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Abstract: Summarizing some old research on the dynamics of a pointall body along its own trajectory, 
this paper established the differential relationships between the principal curvatures of a 3D curve, that 
is the normal curvature and the torsional curvature, and its Cartesian coordinates. The differential 
system thus derived is actually a dynamical system of a representative point of the curve moving along 
it. This dynamic system is analyzed to see the possibilities of finding analytical solutions in finite terms, 
using Frobenius' integrability theorem for the general case and usual integration methods for the 
particular case consisting of the constant ratio between the two curvatures. 
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1. INTRODUCTION 

A 3D curve is defined intrinsically if it is known its principal curvatures, that is normal 
curvature denoted by kn and torsion curvature denoted by kt, as functions of the arc length, 
denoted by s, measured prom a reference point of this curve, [1]. This kind of definition is 
coordinate system independent and so it is more appropriate to the mechanical principles 
which are dependent only on the physical referential. Because all the mechanical properties of 
a moving pointall body are usually stated with respect to a coordinate system attached to the 
physical referential [2], [3], it becomes interesting and necessary to find the cartesian 
coordinates of such a curve intrinsically defined. The main idea of this paper is to consider the 
Serret-Frenet reference trihedron attached to a moving point on the curve and so to have a 
relationship between the angular coordinates of this frame and the principal curvatures [4], 
considering also the Serret-Frenet differential relationships concerning these curvatures. Till 
now, only for two dimensional curves there is known the Euler solution for the natural 
equations considering the angular coordinates of a curve intrinsically defined, [8]. 

For a general movement of a rigid body, or for a special movement of an aircraft, a 
differential model which refer to the movement itself of the body and to the intrinsic features 
of the movement may be more significant for some movement properties, [5-7]. The 
mechanical movement is governed by physical laws that refer only to the physical referential 
and not to a coordinate system and so it is desirable to have even the control laws of the 
required movement not dependent on a coordinate system, but only on the body movement 
itself. By consequence, the intrinsic definition of the trajectory and the Serret-Frenet frame 
used as o moving reference trihedron are appropriate to be used considering the previous 
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remarks. On the other hand, the main properties of the plan of flight may be derived by 
determining the shape and position of the trajectory using the principal curvatures, which are 
independent of a coordinate system defined on the mechanical movement referential. The 
advantage of utilizing such intrinsic coordinates is a complete autonomous navigation, without 
the need of a coordinate system. In parallel, however, the validation of the evolution from a 
mechanical point of view is done in relation to the movement referential and therefore 
comparisons are necessary between the coordinates established on board the vehicle (using the 
principal curvatures of its trajectory) and those established directly on the reference of the 
movement. This therefore means that it is necessary to be able to determine the (Cartesian) 
coordinates of the curve that represent the trajectory in a coordinate system attached to the 
physical reference frame. 

2. DIFFERENTIAL EQUATIONS FOR NATURAL PARAMETRIC DEFINED 
CARTESIAN COORDINATES 

The generation of a curve may be conceived as being the trajectory travelled by a pointall 
body. The properties that identify the curve in any small neighborhood of its every point, 
without any reference to an external coordinate system, constitute the intrinsic definition of a 
curve. These properties are the local curvatures of the curve, that is: 
 - normal curvature, kn  
 - torsion curvature, kt 
If there are known the functions: 

Kn: R+ → R+ ;∀ s∈R+  →  kn = Kn(s) 
Kt: R → R ; ∀ s∈R  →  kt = Kt(s) 

(1) 

where the independent variable, s, is the curve arc length, measured from a given point as 
reference, then the curve is intrinsically defined by its own curvatures. Considering the Serret-
Frenet formulas: 

