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Abstract: Even though classical mechanics states that it is not possible to find an inertial reference 
frame, relative measurements are used to determine the mechanical behaviour of celestial bodies with 
very small dimensions compared to the distances between them. The present work aims to demonstrate 
that the two fundamental theorems of mechanics, the momentum theorem and the angular momentum 
theorem, remain valid if we use the relative distances and velocities between these celestial bodies. The 
starting point for developing such a result is that the basic assumptions of Newtonian mechanics are 
considered to be valid and are used with the assumption that an inertial reference frame can exist, even 
if only hypothetically. Relationships are established between the relative accelerations and the global 
forces acting on each body in a two-body ensemble, which are quite similar to those stated in an inertial 
reference frame. 
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1. INTRODUCTION 
This paper is based on a previous communication given at the “Aerospace Conference” held 
at INCAS – Bucharest in 2022, [1]. According to classical (Newtonian) mechanics, [2], [3], 
[4], there cannot be an inertial reference system, which we will denote as (SRIn), i.e. a 
reference system in which the principles of this mechanics are valid. What can be determined 
are classes of reference systems in which the laws of mechanical motion are identical, using 
the principles of Newtonian mechanics and assuming that such a system exists. These are the 
reference systems moving rectilinearly and uniformly relative to each other. Since an absolute 
(SRIn) is not accessible, the only kinematic determinations that we can practice for using of 
these principles are those regarding the relative mechanical motion between point-like bodies, 
i.e. those bodies for which their own geometric dimensions are unimportant in their relative 
motion, and they can be assimilated to some geometric points. 

In outer space, kinematic determinations are typically used to analyse the relative motions 
between cosmic bodies [5], and are then often used as if they were established in an inertial 
reference. The results deduced in this way are confirmed with sufficient accuracy by the 
experimentally determinations. It thus becomes necessary to validate such a physical situation 
in the same context in which the kinematic measurements take place and the way in which 
they are used. Therefore, the objective of interest is to verify whether and how the relative 
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motions between point bodies, can be analyzed independent of an (SRIn), in a similar way to 
the situation in an (SRIn). 

We consider a mechanical ensemble of n point bodies, denoted 𝐶𝐶𝑘𝑘=1,𝑛𝑛 , which is 
highlighted by reference to the other bodies with which they interact. This mechanical system 
is denoted (SMIn). For the geometry of the relative mechanical movement, the “Euclidean 
geometry” will be considered valid. The analysis of the relative motions in this (SMIn) is done 
using the kinematics and inertial properties corresponding to a (SRIn) that we assume to exist, 
so we use the concepts, principles and theorems of Newtonian mechanics. 

It is stated, at the outset, that the intrinsic description of relative motions is not the subject 
of this communication, and no attention is paid to the fundamental principles and ideas 
concerning the basic physics of mechanical motion. Attention is restricted to the classical 
principles of mechanics regarding the relative motion of point-like bodies (which we name 
from now on point bodies) interacting with each other as well as with other external bodies 
with respect to (SMIn). 

The achievement of the proposed general objective is obtained by successively passing 
through several clear stages: 

1. Mechanical analysis of bilateral interactions and their inertial properties, in the case 
of n=2 
2. Determining the structure of the actions exerted on a point body located in a (SMIn) 
with n≥3 
3. Evaluation of the resultant force applied to a point body in (SMIn) using the bilateral 
interaction forces coming from the relative motion 
4. Validation of the two fundamental themes of the dynamics using the bilateral 
interactions forces resulting from the relative motion 
5. General equation for relative motion in a (SMIn) 

Classical books on newtonian mechanics, such as references [2], [3], [4], do not pay 
attention to the connections between mechanical motions in a (SRIn) and relative motions of 
bodies in a (SMIn), so that as to put emphasize the deep relationships between them. The 
present work aims to outline a way of analysing motions for which there is no knowledge of 
the actual interactions and their representative forces, but for which we can infer the properties 
of their relative motions as revealed by actual measurements of the relative kinematics. 

2. THE ELEMENTARY BILATERAL INTERACTION 
The main goal is to analyse the intrinsic mechanical behaviour of (SMIn), that is using of 
physical quantities of a mechanical nature that depend exclusively on the bilateral relative 
mechanical motion/ state between each 2 bodies in the considered mechanical system. For this 
purpose it is necessary to highlight the properties of the relative mechanical movement when 
there are only 2 bodies, denoted as C1 and C2, in the system chosen for the mechanical study. 
The study sheds light on the properties of bilateral interaction, which are the primary 
characteristics by which interactions are generally analysed.  

We formulate the hypothesis that there is an (SRIn). In such an (SRIn), the relative motion 
of the two bodies is usually analyzed around the center of mass (in fact the inertia center of 
these bodies), denoted here by C. The geometric scheme of such a two-point system of bodies 
is as in the following image. The basic quantitative relationships are stated as known:  

𝐴𝐴1 = 𝑅𝑅�⃗ ̈1  &   𝑚𝑚1𝐴𝐴1 = 𝐹⃗𝐹1   &   𝐴𝐴2 = 𝑅𝑅�⃗ ̈2   &   𝑚𝑚2𝐴𝐴2 = 𝐹⃗𝐹2 (11) 
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𝐴𝐴𝐶𝐶 = 𝑅𝑅�⃗ ̈𝐶𝐶    &   (𝑚𝑚1 + 𝑚𝑚2)𝐴𝐴𝐶𝐶 = 𝐹⃗𝐹1 + 𝐹⃗𝐹2 

