ohnesorge number, 

𝑂𝑂ℎ =
𝐶𝐶𝐶𝐶
√𝑊𝑊𝑊𝑊

=
𝜂𝜂

�𝜌𝜌𝜌𝜌𝑅𝑅0
 .    (10) 

This parameter can also be defined as the ratio between the inertio-capillary time (i.e., 
Rayleigh time) and the viscous time scale, namely 𝑂𝑂ℎ = 𝑡𝑡𝑣𝑣/𝑡𝑡𝑅𝑅, where 𝑡𝑡𝑅𝑅 = (𝜌𝜌𝑅𝑅03/𝜎𝜎)0.5 and 
𝑡𝑡𝑣𝑣 = 𝜂𝜂𝑅𝑅0/𝜎𝜎. 

Capillary forces dominate the dynamics of fluid systems when their proper length scale is 
below the capillary length, 

𝑙𝑙𝑐𝑐 = �
𝜎𝜎
Δ𝜌𝜌𝜌𝜌

 ,     (11) 

where 𝜎𝜎 is surface/interfacial tension, Δ𝜌𝜌 the density difference, and 𝑔𝑔 the acceleration due to 
gravity. 

Figure 4 shows the capillary length of commonly used liquids as a function of their surface 
tension. The graph shows an “upper bound” of 2.7 mm set by water, therefore the fluid systems 
below this threshold value will be dominated by the surface forces. The range/ domain of 
surface forces can be extended by adding an immiscible external liquid. Since the threshold 
value (i.e. the capillary length) is inversely proportional with the density difference, the 
addition of the external liquid contributes to the above-mentioned expansion. 

Newtonian free surface flows of one liquid can be described in a dimensionless 2D map 
having the Weber and the capillary numbers as main parameters [9]. If one considers a second 
immiscible liquid phase, the number of parameters doubles. As an example, one could take 
the breakup length of a liquid jet surrounded by another immiscible liquid. One can show the 
following functional relation exists for the breakup length: 

𝐿𝐿𝑏𝑏 = 𝑓𝑓(𝜌𝜌𝑖𝑖,𝜌𝜌𝑒𝑒 , 𝜂𝜂𝑖𝑖 , 𝜂𝜂𝑒𝑒 ,𝜎𝜎,𝑉𝑉,𝑅𝑅0) , (12) 

where, the lower indices i or e denote the dispersed (injected) or the continuous (external) 
phase, respectively. 
All quantities can be reduced to three fundamental units (mass, length, and time), and by virtue 
of dimensional analysis the functional relation can be rewritten as a combination of five 
dimensionless parameters, namely: 

𝐿𝐿𝑏𝑏
𝑅𝑅0

= 𝑓𝑓(𝑊𝑊𝑒𝑒𝑖𝑖,𝐶𝐶𝑎𝑎𝑖𝑖, 𝜁𝜁,𝛽𝛽).   (13) 
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Fig. 4 Capillary length, given by eqn. (11), as a function of surface tension for a series of common liquids. 

Material and surface properties partially taken from [7,8] 

It is observed that in the presence of an exterior liquid phase the number of relevant 
dimensionless parameters doubles. The abstract 4D map will now include the density ratio, 
𝜁𝜁 = 𝜌𝜌𝑖𝑖/𝜌𝜌𝑒𝑒, and the viscosity ratio, 𝛽𝛽 = 𝜂𝜂𝑖𝑖/𝜂𝜂𝑒𝑒 . Mapping the entire parameter 4D space is a 
difficult task due to the wide range of the viscosity contrast seen in Newtonian systems. If non-
Newtonian fluids are also taken into account the problem becomes almost impossible to tackle 
in a single general framework. 

3. EXTENDED STUDIES OF THE RAYLEIGH-PLATEAU INSTABILITY 
Besides the viscosity of the injected fluid, the capillary instability of a cylindrical liquid thread 
can be affected by several other factors, such as the presence of surfactant at the separating 
interface, crossflow, viscoelasticity, confinement, a viscous or viscoelastic immiscible outer 
liquid, curvature elasticity, nozzle geometry, slip at the interface or the presence of an electrical 
field [10]. 
The dispersion relation derived by Tomotika for the case of a cylindrical liquid thread 
surrounded by another immiscible liquid is given by the following equation: 

𝜔𝜔 =
𝜎𝜎

2𝜂𝜂𝑒𝑒𝑅𝑅0
(𝑘𝑘2𝑅𝑅02 − 1)𝑓𝑓(𝑘𝑘𝑅𝑅0,𝛽𝛽),    (14) 

where 𝛽𝛽 is the viscosity ratio between the inner and the outer liquid phase. 
The exact for of 𝑓𝑓(𝑘𝑘𝑅𝑅0,𝛽𝛽) can be found in Tomotika’s original paper [5]. In comparison 

with the classical case of a liquid jet in air, it shows the stabilizing effect of an external liquid 
on Rayleigh-Plateau instability. 