𝑑𝑑𝑡𝑡
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑛𝑛𝑛𝑛�⃗                  
𝑑𝑑𝑛𝑛�⃗
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑡𝑡𝑏𝑏�⃗ − 𝑘𝑘𝑛𝑛𝑡𝑡                  
𝑑𝑑𝑏𝑏�⃗
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑡𝑡𝑛𝑛�⃗  (2) 

with 𝑡𝑡, 𝑛𝑛�⃗ , 𝑏𝑏�⃗  the unit vectors along the axes of Serret-Frenet frame, there is an existence proof, 
that the cartesian coordinates may be inferred [1], using an explicit corresponding ordinary 
differential system for the director cosines and then integrating the diferential equation of the 
tangent unit vector to obtain these coordinates. This way, we need another algebraic step to 
obtain the angular position of the Serret-Frenet trihedron which is necessary as a movement 
reference frame for mechanics momentum theorem [3], involving difficulties including the 
sign of these angular variables. Another difficulty regards the linear differential system having 
variable coefficients which must be analyzed to see if there are or not analytical solutions in 
finite terms for it. At a glance, there are not such solutions for a curve in 3D, but it must be 
proven. The only known solution is derived for curves situated in a plane by L. Euler using 
the natural equations, [11]. So, this way is almost cumbersome and it is necessary to think for 
another way of bringing the angular variables of the Serret-Frenet frame into the main 
differential system that state the cartesian coordinates. 
An insight into the relationships between the intrinsic properties of a curve and some other 
variables that describe the relations of the common cartesian coordinates and the curvatures 
kn, kt comes from the kinematics of the motion of the Serret-Frenet frame, denoted by (TdF) 
with axes (Cxf), (Cyf), (Czf), along the curve. 
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Fig. 1 – The Serret-Frenet frame and the Cartesian Coordonate frame 

 

The variables that are significant for the movement of this reference frame are the attitude 
angles regarding a cartesian coordinate frame (OXYZ). In the diagram below the origin C 
coincide with the origin of the cartesian coordinates O, only to emphasize those angles: 

 
Fig. 2 – The angular coordinates of TdF with respect to (OXYZ) 

The meaning of this angles are successive rotations around the axes (Cyf), (Czf) and respective 
(Cxf), with usual values as ψ∈[-π,+π], θ∈[-π,+π], ϕ∈[-π,+π]. The unit vector of these rotation 
directions are as follows, when expressed in (TdF): 

𝑢𝑢�⃗ 𝜓𝜓 = (− sin𝜃𝜃𝑓𝑓)𝑡𝑡 + (− cos𝜃𝜃 cos𝜑𝜑)𝑛𝑛�⃗ + (cos𝜃𝜃 sin𝜑𝜑)𝑏𝑏�⃗  

𝑢𝑢�⃗ 𝜓𝜓 = (sin𝜑𝜑)𝑛𝑛�⃗ + (cos𝜑𝜑)𝑏𝑏�⃗  

𝑢𝑢�⃗ 𝜓𝜓 = 𝑡𝑡 

(3) 

and the corresponding angular velocity of (TdF) is writen as: 

𝜔𝜔��⃗ 𝑓𝑓 = �̇�𝜓𝑓𝑓𝑢𝑢�⃗ 𝜓𝜓 + �̇�𝜃𝑓𝑓𝑢𝑢�⃗ 𝜃𝜃 + �̇�𝜙𝑓𝑓𝑢𝑢�⃗ 𝜙𝜙 (41) 

On the other hand, there is known the expression of this angular velocity as function of the 
curve curvatures: 

bvktvk ntf


+=ω  (42) 
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Comparing these two equations we derive the ordinary differential system for the angular 
coordinates of (TdF): 

�̇�𝜓𝑓𝑓 cos θf = 𝑣𝑣𝑘𝑘𝑛𝑛 sin𝜑𝜑𝑓𝑓 
�̇�𝜃𝑓𝑓             = 𝑣𝑣𝑘𝑘𝑛𝑛 cos𝜑𝜑𝑓𝑓 

�̇�𝜙𝑓𝑓 cos𝜃𝜃𝑓𝑓 = 𝑣𝑣𝑘𝑘𝑡𝑡 cos𝜃𝜃𝑓𝑓 + 𝑣𝑣𝑘𝑘𝑛𝑛 sin𝜃𝜃𝑓𝑓 sin𝜑𝜑𝑓𝑓 

(5) 

The next step is to consider the dynamic way to generate the curve, that is the trajectory 
of a moving point (in fact a punctiform body), to derive the differential system of the cartesian 
coordinates. 