𝑚𝑚 ≝ 𝑚𝑚1 + 𝑚𝑚2  &  𝑅𝑅�⃗ 1 = 𝑅𝑅�⃗ 𝐶𝐶 + 𝑟𝑟1𝐶𝐶    &   𝑅𝑅�⃗ 2 = 𝑅𝑅�⃗ 𝐶𝐶 + 𝑟𝑟2𝐶𝐶  &  𝑟𝑟12 = 𝑅𝑅�⃗ 1 − 𝑅𝑅�⃗ 2 = 𝑟𝑟1𝐶𝐶 − 𝑟𝑟2𝐶𝐶 

𝑟𝑟1𝐶𝐶 = 𝑚𝑚2
𝑚𝑚
∙ 𝑟𝑟12   &   𝑟𝑟2𝐶𝐶 = −𝑚𝑚1

𝑚𝑚
∙ 𝑟𝑟12 

(12) 

 

 
Fig. 1 Two body interaction in (SRIn) 

 

In the following, some generic notations are used:  
- the physical quantities in (SRIn) are capitalized 
- subscripts are the order numbers of the bodies or the characteristic letters for the 
corresponding physical quantity 
- in lower case are noted the physical quantities in (SMIn), which are physical 
quantities characteristic of the relative movements between the bodies in (SMIn) 
- the vectors will be denoted in text with their letters only 
- R are the vector radii in (SRIn); r are the relative vector radii  
- V are the speeds in (SRIn); v are the relative velocities in (SMIn) 
- A are the accelerations in (SRIn), a are the relative accelerations in (SMIn) 
- m are the masses in (SRIn); as well as relative ones in (SMIn) 

With these clarifications we will have the relations in (SRIn):  

𝑎⃗𝑎1𝐶𝐶 = 𝐴𝐴1 − 𝐴𝐴𝐶𝐶    &   𝑎⃗𝑎2𝐶𝐶 = 𝐴𝐴2 − 𝐴𝐴𝐶𝐶 

𝑚𝑚1𝑎⃗𝑎1𝐶𝐶 = 𝐹⃗𝐹1 −
𝑚𝑚1
𝑚𝑚

(𝐹⃗𝐹1 + 𝐹⃗𝐹2)   &   𝑚𝑚2𝑎⃗𝑎2𝐶𝐶 = 𝐹⃗𝐹2 −
𝑚𝑚2
𝑚𝑚

(𝐹⃗𝐹1 + 𝐹⃗𝐹2) 

𝑎⃗𝑎12 = 𝐴𝐴1 − 𝐴𝐴2 = 𝑎⃗𝑎1𝐶𝐶 − 𝑎⃗𝑎2𝐶𝐶 

(2) 

𝑚𝑚1𝑚𝑚2
𝑚𝑚

𝑎⃗𝑎12 = 𝑚𝑚2
𝑚𝑚
𝐹⃗𝐹1 −

𝑚𝑚1
𝑚𝑚
𝐹⃗𝐹2 & 𝑚𝑚1𝑚𝑚2

𝑚𝑚
𝑎⃗𝑎21 = 𝑚𝑚1

𝑚𝑚
𝐹⃗𝐹2 −

𝑚𝑚2
𝑚𝑚
𝐹⃗𝐹1 (3) 

 

Stating the next notations:  

(SRIn) 

C1  (m1,R1) 

C2  (m2,R2) 

C  (m,RC) 

F1 

F2 

R1 

RC 

R2 

r1C 

r2C 
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𝐹⃗𝐹12 = 𝑚𝑚2
𝑚𝑚
𝐹⃗𝐹1 −

𝑚𝑚1
𝑚𝑚
𝐹⃗𝐹2 & 𝐹⃗𝐹21 = 𝑚𝑚1

𝑚𝑚
𝐹⃗𝐹2 −

𝑚𝑚2
𝑚𝑚
𝐹⃗𝐹1 cu: 𝐹⃗𝐹12 = −𝐹⃗𝐹21 (4) 

we will derive the following formulas: 

𝑚𝑚1𝑎⃗𝑎1𝐶𝐶 = 𝐹⃗𝐹12    &    𝑚𝑚2𝑎⃗𝑎2𝐶𝐶 = 𝐹⃗𝐹21 (51) 
𝑚𝑚1𝑚𝑚2
𝑚𝑚

𝑎⃗𝑎12 = 𝐹⃗𝐹12    &    𝑚𝑚1𝑚𝑚2
𝑚𝑚

𝑎⃗𝑎21 = 𝐹⃗𝐹21 (52) 
 

The situation is equivalent from the point of view of relative movement to replacing some 
general forces in (SRIn), F1 and F2, applied to bodies C1 and C2 with the equal and opposite 
forces F12 and F21 that may be determined using kinematical relationships in (SMIn). Thus, 
the relative motion of the two point bodies in the inertial reference system under the actions 
represented by the forces F1 and F2 is equivalent to the relative motion determined by the 
relative kinematics in the mechanical system (SMIn) and in which the bodies are under the 
action of a bilateral interaction represented only by the forces F12 and F21. These forces can be 
determined in (SMIn) from the relative motion, analogously to the forces determined from the 
absolute motion detected in (SRIn). 

