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Abstract: This work aims to address the free vibration analysis of two-dimensional porous 2-D FG 
plates with temperature-dependent properties that are subjected to thermomechanical loading. The 
revised element finite element model has seven degrees of freedom and has been developed based on 
higher-order shear deformation theory. The material constitutions in two directions along the length 
and thickness are varied according to the revised index law of power. The current proposed 
numerical approach has been evaluated with existing literature results to find good amiability 
between them. With all side-supported boundary conditions, the effect of thermomechanical loads 
and porosity allocation on free vibration analysis of temperature-dependent material FG plates is 
explored. Also, the consequence of consistent and erratic porous portions of free vibration 
characteristics on 2D FG plates is studied. 2D properties are disbanded, which affects the natural 
frequency of the FG plate. In this case, the rise in environmental temperature and index values 
reduces the frequencies of the porous FG plates. Changeable porous distribution on FG plates 
obtained exemplary frequency characteristics compared with the consistent porous distribution. 

Key Words: FG material plates, porosity, thermal field, finite element approach, free vibration 

1. INTRODUCTION 
Advanced composites based on functionally graded materials consist of two or more 
components, the direction of which varies along the component direction to produce new 
materials. These integrated combinations of material percentages are transformed in single or 
multiple directions, correspondingly. In 1980 the Japanese started the perception of FGM to 
reduce the thickness of nuclear plants efficiently by Koizumi [1]. Increasing usage of 
technology and applications may raise complicated mathematical modelling of 2-dimensional 
FG plates. By changing the ratio between constituents in FG modelling, the thickness and 
length directions of the model are continually shifted in two-dimensional directions. 

Several investigators enlightened the soliciting intensive research inducements in this area 
with considerable industrial applications of FGM, significantly focused on free vibration, 
static and dynamic characteristics of FG material modelling with one-dimensional direction. 
Materials such as FGM are used extensively in high-temperature environments such as engine 
combustion chambers and nuclear reactors. The structural properties may degenerate due to 
the operating conditions and manufacturing defects. The source of structural failure may be 
due to imperfections like porosities degrading the materials during manufacturing. 
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Accordingly, the study of free vibration analysis of porous 2-D FGM plates is considered 
consequential in this study. 

In this study, some researchers developed different methods to analyze 1D FGM plates' 
vibration characteristics. Three-dimensional exact analytical solutions were developed by 
Senthil and Batra [2] for the frequencies of FG rectangular plates. Ferreira et al. [3] established 
a meshless technique for the study of natural frequency analysis of plates that incorporated a 
global collection of theories for first-order and third-order shear deformation. According to 
Using an analytical approach, Hasani Baferani et al. [4] calculated the free vibration of FG 
thin film plates. As a result of their methodology, they can distinguish between the three 
coupled partial differential equations of motion, which are reformulated into two decoupled 
equations by the Navier method. By employing the element-free Ritz method, Zhao et al. [5] 
analysed the free vibration of FG plates. Hosseini et al. [6] used a first-order shear deformation 
theory to analyse the free vibration of a rectangular plate with FG boundary conditions. Using 
the physical neutral surface principle, Zhang and Zhou [7] investigated FG thin plates for their 
deflection, buckling, and free vibration behavior. 

Several studies have been conducted on FGM plates' vibration analysis in recent years.  
In one of the studies, Reddy and Chin [8] considered the thermomechanical dynamic response 
of functionally graded plates and cylinders. The mathematical model used advanced finite 
element methods with thermomechanical coupling. As part of their study of vibration 
characteristics in a thermal environment, Yang and Shen [9] used a Galerkin approach and 
modal superposition method. Naghdabadi and Hosseini [10] provided a finite element model 
of the plate in accordance with the Rayleigh-Ritz method combined with a non-linear heat-
transfer equation. According to Young-Wann [11], a vibration analysis of functionally graded 
rectangular plates with temperature-dependent material properties is based on Rayleigh-Ritz 
calculations with non-linear heat-transfer equations. Rayleigh-Ritz equations were used to 
obtain frequency equations. By applying second-order shear deformation theory to 
functionally graded plates subjected to thermal loads, Shahrjerdi et al [12] performed free 
vibration analysis of solar panels. A thermomechanical induced vibration of ceramic-metal 
plates was investigated by Talha and Singh [13] by using finite elements. During the 
isoperimetric Lagrangian element C0, each node has 13 degrees of freedom. 

