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Abstract: This paper deals with the development of a novel time-domain analytical method to perform 
an aeroelastic stability analysis of a high aspect ratio wing. The aerodynamic model in this paper is 
built upon the frequency domain of Theodorsen aerodynamics. An inverse Fourier transform technique 
is applied to convert the Theodorsen frequency domain transfer function to the Wagner time-domain 
response function. Later, lift and moment expressions, containing aerodynamic lag states are obtained 
using the indicial function approach which performs the convolution of the unit step response Wagner 
lift function with arbitrary input and its time derivative using the principle of superposition. Additional 
equations containing the derivative of aerodynamic lag states are coupled with previously obtained lift 
and moment expressions to fully get the complete unsteady aerodynamic model in the time-domain. This 
time-domain unsteady aerodynamic model is then coupled with a combined bending torsion beam finite 
element model, using the state space approach. A complex eigenvalue analysis of this state space system 
is performed, using MATLAB, to determine both the static and dynamic aeroelastic stability boundary. 
Finally, in this paper, aeroelastic stability analysis of the high aspect ratio wing is performed using the 
current method and results are validated with MSC Nastran aeroelastic analysis and those available in 
the literature. 
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1. INTRODUCTION 

High Altitude, Long Endurance HALE aircraft is characterized by wings with very high aspect 
ratios, which have the advantage of reducing the induced drag, thus leading to higher lift-to-
drag ratios [1]. These characteristics make HALE aircraft achieve longer endurance, long-
range, lower fuel consumption, and lesser environmental emissions. Besides, several 
advantages, large deformations and deflections associated with high aspect ratio wings make 
them vulnerable to destructive fluid-structure interactions and give rise to various aeroelastic 
instability problems, such as torsional divergence and flutter [2]. In literature, several 
aeroelastic studies are available. Van Schoor and Von Flotow [3], were the first who studied 
the aeroelasticity of high aspect ratio wings and demonstrated the effects of wing flexibility 
on the aeroelastic characteristics of the high aspect ratio wings. Later, Patil and Hodges [4], 
contributed toward the non-linear aeroelasticity of HALE aircraft and highlighted that they 
can be highly flexible even at low aerodynamic loading and encounter large deformations 
which affect modal characteristics and thus produce noticeable changes in aeroelastic behavior 
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of the high aspect ratio wings. Aeroelastic phenomena involves the interaction between the 
structure and aerodynamics. Aerodynamics is generally divided into steady, quasi-steady and 
unsteady models. Unsteady aerodynamic flows are most general time dependent flows, 
whereas steady and quasi-steady aerodynamic flows are derived from unsteady aerodynamic 
flows. Steady aerodynamics originates from ignoring all time dependencies in unsteady flows. 
Quasi-steady aerodynamic flow takes time dependency into account yet not fully unsteady as 
there is no lag between the angle of attack and response of the structure, as all pressure 
fluctuations over the wing and wake are instant because of low-frequency motion. Thus, 
steady, and quasi-steady models are not suitable for aeroelastic analysis as they fail to capture 
wake-associated lag effects encountered in subsonic unsteady aerodynamic flows. 
Haddadpour [5] demonstrated that quasi-steady aerodynamics yields inaccurate results for 
aeroelastic stability analysis. In literature, various unsteady aerodynamic models are used for 
aeroelastic analysis. Kier [6] compared the unsteady aerodynamic models such as Vortex 
Lattice Method (VLM) [7] , Doublet Lattice Method (DLM) [8] and extended strip theory and 
declared the last one as the most suitable for aeroelastic analysis due to ease of modelling and 
fast simulation times. However, the unsteady strip theory presented by Theodorsen [9] , widely 
used for aeroelastic analysis, is in frequency domain which represents the lift and pitching 
moment for a thin airfoil undergoing small harmonic oscillations in an incompressible flow. 
This frequency domain strip theory needs to be converted into time-domain which can then be 
appended with the structural dynamic model using state space system and achieve the 
advantages of fast and robust aeroelastic analysis in initial aircraft design phase. In this paper, 
an unsteady aerodynamic model, fully in the time-domain is developed using a novel approach 
of Indicial functions and aerodynamic lag states. This paper builds on the frequency domain 
Theodorsen unsteady aerodynamic model. The Wagner function [10] is used for the 
conversion of the Theodorsen function to its time equivalent using Inverse Fourier transform 
[11]. Later, a convolution approach [12] is used, where convolution of unit step response 
function with an arbitrary input and its time derivative is performed. Circulatory lift function 
containing convolution integral is then solved using differential equations. Additionally, a 
unique method which introduces aerodynamic lag states, which are result of integral of 
exponential functions is used. Finally, additional equations in the form of aerodynamic lag 
state derivatives are obtained using Leibniz integration rule [13], to solve for the unsteady lift 
and moment expressions fully in time-domain. This fully unsteady aerodynamic model is then 
coupled with the combined bending torsion Euler-Bernoulli beam finite element model for the 
development of aeroelastic stability analysis method fully in time-domain. Linear time 
invariant LTI State space system [14] is used to setup complete aeroelastic system in the 
MATLAB. After the development of method, an aeroelastic stability analysis of high aspect 
ratio wing is performed using a complex Eigen value analysis of state space system at different 
flight speeds. Lastly, the results are validated with literature and by performing complete 
aeroelastic stability analysis in MSC Nastran. 