So, the velocity of the moving poit is: 

�⃗�𝑣 = 𝑣𝑣𝑡𝑡 (6) 

with: 

𝑡𝑡 = (sin𝜓𝜓𝑓𝑓 cos𝜃𝜃𝑓𝑓)𝐼𝐼 + (cos𝜓𝜓𝑓𝑓 cos𝜃𝜃𝑓𝑓)𝐽𝐽 + (sin𝜃𝜃𝑓𝑓)𝐾𝐾��⃗   

in the (TdF) frame; and in the (TdO) frame: 

�⃗�𝑣 = �̇�𝑋𝐼𝐼 + �̇�𝑌𝐽𝐽 + �̇�𝑍𝐾𝐾��⃗  (7) 

Comparing (6) with (7) we arrive at the desired differential system for the cartesian coordinates 
X, Y, Z: 

�̇�𝑋 = 𝑣𝑣 sin𝜓𝜓𝑓𝑓 𝑐𝑐𝑐𝑐𝑑𝑑 𝜃𝜃𝑓𝑓    �̇�𝑌 = 𝑣𝑣 cos𝜓𝜓𝑓𝑓 cos𝜃𝜃𝑓𝑓    �̇�𝑍 = 𝑣𝑣 sin𝜃𝜃𝑓𝑓 (8) 

Collecting the systems (5) and (8) and expressing them as a natural parametric system, 
that is having s as free variable on, we obtain the differential system for the cartesian 
coordinates of an intrinsically defined curve, by tacking also into account that d/dt≡vd/ds: 

𝜓𝜓𝑓𝑓𝑓𝑓 cos𝜃𝜃𝑓𝑓 = 𝑘𝑘𝑛𝑛 sin𝜑𝜑𝑓𝑓 
𝜃𝜃𝑓𝑓𝑓𝑓             = 𝑘𝑘𝑛𝑛 cos𝜑𝜑𝑓𝑓 
𝜙𝜙𝑓𝑓𝑓𝑓 cos𝜃𝜃𝑓𝑓 = 𝑘𝑘𝑡𝑡 cos𝜃𝜃𝑓𝑓 + 𝑘𝑘𝑛𝑛 sin𝜃𝜃𝑓𝑓 sin𝜑𝜑𝑓𝑓 
𝑋𝑋𝑓𝑓 = sin𝜓𝜓𝑓𝑓 cos𝜃𝜃𝑓𝑓  
𝑌𝑌𝑓𝑓 = cos𝜓𝜓𝑓𝑓 cos𝜃𝜃𝑓𝑓 
𝑍𝑍𝑓𝑓 = 𝑣𝑣 sin𝜃𝜃𝑓𝑓 

(9) 

where the subscript s means the derivative with respect to s. 
This differential system can be used to derive the Cartesian coordinates of the curve by 

numerical methods, when its main curvatures are known as functions of the arc length s, 
following the definition in (1). To have a validation, we considered a curve derived from an 
ellipse located in the plane (OXY), which rises along the axis (OZ) each point of it in an 
oscillating manner, so that it has a length of the period that exactly divides the length of the 
ellipse; and then the curve thus obtained is rotated. For such a curve there was determined the 
principal curvatures, kn and kt, and then it was recreated the curve using the differential system 
(9). The result is presented in the diagram below: 
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Fig. 3 – The curve generated by the (9) system, positioned around a sfere 

3. GENERAL INTEGRAL OF THE DYNAMIC SYSTEM 
To build a solution of the dynamic system (9) we notice before that the subsystem for the 
angular coordinates ψ, θ, ϕ may be separated:  

𝜓𝜓𝑓𝑓𝑓𝑓 cos𝜃𝜃𝑓𝑓 = 𝑘𝑘𝑛𝑛 sin𝜑𝜑𝑓𝑓 
𝜃𝜃𝑓𝑓𝑓𝑓             = 𝑘𝑘𝑛𝑛 cos𝜑𝜑𝑓𝑓 
𝜙𝜙𝑓𝑓𝑓𝑓 cos𝜃𝜃𝑓𝑓 = 𝑘𝑘𝑡𝑡 cos𝜃𝜃𝑓𝑓 + 𝑘𝑘𝑛𝑛 sin𝜃𝜃𝑓𝑓 sin𝜑𝜑𝑓𝑓 