 
Fig. 2 The two bodies as they interact in (SMIn)  

From this equivalence it may be inferred that the mechanics of the relative motion of the 
two bodies is a problem in its own right because it is expressed only in terms of intrinsic 
physical quantities. It becomes natural to express the relative momentum of the motion, 
denoted as H12 and its rate of change as measures the relative forces that can be revealed 
between the two bodies. In this respect and considering the relative kinematics in (SMIn) we 
must have the main relationship to define the inertia properties revealed in the relative motion, 
represented by the corresponding relative mass, denoted mr, and understood according to the 
mechanics principles: 

𝑚𝑚𝑟𝑟(𝐴𝐴1 − 𝐴𝐴2) = 𝐻𝐻��⃗ ̇12 ≝ 𝐹𝐹12𝑟𝑟𝑟𝑟𝑟𝑟 (61) 

(SRIn) 

C1  (m1,R1) 

C2  (m2,R2) 

C  (m,RC) 

F12 

F21 

R1 

RC 

R2 

r1C 

r2C 
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On the other hand, the dynamic phenomena in (SRIn) and (SMIn) must be revealed in the 
same way and have the same meaning in both reference systems. So, we have the following 
relationships:  

𝑚𝑚𝑟𝑟 ��𝑉𝑉�⃗
̇
1 − 𝑉𝑉�⃗ ̇𝐶𝐶� − �𝑉𝑉�⃗ ̇2 − 𝑉𝑉�⃗ ̇𝐶𝐶�� ≡ 𝐻𝐻��⃗ 12 

𝑚𝑚1�𝑉𝑉�⃗1 − 𝑉𝑉�⃗ 𝐶𝐶� − 𝑚𝑚2�𝑉𝑉�⃗ 2 − 𝑉𝑉�⃗ 𝐶𝐶� ≝ 𝐻𝐻��⃗ 12  
(62) 

𝑚𝑚1𝑎⃗𝑎1𝐶𝐶 − 𝑚𝑚2𝑎⃗𝑎2𝐶𝐶 = 𝐻𝐻��⃗ ̇12   &   𝐻𝐻��⃗ ̇12 = 𝐹⃗𝐹12 − 𝐹⃗𝐹21 ≡ 2𝐹⃗𝐹12 (63) 
 

where the physical (mechanical) quantities 𝑟𝑟1𝐶𝐶 , 𝑟𝑟2𝐶𝐶;  𝑣⃗𝑣1𝐶𝐶 , 𝑣⃗𝑣2𝐶𝐶;  𝑎⃗𝑎1𝐶𝐶 , 𝑎⃗𝑎2𝐶𝐶 are the ones that can 
be determined wthout referring to an inertial reference frame (SRIn). 
Doing the appropriate substitutions for the relative motion in (SMIn) considering (51), we 
derive:  

𝑚𝑚𝑟𝑟(
1
𝑚𝑚1

𝐹⃗𝐹12 −
1
𝑚𝑚2

𝐹⃗𝐹21) = 𝐹⃗𝐹12𝑟𝑟𝑟𝑟𝑟𝑟 ≡ 2𝐹⃗𝐹12 

𝑚𝑚𝑟𝑟(
𝑚𝑚1 + 𝑚𝑚2

𝑚𝑚1𝑚𝑚2
𝐹⃗𝐹12) = 𝐹⃗𝐹12𝑟𝑟𝑟𝑟𝑟𝑟 ≡ 2𝐹⃗𝐹12 

(7) 

and so, the relative mass expression from the above equation is:  

𝑚𝑚𝑟𝑟 =
2𝑚𝑚1𝑚𝑚2

𝑚𝑚
 (81) 

This formula certifies that the relative mass is the harmonic average of the masses of the two 
body:  

1
𝑚𝑚𝑟𝑟

=

1
𝑚𝑚1

+ 1
𝑚𝑚2

2
 (82) 

Now, considering only the relative motion in (SMIn), it is convenient and meaningful to 
rewrite the relations (51), (52) as:  

𝑚𝑚𝑟𝑟𝑎⃗𝑎1𝐶𝐶 = 𝐹⃗𝐹12𝑟𝑟𝑟𝑟𝑟𝑟    &    𝑚𝑚𝑟𝑟𝑎⃗𝑎2𝐶𝐶 = 𝐹⃗𝐹21𝑟𝑟𝑟𝑟𝑟𝑟 (51) 

𝑚𝑚𝑟𝑟𝑎⃗𝑎12 = 𝐹⃗𝐹12𝑟𝑟𝑟𝑟𝑟𝑟    &    𝑚𝑚𝑟𝑟𝑎⃗𝑎21 = 𝐹⃗𝐹21𝑟𝑟𝑟𝑟𝑟𝑟 (52) 

3. THE STRUCTURE OF THE INTERACTION EXERCISED ON A BODY 
THAT BELONGS TO (SMIn) 

Classical mechanics equates the general motion of a system of point bodies (SMIn) with a 
superposition of two motions: 

a. the general motion of all bodies, solidified as a single solid body in translational 
motion under the resultant action of all interactions exerted on each body in (SMIn), 
having as generic point the center of mass (which we may call "center of inertia"), 
denoted as C; thus, this motion is equivalent to the motion of the center of mass that 
is under the resultant action 
b. motion around the inertial center of the  ensemble of point bodies, as a one whole 
system 
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From the kinematics of the known classical mechanics, the relative motions between bodies 
from (SMIn) may be represented also as being that relative to the common center of mass. The 
relative motions are analysed coming from the (SRIn) by using the two foundamntal theorems 
of dynamics, the momentum theorem and the moment of momentum theorem that are 
formulated relative to the mass center.  
We state from the beginning the following notations, with their significance, that will be used 
in the followings: 