FGM beams are currently being studied to determine the effect of porosity on vibration 
characteristics. By Farzad Ebrahimi and Ali Jafari [15], a thermomechanical vibration analysis 
was performed on FGM beams with porosities. By combining higher-order shear deformation 
theory with Hamilton's principle, the authors developed the equation of motion. Based on a 
Navier-type solution, they solved the equations. 

According to Farzad Ebrahimi et al [14], compositionally graded Euler beams with 
porosities were used to study vibration effects of temperature. Further, compositionally graded 
beams appear to respond differently to temperature variations depending on their porosity 
volume fraction. 

The authors have not encountered any research on vibration analysis of 2D FG material 
plates from the literature that they have reviewed. FGM plates with porosity were studied with 
finite element method. 

The aim was to achieve an approximate solution that could be compared to free vibration 
characteristics. In this study, the kinematics of the plate element have been developed based 
on the theory of higher order shear deformations. In order to solve the governing equation of 
motion of the plate, Hamilton's principle is applied. By examining a 2D FG plate in a high 
temperature environment, the formulated solution investigates the effect of porous 
distribution. 
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2. FORMULATION OF THE PROBLEM 
A nonlinear equation is considered to analyze the temperature-dependent properties, which 
can be represented as 

𝑄𝑄 = 𝑄𝑄0(𝑄𝑄−1𝑄𝑄−1 + 𝑄𝑄1𝑇𝑇 + 𝑄𝑄2𝑇𝑇2 + 𝑄𝑄3𝑇𝑇3 + 1) (1) 

where, T indicates temperature, Q0, Q_1, Q1, Q2, and Q3 are the coefficients of temperature-
dependent material properties.  

2.1 Mathematical formulation of 2-Dimensional FGM plates 

As shown in Figures 1(a, b) and 1(c), the plate with FG porous distribution and changing metal 
and ceramic distribution is considered for this analysis. A Voigt model determines the 
changing material properties (P) for 2D FGM plates as the young's modulus, density, etc. 

𝑃𝑃(𝑥𝑥, 𝑧𝑧, 𝑄𝑄) = 𝑃𝑃𝑚𝑚(𝑄𝑄) �𝑚𝑚𝑣𝑣(𝑥𝑥, 𝑧𝑧) −
𝜍𝜍
2
� + 𝑃𝑃𝑐𝑐(𝑄𝑄) �𝑐𝑐𝑣𝑣(𝑥𝑥, 𝑧𝑧) −

𝜍𝜍
2
� (2) 

As in Shafiei et al. [16] ceramic quantity fraction can be obtained by simple power law. 

𝑐𝑐𝑣𝑣(𝑥𝑥, 𝑧𝑧) = �
1
2

+
𝑧𝑧
𝑡𝑡
�
𝑥𝑥𝑥𝑥
�
𝑥𝑥
𝐿𝐿
�
𝑧𝑧𝑧𝑧

 (3) 

  
Fig. 1 (a) Thickness direction distribution of material Fig. 1(b) Length direction material distribution  

 
Fig. 1 (c) Thinness and length distributions of material properties.  

A porous FGM-1 is characterized by an even distribution of porosity, whereas porous FGM-2 
is characterized by an irregular distribution, as shown in figures 2a and 2b. 

  
Fig. 2 (a) A 2D FG plate with even porosity 

distribution 
Fig. 2 (b) A 2D FG plate with uneven porosity 

distribution 
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Accordingly, the above equation young’s modulus ‘E’, Poisson’s ratio ‘ϑ ’, the thermal 
conductivity ‘𝛼𝛼’, and mass density ‘𝜌𝜌’ of porous 2D FGM-I plate is applied as 

𝛼𝛼(𝑥𝑥, 𝑧𝑧) = 𝛼𝛼𝑚𝑚(𝑄𝑄) + �𝛼𝛼𝑐𝑐(𝑄𝑄) − 𝛼𝛼𝑚𝑚(𝑄𝑄)�𝜈𝜈𝑐𝑐(𝑥𝑥, 𝑧𝑧) −
𝜍𝜍
2 �
𝛼𝛼𝑐𝑐(𝑄𝑄) + 𝛼𝛼𝑚𝑚(𝑄𝑄)� (4) 

