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Abstract: Within the quantum model for the hydrogen-like atom and taking into account the concepts 
of differential geometry, we calculate the intrinsic curvature of several types of atomic orbitals. Based 
on this concept of intrinsic curvature, a classification of atomic orbitals (AO) is given. We conclude by 
discussing the advantages of characterizing atomic quantum states by intrinsic curves for the AO of the 
hydrogen-like atom. 
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1. INTRODUCTION 
In our analysis of atomic orbitals, we start from the known fact in Quantum Mechanics and 
Atomic Physics, that there are no less than n2 quantum states for an excited hydrogen atom 
(H-like atom) with a specified principal quantum number n [1-3]. 

Thus, a classification of these quantum states is necessary. We add that in Quantum 
Chemistry quantum states are also called orbitals [3-5], which is why we also use this name 
throughout the paper. 

In this paper, we aim to analyze and find some intrinsic properties of atomic orbitals. For 
this reason, we consider the guidance curves [6] for several types of orbitals and then calculate 
their corresponding curvatures [7]. 

In this regard, in Section 2, the basic model equations, several types of orbitals and general 
curvature formulas are presented. 

In Section 3, using orbital intrinsic curvatures, we analyze orbital guidance curves to 
obtain a classification of atomic quantum states. 

Finally, we conclude the paper by discussing the advantages of characterizing atomic 
quantum states by intrinsic curvatures for several types of orbitals. 
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2. CURVATURES FOR ORBITALS FROM GUIDING CURVES 
In the framework of quantum model of H-like atom, we obtain the expressions of the wave 
functions characterized by the set of quantum numbers such as the principal quantum number 
n=1, 2..., the orbital quantum number l=0, ..., n-1, and the magnetic orbital quantum number 
m=-l..l [3]. 

After obtaining the atomic orbitals, we calculate their normal curvatures. We note that the 
orbitals have an axial symmetry, see Fig. 1. 
 

  

 

 
(1 0 0) (2 1 0) (2 1 1)         2pz  2px 2py 

Fig. 1: The guiding curves in coordinates (u, v) for hydrogen-like orbital types 1s, 2p and a superposition of 
orbitals 2px, 2py, 2pz 

Thus, when considering a meridian plane for a conveniently fixed azimuth angle, it is 
sufficient to make a cross section through that orbital which leads to obtaining a guiding curve 
corresponding to it, see Figs. 1-2. 
 

 
 

 

(3 2 0) (3 2 1) (3 2 2) 

Fig. 2: The guiding curves in coordinates (u, v) for hydrogen-like orbital type 3d 

Working in the spherical coordinates on the unit sphere, hence with radius r=1, co-latitude 
θ in (0, π) and azimuth ϕ in [0, 2π), we exemplify the analysis of the intrinsic curvatures of 
the orbitals for the excited hydrogen atom with n=3 [8, 3]. 

Then, using analytical expressions of wave-functions [3, 1] that correspond of the 
quantum states (n = 1, ...., 3, l = 0, ..., n-1, m = 0, ..., l), we compute the normal curvatures 
corresponding to the guiding curves of these states. 

For a quantum state (n l m), having the corresponded harmonic Ylm = Clm· flm (θ ), we have 
the guiding curve in a parametrised form described by the vector of position (see Figs. 1-2), 
thus: 

 rlm = |Ylm |2· (sinθ, cosθ) = Clm
2 · flm (θ)2 · (sinθ, cosθ)= (u, v), θ ∈ (0,π/2] 



63 Intrinsic Curvatures of Atomic Orbitals for Hydrogen-Like Atoms 
 

INCAS BULLETIN, Volume 17, Issue 1/ 2025 

The guiding curve is a plane curve, so, the formula for its normal curvature is as follows: [6] 

𝑘𝑘 =
|𝑟𝑟′ × 𝑟𝑟"|

|𝑟𝑟′|3
=

|𝑣𝑣"𝑢𝑢′− 𝑢𝑢"𝑣𝑣′|
|𝑢𝑢′2 + 𝑣𝑣′2|3/2

, 𝑟𝑟 = (𝑢𝑢, 𝑣𝑣), 𝑟𝑟′ =
𝑑𝑑𝑟𝑟
𝑑𝑑𝑑𝑑

, 𝑟𝑟" =
𝑑𝑑2𝑟𝑟
𝑑𝑑𝑑𝑑2

 (1) 

Based on this general formula, we obtain the intrinsic curvatures corresponding to orbitals, as 
follows: 