𝐹⃗𝐹𝑘𝑘𝑒𝑒 the resultant force that represents the action exerted on the body Ck from the 
outside of (SMIn) 
𝐹⃗𝐹𝑘𝑘𝑖𝑖  the resultant force acting on the body Ck from the inside of (SMIn) 
𝐹⃗𝐹𝑘𝑘𝑘𝑘𝑖𝑖  the force representing the internal interaction between the bodies Ck and Cl 
considering their motion in (SRIn) 
𝐹⃗𝐹𝑘𝑘𝑘𝑘 the force representing the bilateral interaction between the bodies Ck and Cl, 
considering their relative motion in (SMIn), coming from the forces 𝐹⃗𝐹𝑘𝑘 , 𝐹⃗𝐹𝑙𝑙 
𝐹⃗𝐹𝑘𝑘 the resultant force applied to Ck body, for its relative motion to the other bodies, 
in (SRIn) 
𝐹⃗𝐹𝑘𝑘0 the resultant force applied to Ck body, for its relative motion to the other bodies, 
in (SMIn) 
𝐶̄𝐶𝑘𝑘 the inertia center of all bodies of (SMIn) without Ck body; C the mass center of 
all bodies in (SMIn) 
𝑚𝑚�𝑘𝑘 the mass of all bodies of (SMIn) without the Ck body 

In (SRIn), the actions of the other point bodies of the system are exerted on the body Ck, having 
the resultant force: 

𝐹⃗𝐹𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘𝑒𝑒 + 𝐹⃗𝐹𝑘𝑘𝑖𝑖  

𝐹⃗𝐹𝑘𝑘𝑖𝑖 = �𝐹⃗𝐹𝑘𝑘𝑘𝑘𝑖𝑖
𝑛𝑛

𝑙𝑙≠𝑘𝑘

 
(9) 

and the equation of the dynamic motion:  

𝑚𝑚𝑘𝑘𝐴𝐴𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 ≡ 𝐹⃗𝐹𝑘𝑘𝑒𝑒 + �𝐹⃗𝐹𝑘𝑘𝑘𝑘𝑖𝑖
𝑛𝑛

𝑙𝑙≠𝑘𝑘

 (91) 

 

According to the momentum theorem, all other bodies in (SMIn), as a rigid whole, have a 
motion composed of:  
 -the motion as a point body coincident with the center of mass having the acceleration 
𝐴𝐴𝑘̄𝑘:  

𝑚𝑚�𝑘𝑘𝐴𝐴𝑘𝑘� = �𝐹⃗𝐹𝑙𝑙

𝑛𝑛

𝑙𝑙≠𝑘𝑘

≡�𝐹⃗𝐹𝑙𝑙𝑒𝑒
𝑛𝑛

𝑙𝑙≠𝑘𝑘

+ ��𝐹⃗𝐹𝑙𝑙𝑙𝑙𝑖𝑖
𝑛𝑛

𝑙𝑙≠𝑘𝑘

𝑛𝑛

𝑠𝑠≠𝑙𝑙

 (10) 

 

where we have the obvious relation for all internal interactions:  
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��𝐹𝐹𝑙𝑙𝑙𝑙𝑖𝑖
𝑛𝑛

𝑙𝑙≠𝑠𝑠

𝑛𝑛

𝑠𝑠≠𝑙𝑙

≡ 0�⃗  (101) 

and 
 -its proper motion around the center of mass.  
From relations (10) it follows:  

𝑚𝑚�𝑘𝑘𝐴𝐴𝑘𝑘� = �𝐹⃗𝐹𝑙𝑙𝑒𝑒
𝑛𝑛

𝑙𝑙≠𝑘𝑘

+�𝐹⃗𝐹𝑙𝑙𝑙𝑙𝑖𝑖
𝑛𝑛

𝑙𝑙≠𝑘𝑘

 (11) 

Therefore, according to equations (91) and (11) the interaction between the body Ck with the 
rest of the bodies in (SMIn) is equivalent to the interaction between the body Ck and the center 
of mass of the other bodies in (SMIn). We are therefore in the situation of interaction of two 
point bodies, for which the method of approaching the relative motion was developed.  

The relationship that describes the dynamics of the relative motion of the body Ck is: 

𝑚𝑚𝑟𝑟𝑎⃗𝑎𝑘𝑘𝑘̄𝑘 = 𝐹⃗𝐹𝑘𝑘𝑘̄𝑘
𝑟𝑟𝑟𝑟𝑟𝑟 (12) 

in which:  

𝑚𝑚𝑟𝑟 =
2𝑚𝑚𝑘𝑘𝑚𝑚�𝑘𝑘
𝑚𝑚𝑘𝑘 + 𝑚𝑚�𝑘𝑘

=
2𝑚𝑚𝑘𝑘𝑚𝑚�𝑘𝑘
𝑚𝑚

 

𝑎𝑎𝑘𝑘𝑘𝑘� = �𝐴𝐴𝑘𝑘 − 𝐴𝐴𝑘𝑘� � 

𝐹⃗𝐹𝑘𝑘𝑘̄𝑘 ≡
1
2
𝐹⃗𝐹𝑘𝑘𝑘̄𝑘
𝑟𝑟𝑟𝑟𝑟𝑟 =

𝑚̄𝑚𝑘𝑘

𝑚𝑚
𝐹⃗𝐹𝑘𝑘 −

𝑚𝑚𝑘𝑘

𝑚𝑚
�𝐹⃗𝐹𝑙𝑙

𝑛𝑛

𝑙𝑙≠𝑘𝑘

 

(121) 

 

 
Fig. 3 The Ck body interacting with the all other bodies of (SMIn)  

(SRIn) 

Ck  (mk,Rk) 

C�𝑘𝑘  (m�k,R𝑘𝑘� ) 

C  (m,RC) 

𝐹𝐹𝑘𝑘𝑘𝑘�  

F𝑘𝑘�𝑘𝑘 

Rk 

RC 

R𝑘𝑘�  
 

rkC 

r𝑘𝑘�𝐶𝐶 
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Developing the bilateral force expression 𝐹⃗𝐹𝑘𝑘𝑘𝑘�  we may write the formula 