Consequently, Young’s modulus ‘E’, Poisson’s ratio ‘𝜗𝜗’, the thermal conductivity ‘𝛼𝛼’, mass 
density ‘ ρ ’ can be expressed for porous FGM-II as 

𝛼𝛼(𝑥𝑥, 𝑧𝑧) = 𝛼𝛼𝑚𝑚(𝑃𝑃) + �𝛼𝛼𝑐𝑐(𝑃𝑃) − 𝛼𝛼𝑚𝑚(𝑃𝑃)�𝜈𝜈𝑐𝑐(𝑥𝑥, 𝑧𝑧) −
𝜍𝜍
2 �
𝛼𝛼𝑐𝑐(𝑃𝑃) + 𝛼𝛼𝑚𝑚(𝑃𝑃)� �1 −

2|𝑧𝑧|
𝑡𝑡
� (5) 

3. MATHEMATICAL FORMULATION 
3.1 Basic kinematics 

Based on Reddy's equations, the third-order shear deformation theory is used to develop basic 
kinematics of plate structures. 

𝑢𝑢 = 𝑢𝑢𝑛𝑛 + 𝑧𝑧𝜃𝜃𝑥𝑥 − 𝑐𝑐1𝑧𝑧3�𝜃𝜃𝑥𝑥 + 𝑤𝑤𝑛𝑛,𝑥𝑥�, 
𝑣𝑣 = 𝑣𝑣𝑛𝑛 + 𝑧𝑧𝜃𝜃𝑦𝑦 − 𝑐𝑐1𝑧𝑧3�𝜃𝜃𝑦𝑦 + 𝑤𝑤𝑛𝑛,𝑦𝑦� 

𝑤𝑤 = 𝑤𝑤𝑛𝑛 

(6) 

Strain-displacement constitutive law relations on the neutral axis can be expressed as follows: 

{𝜀𝜀𝑏𝑏𝑏𝑏} = �
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥

� =

⎩
⎨

⎧𝜀𝜀𝑥𝑥
(𝑛𝑛𝑛𝑛)

𝜀𝜀𝑦𝑦
(𝑛𝑛)

𝛾𝛾𝑥𝑥𝑥𝑥
(𝑛𝑛𝑛𝑛)

⎭
⎬

⎫
+ 𝑧𝑧

⎩
⎨

⎧𝜀𝜀𝑥𝑥
(1)

𝜀𝜀𝑦𝑦
(1)

𝛾𝛾𝑥𝑥𝑥𝑥
(1)
⎭
⎬

⎫
− 𝑧𝑧3

⎩
⎨

⎧𝜀𝜀𝑥𝑥
(3)

𝜀𝜀𝑦𝑦
(3)

𝛾𝛾𝑥𝑥𝑥𝑥
(3)
⎭
⎬

⎫
 (7) 

{𝛾𝛾𝑠𝑠ℎ} = �
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥� = �

𝛾𝛾𝑦𝑦𝑦𝑦
(𝑛𝑛𝑛𝑛)

𝛾𝛾𝑥𝑥𝑥𝑥
(𝑛𝑛𝑛𝑛)� + 𝑧𝑧2 �

𝛾𝛾𝑦𝑦𝑦𝑦
(2)

𝛾𝛾𝑥𝑥𝑥𝑥
(2)� (8) 

here 𝑐𝑐1 = 4
3�2

 and 𝑐𝑐2 = 3𝑐𝑐1. 
Taking the stress-strain relationship of the functionally graded plate as a 2D plane, one can 
describe it as follows: 

⎩
⎪
⎨

⎪
⎧
𝜎𝜎𝑥𝑥
𝜎𝜎𝑦𝑦
𝜏𝜏𝑦𝑦𝑦𝑦
𝜏𝜏𝑥𝑥𝑥𝑥
𝜏𝜏𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

=

⎣
⎢
⎢
⎢
⎡
𝑞𝑞11 𝑞𝑞12 0 0 0
𝑞𝑞21 𝑞𝑞22 0 0 0
0 0 𝑞𝑞44 0 0
0 0 0 𝑞𝑞55 0
0 0 0 0 𝑞𝑞66⎦