2. DEVELOPMENT OF NOVEL TIME-DOMAIN AERODYNAMIC MODEL 
Theodorsen aerodynamic model deals with the unsteadiness associated with wake in the 
subsonic in-compressible flow. When a wing is pitching and heaving, vortices are shed from 
the trailing edge of airfoil and are propagated in the wake. This shed vorticity creates a pressure 
fluctuation, which propagates with the speed of sound causing some pressure information to 
propagate upstream in subsonic flow, making it difficult to model than supersonic flow, where 
all pressure information propagates downstream. In unsteady aerodynamics, lift exhibits a lag 
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with respect to input and will built up over time. Theodorsen [9] investigated these wake lag 
effects and called the forces that are caused by the wake vorticity or circulation as circulatory 
forces, whereas, the forces and moments that are caused by the flow potential, on the airfoil 
itself, as non-circulatory forces. Thodorsen function C(k) is a complex function, shown in Eq. 
(1), written in terms of reduced frequency 𝑘𝑘 = ω𝑏𝑏

𝑈𝑈
, where ω shows the frequency of the 

structure. This function causes a lag in magnitude and phase difference between aerodynamic 
forces and structural degrees of freedom. 

𝐶𝐶(𝑘𝑘) = 𝐹𝐹(𝑘𝑘) + 𝑖𝑖𝑖𝑖(𝑘𝑘) (1) 
Total unsteady aerodynamic lift 𝐿𝐿 and moment expressions M , consists of two parts, namely, 
circulatory such as 𝐿𝐿𝐶𝐶, 𝑀𝑀𝐶𝐶 and non-circulatory lift such as 𝐿𝐿𝑁𝑁𝑁𝑁  and 𝑀𝑀𝑁𝑁𝑁𝑁, as shown in Eq. (2). 
The aerodynamic model formulated in this paper has no flap control surface. Wing is exposed 
to general excitation due to heave h and pitch θ. Here, vertical direction is defined positive 
upwards. Therefore, lift and the vertical displacement h are positive upwards. Free stream 
velocity, elastic pitch angle, air density and effective angle of attack are represented by U, θ, 
ρ and α, respectively. The half chord and distance between mid of airfoil to elastic axis is 
shown by b and a, respectively. 