𝐹⃗𝐹𝑘𝑘𝑘𝑘� =
𝑚̄𝑚𝑘𝑘

𝑚𝑚
𝐹⃗𝐹𝑘𝑘 −

𝑚𝑚𝑘𝑘

𝑚𝑚
�𝐹⃗𝐹𝑙𝑙

𝑛𝑛

𝑙𝑙≠𝑘𝑘

= ��
𝑚𝑚𝑙𝑙

𝑚𝑚
𝐹⃗𝐹𝑘𝑘 −

𝑚𝑚𝑘𝑘

𝑚𝑚
𝐹⃗𝐹𝑙𝑙�

𝑛𝑛

𝑙𝑙≠𝑘𝑘

≡�𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙≠𝑘𝑘

 (122) 

So, the dynamics of the relative motion in (SMIn) of the body Ck, with respect to the rest of 
bodies from this mechanical system, considered as a rigid entity, has the equation:  

𝑚𝑚𝑟𝑟𝑎⃗𝑎𝑘𝑘𝑘𝑘� = 2�𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙≠𝑘𝑘

 

or: 

𝑚𝑚𝑘𝑘𝑎⃗𝑎𝑘𝑘𝐶𝐶 = �𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙≠𝑘𝑘

 

 

(13) 

which means that the body Ck , in the relative motion in (SMIn), is under the bilateral actions 
with the other bodies of (SMIn), represented by forces Fkl,  that may be determined using the 
relative motions of couples (Ck, Cl) in (SMIn).  

4. THE EQUIVALENCE BETWEEN THE RESULTING FORCE AND THE 
FORCES OF BILATERAL INTERACTION 

Considering (SRIn), the component of the relative motion about the common center of mass 
of all bodies has the following equation of dynamics for the relative motion of Ck with respect 
to the center of mass C:  

𝑚𝑚𝑘𝑘𝑎⃗𝑎𝑘𝑘𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘 −
𝑚𝑚𝑘𝑘

𝑚𝑚
�𝐹⃗𝐹𝑙𝑙

𝑛𝑛

𝑙𝑙=1

 = ��
𝑚𝑚𝑙𝑙

𝑚𝑚
𝐹⃗𝐹𝑘𝑘 −

𝑚𝑚𝑘𝑘

𝑚𝑚
𝐹⃗𝐹𝑙𝑙�

𝑛𝑛

𝑙𝑙=1

 

𝑎⃗𝑎𝑘𝑘𝑘𝑘 = (𝐴𝐴𝑘𝑘 − 𝐴𝐴𝐶𝐶) 

(14) 

The term for l=k vanishes and remains only the summ from the formula (122). Thus, we have 
the dynamics equations for the relative motion detected in (SRIn) and in (SMIn): 

𝑚𝑚𝑘𝑘𝑎⃗𝑎𝑘𝑘𝑘𝑘 = ��
𝑚𝑚𝑙𝑙

𝑚𝑚
𝐹⃗𝐹𝑘𝑘 −

𝑚𝑚𝑘𝑘

𝑚𝑚
𝐹⃗𝐹𝑙𝑙�

𝑛𝑛

𝑙𝑙≠𝑘𝑘

= �𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙≠𝑘𝑘

 

𝑚𝑚𝑟𝑟𝑎⃗𝑎𝑘𝑘𝑘𝑘� = 2�𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙≠𝑘𝑘

≡ 2��
𝑚𝑚𝑙𝑙

𝑚𝑚
𝐹⃗𝐹𝑘𝑘 −

𝑚𝑚𝑘𝑘

𝑚𝑚
𝐹⃗𝐹𝑙𝑙�

𝑛𝑛

𝑙𝑙≠𝑘𝑘

 

(15) 

 

Between the relative pozition vectors of the two mass center there is the relationship of 
definition:  

𝑚𝑚𝑘𝑘𝑟𝑟𝑘𝑘𝑘𝑘 + 𝑚𝑚�𝑘𝑘𝑟𝑟𝑘𝑘�𝐶𝐶 = 0�⃗  (161) 

which leads to the formulas:  
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𝑟̄𝑟𝑘𝑘𝑘𝑘 = 𝑚𝑚�𝑘𝑘
𝑚𝑚
𝑟𝑟𝑘𝑘𝐶𝐶̅𝑘𝑘 & 𝑟𝑟𝑘𝑘�𝐶𝐶 = −𝑚𝑚𝑘𝑘

𝑚𝑚
𝑟𝑟𝑘𝑘𝐶̅𝐶𝑘𝑘  (162) 

As a direct consequance of the above formulas the equations (15) are identical for the relative 
motion in (SRIn) and (SMIn), which means that the forces of bilateral interactions, Fkl, 
detected by relative kinematics in (SMIn), produce the same resultant force as the forces that 
are detected in (SRIn). 

5. THE FOUNDAMENTAL THEOREMS OF DYNAMICS USING THE 
FORCES OF BILATERAL INTERACTION 

It has been shown that the equations of relative motion using the bilateral interaction forces in 
(SMIn) are, see (14):  

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘𝑘𝑘) ≡ 𝑚𝑚𝑘𝑘𝑎⃗𝑎𝑘𝑘𝑘𝑘 = �𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙=1

≡ 𝐹⃗𝐹𝑘𝑘0 (17) 

where 𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘𝑘𝑘 ≝ 𝐻𝐻���⃗ 𝑘𝑘 is the momentum of Ck point body and considering Fkk=0. So one may 
use the determinations made in (SMIn) without to alter the results furnished by the Momentum 
Theorem expessed in (SRIn), denoted here as (MT).  