⎥
⎥
⎥
⎤

⎩
⎪
⎨

⎪
⎧
𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝛾𝛾𝑦𝑦𝑦𝑦
𝛾𝛾𝑥𝑥𝑥𝑥
𝛾𝛾𝑥𝑥𝑥𝑥⎭

⎪
⎬

⎪
⎫

 (9) 

where, 𝑞𝑞11 = 𝑞𝑞22 = 𝐸𝐸(𝑥𝑥,𝑧𝑧)
�1−𝜈𝜈2(𝑥𝑥,𝑧𝑧)�

,  𝑞𝑞12 = 𝑞𝑞21 = 𝐸𝐸(𝑥𝑥,𝑧𝑧)𝜈𝜈(𝑥𝑥,𝑧𝑧)
�1−𝜈𝜈2(𝑥𝑥,𝑧𝑧)�

, 𝑞𝑞44 = 𝑞𝑞55 = 𝑞𝑞66 = 𝐸𝐸(𝑥𝑥,𝑧𝑧)
2�1+𝜈𝜈(𝑧𝑧,𝑥𝑥)�

 

3.2 Finite Element Approach 

In this study, a four-nodded quadrilateral with one node at each corner is considered to have 
five degrees of freedom. 
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It is possible to observe two in plane displacements along x and y axes, as well as one 
transverse displacement in the thickness direction and rotations about x and y axes. The 
displacement vector of an element 𝛿𝛿(𝑛𝑛) is written as 

�𝛿𝛿(𝑛𝑛)� = �𝑁𝑁𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝛿𝛿𝑖𝑖, (10) 

where �𝛿𝛿(𝑛𝑛)� = �𝑢𝑢, 𝑣𝑣, 𝑤𝑤, 𝜃𝜃𝑥𝑥, 𝜃𝜃𝑦𝑦�, nodal displacement vector of an element 

�𝛿𝛿(𝑒𝑒)� = �𝑢𝑢𝑖𝑖, 𝑣𝑣𝑖𝑖, 𝑤𝑤𝑖𝑖, 𝜃𝜃𝑥𝑥𝑥𝑥, 𝜃𝜃𝑦𝑦𝑦𝑦�𝑖𝑖=1,2,3,4
 (11) 

The matrix of shape functions is follows as 

[𝑁𝑁] = ��𝑁𝑁𝑢𝑢𝑛𝑛��𝑁𝑁𝑣𝑣𝑛𝑛��𝑁𝑁𝑤𝑤𝑛𝑛��𝑁𝑁𝜃𝜃𝑥𝑥� �𝑁𝑁𝜃𝜃𝑦𝑦��
𝑇𝑇

 (12) 

Nodal displacement vector can be used to express strain vectors �𝛿𝛿(𝑒𝑒)� as follows  

{𝜀𝜀𝑏𝑏𝑏𝑏} = [𝐵𝐵𝑏𝑏𝑏𝑏]�𝛿𝛿(𝑒𝑒)� (13) 

{𝛾𝛾𝑠𝑠𝑠𝑠} = [𝐵𝐵𝑠𝑠𝑠𝑠]�𝛿𝛿(𝑒𝑒)� (14) 

As an example of strain energy, consider the following: 

𝑈𝑈𝑃𝑃𝑃𝑃
(𝑒𝑒) =

1
2
� � ��𝛿𝛿(𝑒𝑒)�

𝑇𝑇
��𝐾𝐾𝑏𝑏

(𝑒𝑒)� + �𝐾𝐾𝑠𝑠
(𝑒𝑒)�� �𝛿𝛿(𝑒𝑒)��

𝑏𝑏

0

𝑙𝑙

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (15) 

As a kinetic energy of an element is 

𝑉𝑉𝐾𝐾𝐾𝐾
(𝑒𝑒) =

1
2
�𝜌𝜌(𝑧𝑧)(𝑢̇𝑢2 + 𝑣̇𝑣2 + 𝑤̇𝑤2)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
𝑣𝑣

 (16) 

The velocities 𝑢̇𝑢, 𝑣̇𝑣𝑎𝑎𝑎𝑎𝑎𝑎𝑤̇𝑤 as a shape function and nodal velocity vector, are represented as 
follows  