𝐿𝐿 = ρ𝑏𝑏2�𝑈𝑈πθ̇ + πℎ̈ − π𝑏𝑏𝑏𝑏θ
..
� + 2πρ𝑈𝑈𝑈𝑈𝑈𝑈(𝑘𝑘) �𝑈𝑈θ− ℎ̇ + 𝑏𝑏 �

1
2
 − 𝑎𝑎� θ

.
� 

𝐿𝐿𝑁𝑁𝑁𝑁 = ρ𝑏𝑏2�𝑈𝑈πθ̇ + πḧ − π𝑏𝑏𝑏𝑏θ
..
� 

𝐿𝐿𝐶𝐶 = 2πρ𝑈𝑈𝑈𝑈𝑈𝑈(𝑘𝑘) �𝑈𝑈θ− ℎ̇ + 𝑏𝑏 �
1
2
 − 𝑎𝑎� θ

.
� 

α = −
ℎ̇
𝑈𝑈

+ θ +
θ̇
𝑈𝑈
𝑏𝑏 �

1
2
 − 𝑎𝑎� 

𝑀𝑀 = −ρ𝑏𝑏2 �𝑈𝑈π �
1
2
 − 𝑎𝑎� 𝑏𝑏θ̇ + π𝑏𝑏2 �

1
8

+ 𝑎𝑎2� θ̈ − π𝑏𝑏𝑏𝑏ℎ̈� +  𝑀𝑀𝐶𝐶 

𝑀𝑀𝑁𝑁𝑁𝑁 = −ρ𝑏𝑏2 �𝑈𝑈π �
1
2
 − 𝑎𝑎� 𝑏𝑏θ̇ + π𝑏𝑏2 �

1
8

+ 𝑎𝑎2� θ̈ − π𝑏𝑏𝑏𝑏ℎ̈� 

𝑀𝑀𝐶𝐶 = 𝐿𝐿𝐶𝐶 .𝑏𝑏(1/2 + 𝑎𝑎) 

(2) 

Circulatory parts are proportional to reduced frequency 𝑘𝑘, thus frequency dependent, whereas 
non-circulatory parts are independent of frequency. Hence, only circulatory parts of lift and 
moment expressions will be converted into time-domain. Dowell [11] and Garrick [15] 
demonstrated the equivalence of Theodorsen frequency domain transfer function and Wagner 
time-domain response function using Fourier transform method. The Theodorsen and Wagner 
functions are equivalent representations of the effect of wake in the frequency domain and 
time-domain, respectively. Inverse Fourier transform is applied to Theodorsen function as 
shown in Eq. (3). 

𝐿𝐿𝑐𝑐(𝑘𝑘) = 2πρ𝑈𝑈2𝑏𝑏α𝐶𝐶(𝑘𝑘) 

𝐿𝐿𝑐𝑐(𝑡𝑡) = 2πρ𝑈𝑈2𝑏𝑏�
α�
𝑖𝑖𝑖𝑖

∞

0

𝐶𝐶(𝑘𝑘)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡∗𝑑𝑑𝑑𝑑 

�
α�
𝑖𝑖𝑖𝑖

∞

0

𝐶𝐶(𝑘𝑘)𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡∗𝑑𝑑𝑑𝑑 = αφ(𝑡𝑡∗) 

𝐿𝐿𝑐𝑐(𝑡𝑡) = 2πρ𝑈𝑈2𝑏𝑏αφ(𝑡𝑡∗) 

(3) 
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Circulatory lift in frequency domain 𝐿𝐿𝑐𝑐(𝑘𝑘) is transformed into time-domain 𝐿𝐿𝑐𝑐(𝑡𝑡) using 
Wagner function φ(𝑡𝑡∗) [10] , a time dependent function, which shows circulatory lift built up 
over time due to a sudden step in angle of attack α. The step in angle of attack is replaced by 
its Fourier equivalent. φ(𝑡𝑡∗) is written in terms of non-dimensional time 𝑡𝑡∗, which is defined 
as number of half chord aircraft flown since the step-in angle of attack is applied. 