According to the definition relationships we have the obvious relation:  

0�⃗ = ��𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙

𝑛𝑛

𝑘𝑘

  

and so:  

0�⃗ = �𝐹⃗𝐹𝑘𝑘0
𝑛𝑛

𝑘𝑘=1

 

�
𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

≡
𝑑𝑑
𝑑𝑑𝑑𝑑
�(𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

= �𝐹⃗𝐹𝑘𝑘0
𝑛𝑛

𝑘𝑘=1

≡ 0�⃗  

(18) 

where ∑ 𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘𝑘𝑘𝑘𝑘 ≝ 𝐻𝐻���⃗  is the momentum of all Ck point bodies and which means that, in 
relation to the relative movements that can be highlighted by the kinematics and relative forces 
in (SMIn), this mechanical system, as a rigid assembly, has a rectilinear and uniform 
movement.  
The kinetic momentum theorem for the system of bodies is analyzed, for now, only for the 
case of point bodies that make up (SMIn). Its expression with respect to the common center of 
mass is in the inertial reference frame (SRIn):  

𝑀𝑀��⃗ 𝐶𝐶 ≝�𝑟𝑟𝑘𝑘
𝑘𝑘

× 𝐹⃗𝐹𝑘𝑘 = �𝑟𝑟𝑘𝑘 × 𝑚𝑚𝑘𝑘𝑎⃗𝑎𝑘𝑘
𝑘𝑘

≡
𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑟𝑟𝑘𝑘 ×𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘
𝑘𝑘

 (19) 

where ∑ 𝑟𝑟𝑘𝑘 × 𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘𝑘𝑘 ≝ 𝐾𝐾��⃗ 𝐶𝐶 is the kinetic momentum of all the point bodies. 
We must now prove that, using the kinematic determinations in (SMIn) for the relative motions 
that also provide the bilateral forces Fkl, we derive the same moment of momentum for the 
whole (SMIn). Doing this, in (SMIn) we have the relationships:  
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𝑚𝑚𝑘𝑘𝑎⃗𝑎𝑘𝑘 = 𝐹⃗𝐹𝑘𝑘0 = �𝐹⃗𝐹𝑘𝑘𝑘𝑘
𝑙𝑙

= ��𝜇𝜇𝑙𝑙𝐹⃗𝐹𝑘𝑘 − 𝜇𝜇𝑘𝑘𝐹⃗𝐹𝑙𝑙�
𝑙𝑙

 (20) 

where 𝜇𝜇𝑘𝑘 = 𝑚𝑚𝑘𝑘
𝑚𝑚

, and so we have to determine the sum:  

�𝑟𝑟𝑘𝑘
𝑘𝑘

× ���𝜇𝜇𝑙𝑙𝐹⃗𝐹𝑘𝑘 − 𝜇𝜇𝑘𝑘𝐹⃗𝐹𝑙𝑙�
𝑙𝑙

�  

By conveniently grouping the terms of the double sum, we can obtain:  

�𝑟𝑟𝑘𝑘
𝑘𝑘

× ���𝜇𝜇𝑙𝑙𝐹⃗𝐹𝑘𝑘 − 𝜇𝜇𝑘𝑘𝐹⃗𝐹𝑙𝑙�
𝑙𝑙

� = ���𝑟𝑟𝑘𝑘 × �𝜇𝜇𝑙𝑙𝐹⃗𝐹𝑘𝑘 − 𝜇𝜇𝑘𝑘𝐹⃗𝐹𝑙𝑙��
𝑙𝑙𝑘𝑘

= 

                                                             = ���(𝜇𝜇𝑘𝑘𝑟𝑟𝑘𝑘) × 𝐹⃗𝐹𝑙𝑙�
𝑙𝑙𝑘𝑘

−���𝜇𝜇𝑙𝑙�𝑟𝑟𝑘𝑘 × 𝐹⃗𝐹𝑘𝑘��
𝑙𝑙𝑘𝑘

= 

                                                  = �𝜇𝜇𝑙𝑙��𝑟𝑟𝑘𝑘 × 𝐹⃗𝐹𝑘𝑘�
𝑘𝑘𝑙𝑙

−�(𝜇𝜇𝑘𝑘𝑟𝑟𝑘𝑘)
𝑘𝑘

× �𝐹⃗𝐹𝑙𝑙
𝑙𝑙

 

(21) 

From the definition of the physiscal quantities µl și 𝜇𝜇𝑘𝑘𝑟𝑟𝑘𝑘 one may derive directly:  
�𝜇𝜇𝑙𝑙 =
𝑙𝑙

1 

�𝜇𝜇𝑘𝑘𝑟𝑟𝑘𝑘
𝑘𝑘

= 0�⃗  

and the result is as follows:  

�𝑟𝑟𝑘𝑘 ×𝑚𝑚𝑘𝑘𝑎⃗𝑎𝑘𝑘 ≡�𝑟𝑟𝑘𝑘 × [�(𝜇𝜇𝑙𝑙𝐹⃗𝐹𝑘𝑘 − 𝜇𝜇𝑘𝑘𝐹⃗𝐹𝑙𝑙)]
𝑙𝑙𝑘𝑘𝑘𝑘

= �𝑟𝑟𝑘𝑘 × 𝐹⃗𝐹𝑘𝑘
𝑘𝑘

 

which means that one may use the determinations made in (SMIn) without altering the results 
provided by the Kinetic Momentum Theorem expessed in (SRIn), denoted here as (KMT):  
 

𝑀𝑀��⃗ 𝐶𝐶 ≡�𝑟𝑟𝑘𝑘 × 𝐹⃗𝐹𝑘𝑘0

𝑘𝑘

=
𝑑𝑑
𝑑𝑑𝑑𝑑
𝐾𝐾��⃗ 𝐶𝐶  (22) 

 

This means that even (KMT) can be expressed using physical quantities determined in relation 
to the relative motion in (SMIn).  