(10) 

If its possible to derive the values of the coordinate angles as functions of the arc length s, then 
the coordinates can be found as simple quadratures from the remaining three equations: 

𝑋𝑋 = �sin𝜓𝜓 cos𝜃𝜃 𝑑𝑑𝑑𝑑
𝛤𝛤

 𝑌𝑌 = �cos𝜓𝜓 cos𝑑𝑑 𝑑𝑑
𝛤𝛤

 𝑍𝑍 = �sin𝜃𝜃 𝑑𝑑𝑑𝑑
𝛤𝛤

 (11) 

The analysis of the differential system (10) becomes necessary to state that the system (9) is 
integrable in finite terms. We note that from the system (10) it may be possible to separate an 
independent subsystem as: 

𝜃𝜃𝑓𝑓𝑓𝑓            = 𝑘𝑘𝑛𝑛(𝑑𝑑) cos𝜑𝜑𝑓𝑓 
𝜙𝜙𝑓𝑓𝑓𝑓 co𝑑𝑑 𝜃𝜃𝑓𝑓 = 𝑘𝑘𝑡𝑡(𝑑𝑑) cos𝜃𝜃𝑓𝑓 + 𝑘𝑘𝑛𝑛(𝑑𝑑) sin𝜃𝜃𝑓𝑓 sin𝜑𝜑𝑓𝑓 

(12) 

This differential system may be rewritten as a Pfaff form: 

0 = (tan 𝜃𝜃 ta𝑛𝑛𝜑𝜑)𝑑𝑑𝜃𝜃 − 𝑑𝑑𝜑𝜑 + 𝑘𝑘𝑡𝑡(𝑑𝑑)𝑑𝑑𝑑𝑑 (13) 

The necessary and sufficient condition for the existence of a general integral of this Paff form, 
deduced directly from the previous equation, according to the integrability theorem of 
Frobenius [12], for a three dimensional form, is as follows [10]: 

(
𝜕𝜕𝜕𝜕
𝜕𝜕𝜑𝜑

−
𝜕𝜕𝑏𝑏
𝜕𝜕𝜃𝜃

)(𝜆𝜆𝑐𝑐) + (
𝜕𝜕𝑏𝑏
𝜕𝜕𝑑𝑑

−
𝜕𝜕𝑐𝑐
𝜕𝜕𝜑𝜑

)(𝜆𝜆𝜕𝜕) + (
𝜕𝜕𝑐𝑐
𝜕𝜕𝜃𝜃

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

)(𝜆𝜆𝑏𝑏) = 0 (14) 

where we have denoted by: 

𝜕𝜕 = tan𝜃𝜃 tan𝜑𝜑        𝑏𝑏 = −1       𝑐𝑐 = 𝑘𝑘𝑡𝑡(𝑑𝑑) (15) 

Traiectoria CURBA CILINDRICA OSCILANTA
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and λ is an integrative factor. Doing all the calculations we arrive finally at the result: 

𝜆𝜆𝑘𝑘𝑡𝑡(𝑑𝑑)
tan θ

cos2 𝜑𝜑
= 0 (16) 

We may consider one of the following consequences. So, for the general case when the 
principal curvatures are defined independently, there are the following situations: 
 λ=0  that means no integrative factor appropriate 
 kt(s)=0  that means curve with no torsion, that is plane curve 
 tanθ=0  that means a curve as a traight line 

For some particular curvatures it is possible to derive a general integral of the system (12). 
We will consider as a particular curve the one that fulfills the relationship: 

𝑘𝑘𝑡𝑡
𝑘𝑘𝑛𝑛

= 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑡𝑡(𝑑𝑑) =𝑛𝑛𝑛𝑛𝑡𝑡 𝐾𝐾 

and so we will arrive at the ordinary differential equation: 
𝑑𝑑𝜑𝜑
𝑑𝑑𝜃𝜃

= tan𝜑𝜑 tan𝜃𝜃 + 𝐾𝐾
1

cos𝜙𝜙
 (17) 