𝑘𝑘𝑙𝑙𝑙𝑙(𝑓𝑓) =
�2𝑓𝑓𝑓𝑓"− 6𝑓𝑓′2 − 𝑓𝑓2�

𝐶𝐶𝑙𝑙𝑙𝑙2|𝑓𝑓|�4𝑓𝑓′2 + 𝑓𝑓2�
3/2 (2) 

and 

𝑑𝑑𝑠𝑠𝑙𝑙𝑙𝑙
𝑑𝑑𝑑𝑑

(𝑓𝑓) = 𝑠𝑠𝑙𝑙𝑙𝑙′(𝑓𝑓) = 𝐶𝐶𝑙𝑙𝑙𝑙2 ⋅ |𝑓𝑓𝑙𝑙𝑙𝑙| ⋅ �4𝑓𝑓𝑙𝑙𝑙𝑙′2 + 𝑓𝑓𝑙𝑙𝑙𝑙
2 (3) 

where θ is a free parameter in the interval [0,π/2]. 
In the next section, after first highlighting the guiding curve of the corresponded orbital, 

we show how the formulas (2)-(3) help us to compute the curvature for each type of orbitals. 

3. ATOMIC ORBITALS CLASSIFICATION BY THEIR CURVATURES 
Below, we make a classification of the atomic quantum states based on normal curvature 
concept (see Tab.1) 
We start from the spherical harmonic expressions for the types of orbitals 1s, 2p, 3d: 
 

Y00 (θ) = 1/ 2  sqrt (1/ π)  
Y10 (θ) = 1/ 2  sqrt (3/ π) cosθ  
Y11 (θ, ϕ) = -1/ 2 sqrt (3/ π) sinθ  exp (i· ϕ) 
Y20 (θ) = 1/ 4      sqrt (5/ π) (3cos2 θ−1) 
Y21 (θ, ϕ) = -1/ 2 sqrt (15/ 2π) sinθ cosθ  exp (i· ϕ) 
Y22 (θ, ϕ) = 1/ 4 sqrt (15/ 2π) sin2θ  exp (2i· ϕ) 
 

Thus, the guidance curves in parametric form for the types of 1s, 2p, 3d orbitals are as follows: 
 

r1s =C00
2· (sinθ, cosθ ) 

rpz =C10
2· cos2θ· (sinθ, cosθ ) 

rpx =C11
2· sin2θ· (sinθ, cosθ ) 

rdz =C20
2 · (3cos2θ - 1)2 · (sinθ, cosθ ) 

r21 =C21
2 · cos2θ sin2θ · (sinθ, cosθ ) 

r22 =C22
2 · sin4θ· (sinθ, cosθ ) 

 

We obtain the normal curvatures of these curves which generate by rotation the orbitals 
of the types 1s, 2p, 3d, as follows: 
 

𝑘𝑘00(𝑑𝑑) =
1

𝐶𝐶002
 

𝑑𝑑𝑠𝑠00 = 𝐶𝐶002𝑑𝑑𝑑𝑑 
(4) 
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      k00(θ ) 

 
Fig. 3: Graphical curvature of state (3 0 0) with θ ∈ [0,π/2] 

𝑘𝑘10(𝑑𝑑) = �
3(𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 − 2)

𝐶𝐶10
2 𝑐𝑐𝑐𝑐𝑠𝑠 𝑑𝑑 �|(3 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 − 4)|3

� 

𝑑𝑑𝑠𝑠10 = 𝐶𝐶10
2| 𝑐𝑐𝑐𝑐𝑠𝑠 𝑑𝑑 |�3 𝑠𝑠𝑠𝑠𝑠𝑠2 𝑑𝑑 + 1𝑑𝑑𝑑𝑑 

(5) 

 

      k10(θ ) 

 
Fig. 4: Graphical curvature of state (3 1 0) with θ ∈ [0,π/2) 

                    k10(θ) 

 
Fig. 5: Graphical curvature of state (3 1 0) with θ ∈ (π/2, π] 

𝑘𝑘11(𝑑𝑑) = �
3(1 + 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑)

𝐶𝐶11
2 𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑 �(3 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 + 1)3

� 

𝑑𝑑𝑠𝑠11 = 𝐶𝐶11
2| 𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑 |�3 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 + 1𝑑𝑑𝑑𝑑 

(6) 
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        k11(θ) 

 
Fig. 6: Graphical curvature of state (3 1 1) with θ ∈ (0,π) 

𝑘𝑘20(𝑑𝑑) =
|135 𝑐𝑐𝑐𝑐𝑠𝑠4 𝑑𝑑 − 150 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 − 13|

𝐶𝐶20
2|3 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 − 1|�(−135 𝑐𝑐𝑐𝑐𝑠𝑠4 𝑑𝑑 + 138 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 + 1)3