𝑢̇𝑢 = ��𝑁𝑁𝑢𝑢𝑛𝑛� + 𝑧𝑧�𝑁𝑁𝜃𝜃𝑥𝑥� − 𝑐𝑐1𝑧𝑧3 ��𝑁𝑁𝜃𝜃𝑥𝑥� + �𝑁𝑁𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
��� {𝛿𝛿(𝑒𝑒)}𝑇𝑇, 

𝑣̇𝑣 = ��𝑁𝑁𝑣𝑣𝑛𝑛� + 𝑧𝑧 �𝑁𝑁𝜃𝜃𝑦𝑦� − 𝑐𝑐1𝑧𝑧3 ��𝑁𝑁𝜃𝜃𝑦𝑦� + �𝑁𝑁𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
��� {𝛿𝛿(𝑒𝑒)}𝑇𝑇 

𝑤̇𝑤 = �𝑁𝑁𝑤𝑤𝑛𝑛�{𝛿𝛿
(𝑒𝑒)}𝑇𝑇 

(17) 

As a result of the element kinetic energy (𝑇𝑇(𝑒𝑒)) 

𝑉𝑉𝐾𝐾𝐾𝐾
(𝑒𝑒) =

1
2
� � ��𝛿𝛿(𝑒𝑒)�

𝑇𝑇
�𝑀𝑀(𝑒𝑒)� �𝛿𝛿(𝑒𝑒)��

𝑏𝑏

0

𝑙𝑙

0
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (18) 

3.3 Thermal environment condition 

To conduct an analysis, the temperature gradient should vary nonlinearly in the thickness 
direction. 
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A non-linear temperature gradient z-direction is presumed to be associated with the simple 
power function. 

𝑇𝑇 = 𝑇𝑇𝑎𝑎 + 𝛥𝛥𝛥𝛥 �
1
2

+
𝑧𝑧
𝑡𝑡
�
𝜄𝜄𝜄𝜄

 (19) 

When using FGM, it is necessary to consider nonlinear variations of material properties 
and nonlinear heat distribution conditions, especially in high temperature applications. 

3.4 Numerical Equation 

Calculating the fundamental calculation of equation entails applying Hamilton's principle. 

𝛿𝛿� �𝑈𝑈𝑃𝑃𝑃𝑃
(𝑒𝑒) − 𝑉𝑉𝐾𝐾𝐾𝐾

(𝑒𝑒)�
𝑡𝑡2

𝑡𝑡1
𝑑𝑑𝑑𝑑 = 0 (20) 

Using the nodal displacement vector for a particular element, the energy of kinetic and 
potential of the plate can be articulated below: 

𝑈𝑈𝑃𝑃𝑃𝑃
(𝑒𝑒) =

1
2 �
𝛿𝛿(𝑒𝑒)�

𝑇𝑇
�𝐾𝐾(𝑒𝑒)��𝛿𝛿(𝑒𝑒)� (21) 

𝑉𝑉𝐾𝐾𝐾𝐾
(𝑒𝑒) =

1
2 �
𝛿̇𝛿(𝑒𝑒)�

𝑇𝑇
�𝑀𝑀(𝑒𝑒)��𝛿̇𝛿(𝑒𝑒)� (22) 

According to the temperature-dependent porous FGM plate element in matrix form moves as 
follows: 

�𝑀𝑀(𝑒𝑒)��𝛿̈𝛿(𝑒𝑒)� + �𝐾𝐾(𝑒𝑒)� �𝛿𝛿(𝑒𝑒)� = 0 (23) 

We could substitute the displacement vector, stiffness matrix, and mass matrix of plate in the 
equation above to determine the following equation: 

�[𝐾𝐾] − 𝜔𝜔𝑛𝑛2[𝑀𝑀]�{𝛿𝛿} = 0 (24) 

4. RESULTS AND DISCUSSIONS 
4.1 Numerical validation 

Temperature dependent material properties are considered from the Reddy and Chin [8] for 
this numerical study. 

To ensure that the numerical technique works, a natural frequencies analysis of a 
temperature-dependent FG material plate is solved. 

Before calculating the vibration characteristics of the temperature dependent FGM plate 
in a thermal environment, it is necessary to validate the derived formulation. 

In Table 1, the comparison of the frequencies of one-dimensional FG plates found from 
this study and that obtained by Huang and Shen [17], is performed based on the law of power 
variation for material properties disbandment as studied in this study. 