φ(𝑡𝑡∗) = 1 − ψ1𝑒𝑒
−ε1(𝑡𝑡∗)𝑈𝑈

𝑏𝑏 − ψ2𝑒𝑒
−ε2(𝑡𝑡∗)𝑈𝑈

𝑏𝑏  

φ(𝑡𝑡∗) = 1 − 0.165𝑒𝑒−0.0455(𝑡𝑡∗) − 0.335𝑒𝑒−0.300(𝑡𝑡∗) 
(4) 

An approximate expression for Wagner function is given by Jones [16], given in Eq.(4). Poles 
of Theodorsen function, such as ε1, ε2 and curve fitting coefficients such as ψ1, ψ2 are obtained 
from Rational function approximation of Theodorsen function.  
The convolution of the unit step response function with arbitrary input α and its time derivative 
defines the Indicial function approach [12]. This function describes the time dependency of 
the aerodynamic lift. The Indicial function is obtained by applying the convolution integral as 
in Eq. (5). 

𝐿𝐿𝑐𝑐 = �𝐿𝐿𝑐𝑐

𝑡𝑡

0

(𝑡𝑡)𝑢𝑢𝑢𝑢(𝑡𝑡 − 𝜏𝜏)
𝑑𝑑α
𝑑𝑑τ
𝑑𝑑τ 

𝐿𝐿𝑐𝑐(𝑡𝑡)𝑢𝑢𝑢𝑢 = 2πρ𝑈𝑈2𝑏𝑏φ(𝑡𝑡∗)1 

(5) 

𝐿𝐿𝑐𝑐(𝑡𝑡)𝑢𝑢𝑢𝑢 is obtained by applying a unit step to amplitude in α. The step response function can 
be used to calculate response to arbitrary non-harmonic input using convolution. Using 
principle of superposition 𝐿𝐿𝑐𝑐 can be written as shown in Eq. (6). 

𝐿𝐿𝑐𝑐 = 2πρ𝑈𝑈2𝑏𝑏(𝛼𝛼(0)𝜑𝜑(𝑡𝑡) +�φ(𝑡𝑡 − τ)
𝑑𝑑α
𝑑𝑑τ

𝑡𝑡

0

𝑑𝑑τ 

φ(𝑡𝑡 − τ) = 1 − ψ1𝑒𝑒
−ε1(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏 − ψ2𝑒𝑒
−ε2(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏  

(6) 

The expression for α, from Eq. (2), contains first order derivatives of h and θ thus, time 
derivative of α, will lead to second order derivative of h and θ. Therefore, the partial 
Integration is used to lower the order of derivative to first order as given in Eq. (7). 

𝐿𝐿𝑐𝑐 = 2πρ𝑈𝑈2𝑏𝑏(α(𝑡𝑡)φ(0) −�
𝑑𝑑φ(𝑡𝑡 − τ)

𝑑𝑑τ
α(τ)

𝑡𝑡

0

𝑑𝑑τ (7) 

𝑑𝑑φ(𝑡𝑡 − τ)
𝑑𝑑τ

= −ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 − ψ2ε2

𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏  (8) 

where, φ(0) = 1 − ψ1 − ψ2. Substituting expressions from Eq. (8) and α in Eq. (7), we get 

𝐿𝐿𝑐𝑐 = 2πρ𝑈𝑈2𝑏𝑏(α(𝑡𝑡)φ(0)

+  ��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 + ψ2ε2

𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�−
ℎ̇
𝑈𝑈

+ θ

+
θ̇
𝑈𝑈
𝑏𝑏 �

1
2
 − 𝑎𝑎��𝑑𝑑τ) 

(9) 
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Now each part of Eq. (9) will be evaluated. Partial Integration is successively used to lower 
the order of differential equations. 
Evaluating terms related to ℎ̇, 𝜃𝜃 and 𝜃̇𝜃 from Eq. (9) we get Eq. (10), Eq. (11) and Eq. (12), 
respectively. 

��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�−
ℎ̇
𝑈𝑈�

𝑑𝑑𝑑𝑑 = −
ψ1ε1
𝑏𝑏

�ℎ − ε1
𝑈𝑈
𝑏𝑏
�𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏

𝑡𝑡

0

ℎ𝑑𝑑τ� 

��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�−
ℎ̇
𝑈𝑈�

𝑑𝑑τ = −
ψ1ε1
𝑏𝑏

(ℎ − ε1
𝑈𝑈
𝑏𝑏
𝑤𝑤1) 

��ψ2ε2
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�−
ℎ̇
𝑈𝑈�

𝑑𝑑τ = −
ψ2ε2
𝑏𝑏

�ℎ − ε2
𝑈𝑈
𝑏𝑏
�𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏

𝑡𝑡

0

ℎ𝑑𝑑τ� 

��ψ2ε21
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�−
ℎ̇
𝑈𝑈�

𝑑𝑑τ = −
ψ2ε2
𝑏𝑏

(ℎ − ε2
𝑈𝑈
𝑏𝑏
𝑤𝑤2) 

(10) 

��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

𝜃𝜃𝜃𝜃𝜃𝜃 = �ψ1ε1
𝑈𝑈
𝑏𝑏
��

𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏

𝑡𝑡

0

𝜃𝜃𝜃𝜃𝜃𝜃 

��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

𝜃𝜃𝜃𝜃𝜃𝜃 = �𝜓𝜓1𝜀𝜀1
𝑈𝑈
𝑏𝑏
�𝑤𝑤3 

��ψ2ε2
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

𝜃𝜃𝜃𝜃𝜃𝜃 = �ψ2ε2
𝑈𝑈
𝑏𝑏
��

𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏

𝑡𝑡

0

𝜃𝜃𝜃𝜃𝜃𝜃 

��ψ2ε2
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

𝜃𝜃𝜃𝜃𝜃𝜃 = �𝜓𝜓2𝜀𝜀2
𝑈𝑈
𝑏𝑏
�𝑤𝑤4 

(11) 

��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�
θ̇
𝑈𝑈
𝑏𝑏 �

1
2
 − 𝑎𝑎��𝑑𝑑τ = �ψ1ε1� �

1
2
 − 𝑎𝑎��𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏

𝑡𝑡

0

�θ̇�𝑑𝑑τ 

��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�
θ̇
𝑈𝑈
𝑏𝑏 �

1
2
 − 𝑎𝑎��𝑑𝑑τ = �ψ1ε1� �

1
2
 − 𝑎𝑎� (𝜃𝜃 − ε1

𝑈𝑈
𝑏𝑏

(�𝑒𝑒−
ε1(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏

𝑡𝑡

0

θ̇)𝑑𝑑τ 

��ψ1ε1
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�
θ̇
𝑈𝑈
𝑏𝑏 �

1
2
 − 𝑎𝑎��𝑑𝑑τ = �ψ1ε1� �

1
2
 − 𝑎𝑎� �θ − 𝜀𝜀1

𝑈𝑈
𝑏𝑏
𝑤𝑤3� 

��ψ2ε2
𝑈𝑈
𝑏𝑏
𝑒𝑒−

ε2(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 �

𝑡𝑡

0

�
θ̇
𝑈𝑈
𝑏𝑏 �

1
2
 − 𝑎𝑎��𝑑𝑑τ = �ψ2ε2� �

1
2
 − 𝑎𝑎� �θ − 𝜀𝜀2

𝑈𝑈
𝑏𝑏
𝑤𝑤4� 

(12) 

The lag effects of wake, that are present in the unsteady aerodynamics through the Theodorsen 
function, are represented in time-domain by aerodynamic lag states, 1w  to 4w  which increases 
the total number of states of system [17] and [18]. 
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𝑤𝑤1 = �𝑒𝑒−
ε1(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏

𝑡𝑡

0

ℎ𝑑𝑑𝑑𝑑;𝑤𝑤2 = �𝑒𝑒−
ε2(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏

𝑡𝑡

0

ℎ𝑑𝑑τ 

𝑤𝑤3 = �𝑒𝑒−
ε1(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏

𝑡𝑡

0

θ𝑑𝑑τ;𝑤𝑤4 = �𝑒𝑒−
ε2(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏

𝑡𝑡

0

θ𝑑𝑑𝑑𝑑 

(13) 

Now putting all the evaluated terms back into Eq. (9), we get the lift and moment expressions. 