The solution to this equation is the following one:  

sin𝜑𝜑 cos𝜃𝜃 = �𝐾𝐾 cos𝜃𝜃 𝑑𝑑𝜃𝜃 + 𝐶𝐶𝜃𝜃 (18) 

sin𝜑𝜑 cos𝜃𝜃 = 𝐾𝐾 sin𝜃𝜃 + 𝐶𝐶𝜃𝜃  
where Cθ is an appropriate invariable value. Considering for Cθ the formula for the starting 
stage of motion we infer: 

sin𝜑𝜑 cos𝜃𝜃 = 𝐾𝐾 sin𝜃𝜃 + (sin𝜑𝜑0 cos𝜃𝜃0 − 𝐾𝐾 sin𝜃𝜃0) 
sin𝜑𝜑 cos𝜃𝜃 − sin𝜑𝜑0 cos𝜃𝜃0 = 𝐾𝐾(sin𝜃𝜃 − sin𝜃𝜃0) 

(191) 

or: 

sin𝜑𝜑 cos𝜃𝜃 − 𝐾𝐾 sin𝜃𝜃 = sin𝜑𝜑0 cos𝜃𝜃0 − 𝐾𝐾 sin𝜃𝜃0 = 𝑐𝑐𝑐𝑐𝑛𝑛𝑑𝑑𝑡𝑡. (192) 
Now, using the first equation of (12) we derive the following ordinary differential equation:  

𝑑𝑑𝜃𝜃
𝑑𝑑𝑑𝑑

= ±𝑘𝑘𝑛𝑛�1 − �𝐾𝐾 tan𝜃𝜃 +
𝐶𝐶𝜃𝜃

cos𝜃𝜃
�
2
 (201) 

and  
𝑑𝑑𝜓𝜓
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑛𝑛
𝐾𝐾 sin𝜃𝜃 + 𝐶𝐶𝜃𝜃

cos2 θ
 

𝑑𝑑𝜑𝜑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑛𝑛
𝐾𝐾 + 𝐶𝐶𝜃𝜃 sin𝜃𝜃

cos2 𝜃𝜃
 

(202) 

which may be solved to have the angular coordinate θ as function of free variable s. To do so, 
we separate the variables in equation (201), considering that θ is a growing variable: 

cos𝜃𝜃 𝑑𝑑𝜃𝜃

�1 − sin2 𝜃𝜃 − (𝐾𝐾 sin𝜃𝜃 + 𝐶𝐶𝜃𝜃)2
= 𝑘𝑘𝑛𝑛𝑑𝑑𝑑𝑑  
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After some algebraic processing, we obtain a more meaningful expression for the radical, 
bearing in mind that the new variable will be sin𝜃𝜃 =𝑛𝑛𝑛𝑛𝑡𝑡 𝑢𝑢: 

�1 − sin2 𝜃𝜃 − (𝐾𝐾 sin𝜃𝜃 + 𝐶𝐶𝜃𝜃)2 = �1 − 𝑢𝑢2 − �𝐾𝐾2𝑢𝑢2 + 2𝐾𝐾𝐶𝐶𝜃𝜃𝑢𝑢 + 𝐶𝐶𝜃𝜃2�

= �𝑐𝑐 − 2𝑏𝑏𝑢𝑢 − 𝜕𝜕𝑢𝑢2 = �𝑝𝑝2 − 𝑤𝑤2 
 

in which we have noted: 

𝑐𝑐 = 1 − 𝐶𝐶𝜃𝜃2 𝑏𝑏 = 2𝐾𝐾𝐶𝐶𝜃𝜃 𝜕𝜕 = 1 + 𝐾𝐾2 

𝑝𝑝2 =
𝑐𝑐𝜕𝜕 + 𝑏𝑏2

𝜕𝜕2
𝑤𝑤2 = (𝑢𝑢 +

𝑏𝑏
𝜕𝜕

)2 
(21) 

So, the equation (201) becomes: 
𝑑𝑑𝑤𝑤

�𝑝𝑝2 − 𝑤𝑤2
= √𝜕𝜕𝑘𝑘𝑛𝑛𝑑𝑑𝑑𝑑 (22) 