, 𝑎𝑎𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠(1/√3)~55°  

𝑑𝑑𝑠𝑠20 = 𝐶𝐶20
2|3 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 − 1|�|135 𝑐𝑐𝑐𝑐𝑠𝑠4 𝑑𝑑 − 138 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 − 1|𝑑𝑑𝑑𝑑 

(7) 

 

         k20(θ) 

 
Fig. 7: Graphical curvature of state (3 2 0) with θ ∈ [0, arccos (1/√3)) 

 

         k20(θ) 

 
Fig. 8: Graphical curvature of state (3 2 0) with θ ∈ (arccos (1/√3), π/2] 

𝑘𝑘21(𝑑𝑑) =
|3(2 − 5 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 + 5 𝑐𝑐𝑐𝑐𝑠𝑠4 𝑑𝑑)|

𝐶𝐶21
2| 𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠 𝑑𝑑 |�(4 − 15 𝑠𝑠𝑠𝑠𝑠𝑠2 𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑)3

  

𝑑𝑑𝑠𝑠21 = 𝐶𝐶21
2| 𝑠𝑠𝑠𝑠𝑠𝑠 𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠 𝑑𝑑 |�4 − 15 𝑠𝑠𝑠𝑠𝑠𝑠2 𝑑𝑑 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 𝑑𝑑𝑑𝑑 

(8) 

 
 



Diana R. RADNEF-CONSTANTIN, Sorin S. RADNEF 66 
 

INCAS BULLETIN, Volume 17, Issue 1/ 2025 

 
k21(θ) 

 
Fig. 9: Graphical curvature of state (3 2 1) with θ ∈ [0,π/2) 

 
       k21(θ) 

 
Fig. 10: Graphical curvature of state (3 2 1) with θ ∈ (π/2, π] 

 

𝑘𝑘22(𝑑𝑑) =
5(1 + 3 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑)

𝐶𝐶22
2| 𝑠𝑠𝑠𝑠𝑠𝑠3 𝑑𝑑 |�(15 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 + 1)3

  

𝑑𝑑𝑠𝑠22 = 𝐶𝐶22
2| 𝑠𝑠𝑠𝑠𝑠𝑠3 𝑑𝑑 |�15 𝑐𝑐𝑐𝑐𝑠𝑠2 𝑑𝑑 + 1𝑑𝑑𝑑𝑑 

(9) 

 

     k22(θ) 

 
Fig. 11: Graphical curvature of state (3 2 2) with θ ∈ (0,π) 

We mention that for the simplicity of our exposition on graphs of normal curvatures in 
Figs. 3-11, we consider C≡1. 

In the table below of intrinsic curves k (θ) with θ∈(0,π/2] and taking in the account 
Equations (4)-(9) and Figs. 3-11, we obtain the θ - nodal values for the guiding curves of 
orbital types 1s, 2p, 3d. 
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Tab. 1: The nodal angular values for co-latitude corresponding of orbital types 1s, 2p, 3d. 

(l m) for n up to 3 θ values such as k (θ )→ ∞ θ values such as s’(θ ) = 0 
(0 0) - - 

(1 0) π/2 π/2 
(1 1) 0 0 

(2 0) arccos(1/√3)~55° arccos(1/√3) 

(2 1) 0, π/2 0, π/2 

(2 2) 0 0 

From Tab.1, we observe that k (θ )→ ∞ <=> s'(θ ) = 0 this fact happening because these 
relationships occur for the same θ  values. 

In addition, in Fig. 12, we recall the classification of atomic quantum states according to 
spherical harmonics. [8] 

Furthermore, in the same Figure 12, we give the 3D shape for the atomic orbitals. We note 
that Yl0 harmonics are always real-valued. In addition, to represent Ylm harmonics with m>0, 
we use the expressions |ReY|2 in these cases [9]. 
 

 
Fig. 12: The spherical harmonics types for Hydrogen atom excited with n=4 such as zonal harmonics for m=0, 

sectoral harmonics for l=m and tesseral harmonics for rest values of m 
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Finally, comparing both classifications, namely the one based on curvature and the one 
based on harmonics, we notice that the first classification, being an intrinsic method, does not 
depend on coordinates and represents another way of classifying the quantum states associated 
with an excited Hydrogen atom with a certain main quantum number n. 

4. CONCLUSIONS 
We have obtained the intrinsic curves for several types of orbitals and given a classification 
for them using the concept of intrinsic curvature. This result is in good agreement with the 
classification for orbitals by spherical harmonics [8]. 
An advantage of using the curvature classification is that it better characterizes the nodal 
values for co-latitude than in the case of harmonics one, so, it is more relevant being an 
intrinsic property of orbitals, because it is dependent only on a free parameter on the curve. 
Curvature classification is also useful as a new way to characterize atomic quantum states. 
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