6. THE GENERAL EQUATION FOR THE RELATIVE MOVEMENT 
Taking into account relations (5) and (17), the dynamic equation of the relative motion 
between two bodies in (SMIn) is resumed, highlighting the bilateral interaction forces Fkl. 
Without losing generality, successive relations using exclusively bilateral interactions are 
deduced as follows for the couple of bodies C1 and C2: 
 

𝑎⃗𝑎12 = 𝑎⃗𝑎1𝐶𝐶 − 𝑎⃗𝑎2𝐶𝐶 =
1
𝑚𝑚1

𝐹⃗𝐹10 −
1
𝑚𝑚2

𝐹⃗𝐹20 (23) 
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𝑚𝑚1𝑚𝑚2𝑎⃗𝑎12 = 𝑚𝑚2𝐹⃗𝐹10 − 𝑚𝑚1𝐹⃗𝐹20 = 𝑚𝑚2� 𝐹⃗𝐹1𝑘𝑘

𝑛𝑛

𝑘𝑘≠1

− 𝑚𝑚1�𝐹⃗𝐹2𝑙𝑙

𝑛𝑛

𝑙𝑙≠2

  

𝑚𝑚1𝑚𝑚2𝑎⃗𝑎12 = �𝑚𝑚2𝐹⃗𝐹1𝑘𝑘

𝑛𝑛

𝑘𝑘≠1

−�𝑚𝑚1𝐹⃗𝐹2𝑙𝑙 =
𝑛𝑛

𝑙𝑙≠2

= 𝑚𝑚2𝐹⃗𝐹12 − 𝑚𝑚1𝐹⃗𝐹21 + �𝑚𝑚2𝐹⃗𝐹1𝑘𝑘

𝑛𝑛

𝑘𝑘≠1
𝑘𝑘≠2

−�𝑚𝑚1𝐹⃗𝐹2𝑙𝑙

𝑛𝑛

𝑙𝑙≠2
𝑙𝑙≠1

 

 

𝑚𝑚1𝑚𝑚2𝑎⃗𝑎12 = (𝑚𝑚1 + 𝑚𝑚2 + 𝑚𝑚3 +⋅⋅⋅ +𝑚𝑚𝑛𝑛)𝐹⃗𝐹12 − (𝑚𝑚3 +⋅⋅⋅ +𝑚𝑚𝑛𝑛)𝐹⃗𝐹12 + 

+�𝑚𝑚2𝐹⃗𝐹1𝑘𝑘

𝑛𝑛

𝑘𝑘≠1
𝑘𝑘≠2

−�𝑚𝑚1𝐹⃗𝐹2𝑙𝑙

𝑛𝑛

𝑙𝑙≠2
𝑙𝑙≠1

 = 𝑚𝑚𝐹⃗𝐹12 + �𝑚𝑚2𝐹⃗𝐹1𝑘𝑘

𝑛𝑛

𝑘𝑘≠1
𝑘𝑘≠2

+ �𝑚𝑚1𝐹⃗𝐹𝑙𝑙2

𝑛𝑛

𝑙𝑙≠2
𝑙𝑙≠1

+ �𝑚𝑚𝑘𝑘𝐹⃗𝐹21

𝑛𝑛

𝑘𝑘=3

 

 

For the last two terms one do the adequate gruping of three bilateral forces and we obtain the 
formula:  
 

𝑚𝑚1𝑚𝑚2𝑎⃗𝑎12 = 𝑚𝑚𝐹⃗𝐹12 + �(𝑚𝑚2𝐹⃗𝐹1𝑘𝑘 + 𝑚𝑚1𝐹⃗𝐹𝑘𝑘2 + 𝑚𝑚𝑘𝑘𝐹⃗𝐹21)
𝑛𝑛

𝑘𝑘≠1
𝑘𝑘≠2

 (24) 

 

The last term represents the contribution of each body in (SMIn) to the relative motion between 
C1 and C2, with the first term representing their main bilateral interaction. We will denote:  
 

𝐹⃗𝐹𝑘𝑘21 = (
𝑚𝑚2

𝑚𝑚
𝐹⃗𝐹1𝑘𝑘 +

𝑚𝑚1

𝑚𝑚
𝐹⃗𝐹𝑘𝑘2 +

𝑚𝑚𝑘𝑘

𝑚𝑚
𝐹⃗𝐹21) ≡

1
2
𝐹⃗𝐹𝑘𝑘21𝑟𝑟𝑟𝑟𝑟𝑟  (25) 

 
and the relatioship (24) is rewrite as:  

∑
≠
≠

+=
n

k
k

kFFa
m
mm

2
1

211212
21



 

or: 

∑
≠
≠

+=
n

k
k

rel
k

rel
r FFam

2
1

211212


 

(26) 

This is the general equation of relative dynamics in (SMIn). For the “TBP” and for the 
“Problem of the n Bodies”, denoted as “NBP” the equation (26) give us a structure that implies 
only bilateral interactions of gravitational type. 

 
The configuration of forces in the complementary term is of the following type: 
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Fig. 4  Bilateral interaction with the influence of the third body Ck 

having in a general manner a moment of momentum not zero for the relative motion. From 
this view point this term will implicitely provide a velocity spectrum with a high probability 
of being of a turbionaire type, at least localy. 