Because it is obviously that 𝑝𝑝2 ≥ 𝑤𝑤2 the following substitution is possible 𝑤𝑤 = 𝑝𝑝 sin 𝑧𝑧. The 
solution of the equation (22) is now, without considering the sign: 

𝑧𝑧 = √𝜕𝜕�𝑘𝑘𝑛𝑛𝑑𝑑𝑑𝑑 

sin𝜃𝜃 = 𝑝𝑝 sin�√𝜕𝜕�𝑘𝑘𝑛𝑛𝑑𝑑𝑑𝑑� −
𝑏𝑏
𝜕𝜕

 
(22) 

and the solution of the equations (202) are now simple quadratures. 

4. CONCLUSIONS 
1. The intuitive meaning of deriving the cartesian coordinates of a 3D curve is based on the 
trajectory generation by a moving punctiform body having its velocity expressed in (TdF) and 
(TdO) axes frame. 
2. The only curves that admit the expression of their Cartesian coordinates in finite terms are 
plane or rectilinear curves. 
3. For the particular case of kt/kn= const(s), (perhaps the only one) one can derive the cartesian 
coordinates expressed as functions of the free coordinate s. 

5. APPENDIX 
a. Detailed calculations for the Frobenius integrability theorem applied to the Pfaff form (13), 
considering the mentioned notations: 

𝜕𝜕 = tan𝜃𝜃 tan𝜑𝜑        𝑏𝑏 = −1       𝑐𝑐 = 𝑘𝑘𝑡𝑡(𝑑𝑑)  

are as follows:  

�
𝜕𝜕𝜕𝜕
𝜕𝜕𝜙𝜙

−
𝜕𝜕𝑏𝑏
𝜕𝜕𝜃𝜃
� (𝜆𝜆𝑐𝑐) = �tan𝜃𝜃

𝜕𝜕𝜆𝜆 tan𝜑𝜑
𝜕𝜕𝜑𝜑

−
𝜕𝜕(−1)𝜆𝜆
𝜕𝜕𝜃𝜃 � (𝜆𝜆𝑘𝑘𝑡𝑡) = 

(𝜆𝜆 tan𝜃𝜃
𝜕𝜕 tan𝜑𝜑
𝜕𝜕𝜙𝜙

− 𝜆𝜆
𝜕𝜕(−1)
𝜕𝜕𝜃𝜃

)(𝜆𝜆𝑘𝑘𝑡𝑡) + (tan𝜃𝜃 tan𝜑𝜑
𝜕𝜕𝜆𝜆
𝜕𝜕𝜑𝜑

− (−1)
𝜕𝜕𝜆𝜆
𝜕𝜕𝜃𝜃

)(𝜆𝜆𝑘𝑘𝑡𝑡) 
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(
𝜕𝜕𝜕𝜕
𝜕𝜕𝜑𝜑

−
𝜕𝜕𝑏𝑏
𝜕𝜕𝜃𝜃

)(𝜆𝜆𝑐𝑐) = (𝜆𝜆
tan𝜃𝜃

cos2 𝜑𝜑
)(𝜆𝜆𝑘𝑘𝑡𝑡) + (tan𝜃𝜃 tan𝜙𝜙

𝜕𝜕𝜆𝜆
𝜕𝜕𝜑𝜑

+
𝜕𝜕𝜆𝜆
𝜕𝜕𝜃𝜃

)(𝜆𝜆𝑘𝑘𝑡𝑡) (23) 
 

�
𝜕𝜕𝑏𝑏
𝜕𝜕𝑑𝑑

−
𝜕𝜕𝑐𝑐
𝜕𝜕𝜑𝜑

� (𝜆𝜆𝜕𝜕) = �
𝜕𝜕𝜆𝜆(−1)
𝜕𝜕𝑑𝑑

−
𝜕𝜕𝜆𝜆𝑘𝑘𝑡𝑡
𝜕𝜕𝜑𝜑 � (𝜆𝜆 tan𝜃𝜃 tan𝜑𝜑) = 

((−1)
𝜕𝜕𝜆𝜆
𝜕𝜕𝑑𝑑

− 𝑘𝑘𝑡𝑡
𝜕𝜕𝜆𝜆
𝜕𝜕𝜑𝜑

)(𝜆𝜆 tan 𝜃𝜃 tan𝜑𝜑) + (𝜆𝜆
𝜕𝜕(−1)
𝜕𝜕𝑑𝑑

− 𝜆𝜆
𝜕𝜕𝑘𝑘𝑡𝑡
𝜕𝜕𝜑𝜑

)(𝜆𝜆 tan 𝜃𝜃 tan𝜑𝜑) 
 