Also, the increase of the viscosity ratio will always bring with it lower values for the 
growth rate of instability. 

The most unstable wavenumber, however, increases with the viscosity ratio when 𝛽𝛽 <
0.3 and decreases otherwise. This implies that longer wavelengths dominate the thread when 
𝛽𝛽 > 0.3.  
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This threshold can be changed if one considers a solid cylindrical wall that confines the 
external liquid. 

The dispersion relation will now be dependent also on the confinement ratio 𝛼𝛼 = 𝑅𝑅𝑐𝑐/𝑅𝑅0, 
where 𝑅𝑅𝑐𝑐 is the radius of the cylindrical wall,  

𝜔𝜔 =
𝜎𝜎

2𝜂𝜂𝑒𝑒𝑅𝑅0
(𝑘𝑘2𝑅𝑅02 − 1)𝑓𝑓(𝛼𝛼,𝛽𝛽, 𝑘𝑘𝑅𝑅0).    (15) 

The dispersion relation shows the stabilizing effect of confinement for any viscosity ratio 
[11]. Also, a change is observed in the value of the critical viscosity ratio for which longer 
wavelengths dominate the liquid thread. 

For smaller values of the confinement ratio (the wall is closer to the thread) the critical 
viscosity ratio increases (see figure 5-a). 

Viscoelasticity is known for the destabilizing effect it produces. If one considers a 
viscoelastic thread surrounded by another immiscible Newtonian liquid, the dispersion relation 
will become dependent on the elasto-capillary number, 𝐸𝐸𝐸𝐸 = 𝜇𝜇𝑖𝑖𝜎𝜎/𝜂𝜂𝑖𝑖,0𝑅𝑅0, where 𝜇𝜇𝑖𝑖 is the 
relaxation time of the material, 

𝜔𝜔 =
𝜎𝜎

2𝜂𝜂𝑒𝑒𝑅𝑅0
(𝑘𝑘2𝑅𝑅02 − 1)𝑓𝑓(𝛽𝛽,𝑘𝑘𝑅𝑅0,𝐸𝐸𝐸𝐸).    (16) 

As depicted by figure 5-b, the presence of viscoelasticity in the injected liquid increases 
the growth rate, thus leading to less stable cylindrical columns [12, 13]. 

The dispersion relation can also be of help when studying impinging liquid jets. The 
capillary waves are seen at the base of the quasi-cylindrical column decay in the opposite 
direction of the flow, their wavelength and decay factor being given the dispersion relation 
[14]. Figure 6 shows capillary waves at the base of a liquid jet and the measured amplitude at 
each wave crest. 

The suppression of the capillary-wave field has been shown to occur when increasing the 
viscosity of the injected liquid by a small amount [15]. The destabilizing effect is shown by 
considering viscoelasticity via the dispersion relation: 

[𝑂𝑂ℎ(𝐾𝐾𝑅𝑅0 + 𝑚𝑚)]2 + 𝐾𝐾𝑅𝑅0�𝑓𝑓2 − 4𝑂𝑂ℎ2�𝑚𝑚 𝐾𝐾𝑅𝑅0� = 0, (17) 

where 𝑚𝑚 is a function of Reynolds and Deborah numbers and 𝐾𝐾 is the complex wavenumber 
having the real part as the wavenumber and the imaginary part as the decay factor [15]. 

Other dispersion relations can also be found in [16-20]. 

4. CAPILLARY RAYLEIGH MODES ON FREE LIQUID JET 
When a liquid is being pumped through a capillary tube, in air, at a constant flow rate, when 
𝑊𝑊𝑊𝑊 ≫ 1 a liquid jet will form and break into droplets at a certain distance downstream. 

The free surface will naturally develop a perturbation with a wavelength given by the 
fastest-growing mode. 

To show this, one seeks to compare the predictions in terms of the wavelength of the 
fastest-growing mode with the experimental data. The wavelength can be approximated by the 
following equation [3]. 
 
 
 
 



Claudiu PATRASCU, Corneliu BALAN 82 
 

INCAS BULLETIN, Volume 14, Issue 2/ 2022 

 
Fig. 5 a) The effect of the confinement ratio 𝛼𝛼 on the most unstable wavenumber 𝑘𝑘𝑐𝑐𝑐𝑐𝑅𝑅0 as a function of the 

viscosity ratio 𝛽𝛽. b) Comparison between the dispersion curve for a two-liquid system and the dispersion relation 
(in dimensionless form) in the case of a viscoelastic inner liquid when 𝐸𝐸𝐸𝐸 = 9.2. 