In an effort to authenticate the numerical correctness of their method, the authors used the 
published consequences of Huang and Shen [17] to determine the vibration characteristics of 
the temperature-dependent materials plates. 

According to the authors, the numerical results in table 1 are comparable to those reported 
in the literature. 
Frequency parameter 𝛺𝛺 = 𝜔𝜔(𝑎𝑎2/�)�(𝜌𝜌0(1 − 𝜈𝜈2)/𝐸𝐸0) 
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Table. 1 Fundamental frequency parameters of simply supported temperature-dependent ZrO2/Ti–6Al–4V plate 

 ZrO2 0.5 1 2 Ti–6Al–4V 

Mode Ref. [16] Present Ref. [16] Present Ref. [16] Present Ref. [16] Present Ref. [16] Present 

(1,1) 7.86 7.9 6.87 6.94 6.43 6.51 6.1 6.09 5.32 5.28 

(1,2) 18.65 18.66 16.26 16.37 15.2 15.36 14.37 14.38 12.45 12.47 

(2, 2) 28.2 28.16 24.57 24.7 22.95 23.16 21.65 21.68 18.76 18.81 

(1, 3) 34.01 34.68 29.65 30.4 27.69 28.51 26.11 26.69 22.6 23.17 

(2, 3) 42.04 41.56 36.66 36.34 34.23 34.01 32.23 31.82 27.92 27.76 

4.2 The effect of equal and asymmetrical porosities distribution on natural 
frequencies 

Two-dimensional FG plates have a much different distribution of thickness and axial 
dimensions than one-dimensional FG plates. For this study, a square plate index values of axial 
ax = 1, thickness az = 1, porosity 0.2 and with a/h=10 is considered. Table 2 describes the 
frequency parameters of temperature-dependent material two-dimensional distribution of 
porous plate. The first four frequencies of 2D FG plates are compared with even and uneven 
porous distribution. By examining table 2 in further detail, it becomes clear that it is the 
frequency parameters of even porous distribution that are most sensitive to temperature 
variations at various temperatures. 
Table. 2 Frequency parameter of even and uneven porosities (0.2) of a temperature-dependent material plate in a 

thermal environment with simply supported boundary condition. 

Temperature 
change Porosities Frequency parameter 

1 2 3 4 
0 Even 3.14 6.57 9.56 12.40 

Uneven 3.16 6.63 9.64 12.50 
200 Even 3.10 6.48 9.45 12.25 

Uneven 3.13 6.55 9.52 12.35 
400 Even 3.07 6.43 9.35 12.13 

Uneven 3.09 6.48 9.43 12.23 
600 Even 3.04 6.38 9.23 12.03 

Uneven 3.07 6.43 9.35 12.13 
800 Even 3.02 6.33 9.21 11.95 

Uneven 3.03 6.34 9.22 11.96 
 

  
Fig. 3 (a) The first mode's variation with uniform 

porosity disbandment influences on first 
fundamental frequency 

Fig. 3(b) The second mode's variation with uniform 
porosity disbandment influences on second 

fundamental frequency 
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This figure displays the disparity of the first two-mode fundamental frequencies concerning 
the axial grading indexes as shown in Figures 3(a) and 3(b). Different porosities are used in 
these figures to illustrate the variation of the frequency parameters. Despite constant index 
values, the consequence of the even dispersal of porosity on the frequency parameter slightly 
decreases with increasing porosity (0, 0.1, 0.2, 0.3). It is due to the increase of porosity volume 
fraction on the 2D FG plate that may cause a decrease in the volume fraction of FG content. 
Decreased FG content reduces the stiffness of the plate.  

  
Fig. 4(a) The influence of unequal porosity 

disbandment on the first fundamental frequency. 
Fig. 4(b) The influence of unequal porosity 

disbandment on the second fundamental frequency. 

The influence of porosity distribution on mode frequency parameters is depicted in Figures 4 
(a) and (b). Increasing the axial index value of the 2D FG plate decreases both first and second 
mode frequency parameters. Thus, by raising the uneven porous volume fraction, we could 
decrease not only the frequency parameter but also the overall stiffness of a porous two-
dimensional FG plate. 

 
Fig. 5 The frequency parameter variation of a plate's distribution of uniform and uneven porosities. 