7. CONCLUSIONS 
Following the above, it is possible to formulate some conclusions regarding relative motion, 
as it is intrinsically revealed in a (SMIn).  
 1. Choosing a mechanical system made up of n bodies, we can consider that its internal 
determinations, i.e. the mechanical determinations corresponding to relative motions, are 
objective and consistent with the fundamental theorems of mechanics; the momentum theorem 
and the kinetic momentum theorem will be formally expressed as in an inertial reference 
frame. 
 2. The study highlights the way in which bilateral interaction is involved in the relative 
mechanical motion intrinsically revealed in (SMIn), under the assumptions that the means of 
kinematics determination are usable and identical as in (SRIn) 
 3. The motion relative to the center of mass, C, can be determined using the bilateral 
interaction forces determined from the kinematics of relative motions without explicitly and 
directly knowing the external actions exerted on each body and the effective interactions 
between them as would be revealed in (SRIn). Therefore, (MT) and (KMT) have the 
expression:  

𝑑𝑑
𝑑𝑑𝑑𝑑

(𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘) = 𝐹𝐹𝑘𝑘0����⃗  

(SRIn) 

C1  (m1,R1) 

Ck  (mk,Rk) 

C2  (m2,R2) 

F1k 

Fk2 

F21 
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𝑑𝑑
𝑑𝑑𝑑𝑑
�(𝑟𝑟𝑘𝑘 × 𝑚𝑚𝑘𝑘𝑣⃗𝑣𝑘𝑘)
𝑘𝑘

≡�𝑟𝑟𝑘𝑘 × 𝐹⃗𝐹𝑘𝑘0

𝑘𝑘

 

 4. If we consider the relation (51), (52), (12) of the relative motion of a body in (SMIn) we 
will be able to determine the common joint motion of all bodies, at least relative to another 
body (or even a system of bodies) by including this new body in a new mechanical system of 
point bodies. 
 5. The formulas for establishing the dependence of the bilateral interaction forces, Fkl, on 
the resultant forces Fk and Fl from (SRIn) allow determining the relationship of this interaction 
with that established only for the two bodies (in which the corresponding resultants from 
(SRIn) are used). From the original definition relationship:  

𝐹⃗𝐹𝑘𝑘𝑘𝑘 =
𝑚𝑚𝑙𝑙

𝑚𝑚𝑘𝑘 + 𝑚𝑚𝑙𝑙
𝐹⃗𝐹𝑘𝑘 −

𝑚𝑚𝑘𝑘

𝑚𝑚𝑘𝑘 +𝑚𝑚𝑙𝑙
𝐹⃗𝐹𝑙𝑙  

the bilateral interaction force necessary to represent the relative motion in (SMIn) is obtained 
using the bilateral interactions between all bodies of the mechanical system considered 

𝐹⃗𝐹𝑘𝑘𝑘𝑘: =
𝑚𝑚𝑘𝑘 + 𝑚𝑚𝑙𝑙

𝑚𝑚
𝐹⃗𝐹𝑘𝑘𝑘𝑘  

In the case of a (SMIn) with many point bodies, the forces Fkl tend to become increasingly 
smaller in magnitude, but they are increasingly numerous. 
The tendency of the resultant of all these bilateral interaction forces within the entire (SMIn) 
is obtained using the initial formula that generated the structure of the bilateral interaction 
forces. Thus, in the equation: 

𝑚𝑚𝑘𝑘𝑚𝑚�𝑘𝑘
𝑚𝑚𝑘𝑘 + 𝑚𝑚�𝑘𝑘

𝑎⃗𝑎𝑘𝑘𝑘̄𝑘 = �𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙≠𝑘𝑘

= 𝐹𝐹𝑘𝑘 −
𝑚𝑚𝑘𝑘

𝑚𝑚�𝑘𝑘
�𝐹⃗𝐹𝑙𝑙
𝑙𝑙≠𝑘𝑘

 

the limit is reached for 𝑚𝑚�𝑘𝑘 →
(𝑛𝑛)

∞ . In this situation, the center of mass of all bodies except Ck 
tends to merge with the center of mass of the entire mechanical system. Also taking into 
account the obvious relationships:  

𝑙𝑙𝑙𝑙𝑙𝑙
𝑚̄𝑚𝑘𝑘→∞

𝑚𝑚𝑘𝑘𝑚𝑚�𝑘𝑘
𝑚𝑚𝑘𝑘 +𝑚𝑚�𝑘𝑘

= 𝑚𝑚𝑘𝑘 

𝑙𝑙𝑙𝑙𝑙𝑙
(𝑛𝑛)

𝑚𝑚���𝑘𝑘→∞

�𝐹⃗𝐹𝑘𝑘𝑘𝑘

𝑛𝑛

𝑙𝑙≠𝑘𝑘

= 𝑙𝑙𝑙𝑙𝑙𝑙
(𝑛𝑛)

𝑚𝑚���𝑘𝑘→∞

�𝐹𝐹𝑘𝑘 −
𝑚𝑚𝑘𝑘

𝑚𝑚�𝑘𝑘
�𝐹⃗𝐹𝑙𝑙
𝑙𝑙≠𝑘𝑘

� = 𝐹⃗𝐹𝑘𝑘 

 

under the assumption that the sum  ∑ 𝐹⃗𝐹𝑙𝑙𝑙𝑙≠𝑘𝑘  is finite, we arrive at the formula for the dynamics 
of motion:  
 

𝑚𝑚𝑘𝑘 ⋅ 𝑎⃗𝑎𝑘𝑘𝑘𝑘 = 𝐹𝐹𝑘𝑘 
 

which constitutes the expression of the “principle of force” in Newtonian mechanics, 
expressed with respect to the center of mass of the Univers, here called as (SMIn); in which 
Univers there are no external actions exerted on the bodies that compose it and therefore has 
a solidary and uniform movement of the bodies as a whole, thus becoming a referential of type 
(SRIn) for the relative movements observed between the bodies that compose it. 
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6. All the above considerations, regarding the results of the present study, allow us to 
conclude that the relative motion determined exclusively in a system (SMIn) has inertial 
properties as in an inertial reference system. We can call this “Relative Inertiality”. 
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