𝐿𝐿𝐶𝐶 = 2πρ𝑈𝑈2𝑏𝑏 �α(𝑡𝑡)φ(0) −
ψ1ε1
𝑏𝑏

�ℎ − ε1
𝑈𝑈
𝑏𝑏
𝑤𝑤1� −

ψ2ε2
𝑏𝑏

�ℎ − ε2
𝑈𝑈
𝑏𝑏
𝑤𝑤2�+ ψ1ε1

𝑈𝑈
𝑏𝑏
𝑤𝑤3

+ ψ2ε2
𝑈𝑈
𝑏𝑏
𝑤𝑤4 + �ψ1ε1� �

1
2
− 𝑎𝑎� �θ− ε1

𝑈𝑈
𝑏𝑏
𝑤𝑤3�

+ �ψ2ε2� �
1
2
− 𝑎𝑎� �θ− ε2

𝑈𝑈
𝑏𝑏
𝑤𝑤4�� 

𝑀𝑀𝐶𝐶 = 𝐿𝐿𝐶𝐶𝑏𝑏(1/2 + 𝑎𝑎) 

(14) 

Adding aerodynamic states to the governing aerodynamic equations, renders the system of 
equations non-solvable. 
We have two expressions such as Lc and Mc from Eq.(14), but six unknowns such as h, θ, w1, 
w2, w3 and w4, so to make system solvable we need four more equations in the form of 
derivatives of aerodynamic lag states, which will now be derived using Leibniz Integration 
rule [13] as given below. 

𝑓𝑓(𝑡𝑡) = �𝑒𝑒−
ε1(𝑡𝑡−τ)𝑈𝑈

𝑏𝑏

𝑡𝑡

0

ℎ(τ)𝑑𝑑τ 

𝑑𝑑𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

= 𝑔𝑔(𝑡𝑡)
𝑑𝑑(𝑡𝑡)
𝑑𝑑𝑑𝑑

− 𝑔𝑔(0)
𝑑𝑑(0)
𝑑𝑑𝑑𝑑

+ �
𝑑𝑑(𝑒𝑒−

ε1(𝑡𝑡−τ)𝑈𝑈
𝑏𝑏 ℎ(τ))
𝑑𝑑𝑑𝑑

𝑡𝑡

0

𝑑𝑑τ 

(15) 

𝑤𝑤1
.

= ℎ(𝑡𝑡) −
𝜀𝜀1𝑈𝑈
𝑏𝑏
𝑤𝑤1,𝑤𝑤2

.
= ℎ(𝑡𝑡) −

𝜀𝜀2𝑈𝑈
𝑏𝑏
𝑤𝑤2 

𝑤𝑤3
.

= 𝜃𝜃(𝑡𝑡) −
𝜀𝜀1𝑈𝑈
𝑏𝑏
𝑤𝑤3,𝑤𝑤4

.
= 𝜃𝜃(𝑡𝑡) −

𝜀𝜀2𝑈𝑈
𝑏𝑏
𝑤𝑤4 

(16) 

Now the lift and moment expressions from Eq. (14), can be augmented with expressions from 
Eq.(16) , to get final lift and moment expressions fully in time-domain in Eq. (17) and Eq. (18)
, respectively. 
Here, S denote the depth of each node of FE model. 