The difference between the even and uneven porosity fractions of 0.2 and 0.3 is shown in 
figure 5 for a variety of axial index values. Temperature conditions and thickness direction 
indices are also maintained as constants in this case. The frequency parameter may be 
calculated by applying the identical thermal situation to the equal and uneven porous volume 
fractions. Frequency settings can be adjusted for uniform and uneven porous surfaces. As 
observed in Figure 5, the frequency of uneven porous distribution volume fraction of the two-
dimensional FG plate is higher than that of the even volume fraction of the porous plate. 

4.3 Natural frequencies of porous 2D FG plate in thermal fields 

The influence of the thermal environment on the free vibrations of the 2D FG plate through 
various amalgamations of power-law axial and thickness index values are described in table 
3. The increase in temperature reduces the frequency parameter of even and uneven porous 
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2D FG plate, sequentially. Furthermore, the even porous condition is more influenced by the 
frequency parameter compare with an uneven porous case. 

Table. 3 Frequency parameters of simply supported temperature-dependent material porous plate with various 
combinations (xa, za) of index values. 

Temperature change Porosities Length and thickness index values (xa, za) 
(0,0) (1,0) (1,1) (10,10) 

0 Even 3.14 1.98 1.65 1.39 
Uneven 3.16 1.99 1.66 1.40 

200 Even 3.10 1.96 1.63 1.38 
Uneven 3.13 1.97 1.64 1.38 

400 Even 3.07 1.93 1.60 1.35 
Uneven 3.09 1.93 1.62 1.36 

600 Even 3.04 1.90 1.57 1.31 
Uneven 3.07 1.91 1.57 1.32 

800 Even 3.02 1.86 1.52 1.25 
Uneven 3.03 1.87 1.53 1.26 

 

  
Fig. 6 (a) Change of even porosity on FGM plate, the 
first mode frequency characteristic variation with a 

temperature rise. 

Fig. 6 (b) Change of even porosity on FGM plate, the 
second mode frequency characteristic variation with a 

temperature rise. 

The variation of axial and thickness index values of the even porous plates are considered 
ceramic (0, 0), axial FG (1, 0), 2D FG (1, 1) & 2D FG (10, 10) plates. These even volume 
fraction (0.2) porous plates are influenced by the rise in temperature as revealed in figure 6. 
The rise of temperature reductions the first and second mode non-dimensional parameters of 
the even porous 2D FG plates are depicted in figure 6 (a) and (b), correspondingly. It explains 
that the upsurge in temperature difference reduces the even porous 2D FG plate frequency. 
The high thermal environment weakens the properties of material even porous plates and it 
begins to decrease the frequency parameter. 
 

  
Fig. 7(a) Uneven distributed porosity of FG material 

plate with temperature for fundamental frequency 
Fig. 7(b) Uneven distributed porosity of FG material 

plate with temperature for second fundamental 
frequency 
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The first and second parameter of frequency variation by the addition of temperature change 
of the uneven volume fraction porous plates are represented in Figures 7(a) and (b). In this 
case, also the temperature rise reduces the uneven porous plate frequencies of the first and 
second modes. 

 
Fig. 8 The natural frequency of 2D FG plates by uniform and irregular porosities varies with temperature. 

The effect of temperature change on a porous 2D FG plate with uniform and uneven conditions 
is shown in Figure 8. As the temperature rises, the frequency of non-dimensional zones 
decreases. Furthermore, it is found that even in porous conditions less natural frequencies exist 
by comparing uneven porous conditions. According to this, 2D FG plates can be studied in 
depth when the porous structure is uneven. 

5. CONCLUSIONS 
Using finite element analysis, a numerical solution for free vibration analysis of porous FG 
plates is developed using higher-order shear deformation theory. The present study analyzes 
the distribution of porous materials on FG plates in even and uneven conditions. The proposed 
finite element numerical approach implied that the parameters of frequencies are in good 
agreement with those published in research papers. The influences of even and uneven 
distributions of porosity, axial and thickness directions of the distribution of temperature-
dependent properties of temperature-dependent materials, and the presence of high 
temperatures have been examined for 2D FG plates. As porosity concentration increases, the 
natural frequencies of 2D FG plates decrease, as has been observed in this study. Also, the 
frequency parameters slightly decrease with temperature. Furthermore, the uneven porous 
distribution influences less significantly the non-dimensional frequencies of the plate. 
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