 
Fig. 6 Capillary waves at the base of an impinging liquid jet (right) and the measured wave-crest amplitude for a 

water jet of 1.2 mm in diameter. Error bars are shown for each set of data points 
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𝜆𝜆
𝜋𝜋𝐷𝐷0

= �2 + 3√2𝑂𝑂ℎ , (18) 

where 𝑂𝑂ℎ = 𝜂𝜂/(𝜌𝜌𝑅𝑅0𝜎𝜎)0.5  is the Ohnesorge number. 
For an inviscid fluid, 𝑂𝑂ℎ →  0, the predictions agree with the most unstable wavenumber 

predicted by Rayleigh's theory, 𝜆𝜆 = √2 𝜋𝜋 𝐷𝐷0, i.e., 𝑘𝑘𝑅𝑅0 ≈  0.7 (see figure 7-b). The equation 
also shows larger wavelengths when the Ohnesorge number increases. 

Five different test liquids are injected through a 1.8 mm diameter capillary tube. The 
material properties of the working fluids are given in table 1.  

The jet will decrease in radius because of the gravitational field until the thread starts to 
show capillary instability. 

Together with the measurements of the wavelength, one must measure the thread's initial 
diameter 𝐷𝐷0, which was taken as the jet diameter upstream the perturbation where no 
fluctuation was observed. 

A series of jets and their dominant mode is shown in figure 7-a. The main findings can be 
summarized as follows: i) the experimental data agree well with the predicted values, 𝑘𝑘𝑅𝑅0 ≈
 0.7, in the case of a water jet at different flow rates (see figure 8-a); ii) the jet formation when 
𝑊𝑊𝑊𝑊 > 4 which agrees with the theoretical predictions for low Ohnesorge and Bond numbers; 
iii) the dominant wavelength exceeds the circumference of the thread, excellent agreement 
being observed when 𝑊𝑊𝑊𝑊 > 10 in the case of water jets (see figure 8-b); iv) there is a good 
qualitative agreement with eqn. (18) for all test fluids. 

The dominant wavelength increases with the Ohnesorge number, being always greater 
than the circumference of the unperturbed state 

Table 1. Material properties of the working liquids 

Fluid 𝑫𝑫𝟎𝟎 (𝒎𝒎𝒎𝒎) η (𝒎𝒎𝒎𝒎𝒎𝒎 𝒔𝒔) σ (𝑵𝑵 𝒎𝒎⁄ ) ρ (𝒌𝒌𝒌𝒌 𝒎𝒎𝟑𝟑⁄ ) 
Water 1.47 1 0.075 998 
Water+glycerine 1.33 2 0.072 1056 
Water+glycerine 1.38 10 0.070 1150 
Mercury 1.46 1.5 0.450 13590 
Sunflower-seed oil 1.48 55 0.030 920 

 

 
Fig. 7 a) Series of jets and depiction of their dominant mode. From left to right the fluids are those given in table 

1. b) Dimensionless wavelength as a function of the Ohnesorge number as predicted by equation (18). When 
𝑂𝑂ℎ →  0, one recovers Rayleigh's result for an inviscid fluid [1]. 
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Fig. 8 a) Experimental data vs. theoretical values for water jets at different flow rates. b) Dimensionless 

wavelength for different values of the Weber number. The continuous line represents Rayleigh's prediction for an 
inviscid fluid, 𝜆𝜆 = √2𝜋𝜋𝐷𝐷0. c) Dimensionless wavelength as a function of the Ohnesorge number (the broken line 

is given by equation (18). d) Number of capillary lengths shown by the wavelength of the dominant mode for 
several values of the Ohnesorge number. The filled symbols are given by theory. 𝑄𝑄 ≈  50 ml/min when not 

specified. 

(see figure 8-c). The number of capillary lengths of each dominant wavelength, 𝜆𝜆/𝑙𝑙𝑐𝑐, is always 
greater than two (see figure 8-d). 

The more viscous jet tends to dampen perturbations and thin to relatively small 
dimensions where non-linearity prevails. 

This is probably the main cause of the large dispersion of data shown in figure 8-c for 
𝑂𝑂ℎ = 0.3554. 

5. CONCLUSIONS 
The paper emphasizes the stabilizing effect of viscosity, confinement, and a viscous 
immiscible outer liquid phase on the capillary instability of a cylindrical liquid thread via the 
dispersion relation. Stationary capillary waves can also be described in terms of wavelength 
and decay factor by analyzing the correspondent dispersion curve. A viscosity stabilizing 
effect and a viscoelasticity destabilizing effect are observed. The emergence of a dominant 
mode is qualitatively shown, through a series of experiments, as a function of the Ohnesorge 
number. 
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