 

(
𝜕𝜕𝑏𝑏
𝜕𝜕𝑑𝑑

−
𝜕𝜕𝑐𝑐
𝜕𝜕𝜑𝜑

)(𝜆𝜆𝜕𝜕) = (−
𝜕𝜕𝜆𝜆
𝜕𝜕𝑑𝑑

− 𝑘𝑘𝑡𝑡
𝜕𝜕𝜆𝜆
𝜕𝜕𝜑𝜑

)(𝜆𝜆 tan𝜃𝜃 tan𝜑𝜑) (24) 
 

�
𝜕𝜕𝑐𝑐
𝜕𝜕𝜃𝜃

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑
� (𝜆𝜆𝑏𝑏) = �

𝜕𝜕𝜆𝜆𝑘𝑘𝑡𝑡
𝜕𝜕𝜃𝜃

−
𝜕𝜕𝜆𝜆 tan 𝜃𝜃 tan𝜑𝜑

𝜕𝜕𝑑𝑑
� �𝜆𝜆(−1)� = 

−(𝜆𝜆
𝜕𝜕𝑘𝑘𝑡𝑡
𝜕𝜕𝜃𝜃

− 𝜆𝜆
𝜕𝜕 tan𝜃𝜃 tan𝜑𝜑

𝜕𝜕𝑑𝑑
)(𝜆𝜆) − (𝑘𝑘𝑡𝑡

𝜕𝜕𝜆𝜆
𝜕𝜕𝜃𝜃

− tan 𝜃𝜃 tan𝜑𝜑
𝜕𝜕𝜆𝜆
𝜕𝜕𝑑𝑑

)(𝜆𝜆) 
 

 

(
𝜕𝜕𝑐𝑐
𝜕𝜕𝜃𝜃

−
𝜕𝜕𝜕𝜕
𝜕𝜕𝑑𝑑

)(𝜆𝜆𝑏𝑏) = −(𝑘𝑘𝑡𝑡
𝜕𝜕𝜆𝜆
𝜕𝜕𝜃𝜃

− tan𝜃𝜃 tan𝜑𝜑
𝜕𝜕𝜆𝜆
𝜕𝜕𝑑𝑑

)(𝜆𝜆) (25) 

Summing the formulas (23), (24), (25) we remark that all terms cancel each other out and it is 
derived the final result: 

𝜆𝜆𝑘𝑘𝑡𝑡(𝑑𝑑)
tan𝜃𝜃

cos2 𝜑𝜑
= 0 (26) 

b. Solving the differential equation (17) we proceed to consider the new unknown function as 
ϕsin which will be denoted by u. So, the equation becomes successively: 

𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

= 𝑢𝑢 tan𝜃𝜃 + 𝐾𝐾  →   
𝑑𝑑𝑢𝑢
𝑑𝑑𝜃𝜃

cos𝜃𝜃 − 𝑢𝑢 𝑑𝑑𝑠𝑠𝑛𝑛 𝜃𝜃 = 𝐾𝐾 co𝑑𝑑 𝜃𝜃  

It comes to be obvious that the new unknown function is 𝑢𝑢 cos𝜃𝜃 which will be denoted as w 
and the equation becomes: 

𝑑𝑑𝑤𝑤
𝑑𝑑𝜃𝜃

= 𝐾𝐾 cos𝜃𝜃 (27) 

that has the solution: 

𝑤𝑤 = 𝐾𝐾 sin𝜃𝜃 + 𝐶𝐶𝜃𝜃 (28) 

that is, in fact:  

sin𝜑𝜑 cos𝜃𝜃 = 𝐾𝐾 sin𝜃𝜃 + 𝐶𝐶𝜃𝜃 (29) 
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