𝐿𝐿 = ρ𝑏𝑏2𝑆𝑆�𝑈𝑈πθ̇ + πℎ
..
− π𝑏𝑏𝑏𝑏θ

..
� + 2πρ𝑈𝑈2𝑏𝑏(α(𝑡𝑡)φ(0) −

ψ1ε1
𝑏𝑏

(ℎ − ε1
𝑈𝑈
𝑏𝑏
𝑤𝑤1)− 

ψ2ε2
𝑏𝑏

�ℎ − ε2
𝑈𝑈
𝑏𝑏
𝑤𝑤2� + ψ1ε1

𝑈𝑈
𝑏𝑏
𝑤𝑤3 + ψ2ε2

𝑈𝑈
𝑏𝑏
𝑤𝑤4 + 

(ψ1ε1)(1/2− 𝑎𝑎)(θ − ε1
𝑈𝑈
𝑏𝑏
𝑤𝑤3) + (ψ2ε2)(1/2− 𝑎𝑎)(θ− ε2

𝑈𝑈
𝑏𝑏
𝑤𝑤4)) 

(17) 
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𝑀𝑀 = −ρ𝑏𝑏2𝑆𝑆 �𝑈𝑈π �
1
2
− 𝑎𝑎� 𝑏𝑏θ̇ + π𝑏𝑏2 �

1
8

+ 𝑎𝑎2� 𝜃𝜃
..
− π𝑏𝑏𝑏𝑏ℎ

..
� + 2πρ𝑈𝑈2𝑏𝑏2 �

1
2

+ 𝑎𝑎� 

(α(𝑡𝑡)φ(0) −
ψ1ε1
𝑏𝑏

(ℎ − ε1
𝑈𝑈
𝑏𝑏
𝑤𝑤1)−

ψ2ε2
𝑏𝑏

(ℎ − ε2
𝑈𝑈
𝑏𝑏
𝑤𝑤2) + ψ1ε1

𝑈𝑈
𝑏𝑏
𝑤𝑤3 + ψ2ε2

𝑈𝑈
𝑏𝑏
𝑤𝑤4 + 

(ψ1ε1)(1/2− 𝑎𝑎)(θ − ε1
𝑈𝑈
𝑏𝑏
𝑤𝑤3) + (ψ2ε2)(1/2− 𝑎𝑎)(θ− ε2

𝑈𝑈
𝑏𝑏
𝑤𝑤4)) 

(18) 

3. DEVELOPMENT OF STRUCTURAL MODEL 
The Ritz method [19], is used for finite element formulation presented in this paper, which 
calculates approximate solution to a differential equation subjected to a set of boundary 
conditions. The solution function of a differential equation is assumed to be a linear 
combination of shape functions each having a different weight. The finite element method 
describes the displacement field of small portion, called an element using a shape function. A 
beam model based on Euler Bernoulli beam theory is used in this paper ;it has three degrees 
of freedom [20], where, two degrees of freedoms related to bending, 𝑥𝑥𝐵𝐵 = [ℎ𝑖𝑖 𝜙𝜙𝑖𝑖]𝑡𝑡, such as, 
heave displacement h and an out-of-plane bending rotation φ and one degree of freedom 
related to torsion 𝑥𝑥𝑇𝑇 = [ 𝜃𝜃𝑖𝑖]𝑡𝑡, at each node. The shape functions for the Euler-Bernoulli beam 
have to be C1-continuous for which Hermitian shape functions are used. δ and ζ are shape 
functions related to h and φ, respectively, whereas, γ shows θ related shape function. These 
shape functions have to be consistent with the geometric boundary conditions. For 2 node 
beam element shape functions are shown in Eq. (19). 

δ1 =
1
4

(2 −
2𝑦𝑦
𝐿𝐿

)2(1 +
2𝑦𝑦
𝐿𝐿

); δ2 =
1
4

(
2𝑦𝑦
𝐿𝐿

)2(3−
2𝑦𝑦
𝐿𝐿

) 

ζ1 =
𝐿𝐿
8

(2 −
2𝑦𝑦
𝐿𝐿

)2(
2𝑦𝑦
𝐿𝐿

); ζ2 =
𝐿𝐿
8

(
2𝑦𝑦
𝐿𝐿

)2(
2𝑦𝑦
𝐿𝐿
− 2) 

γ1 = 1 −
1
2

(
2𝑦𝑦
𝐿𝐿

); γ2 =
1
2

(
2𝑦𝑦
𝐿𝐿

) 

(19) 

𝑆𝑆𝐵𝐵 = �δ𝑖𝑖 ζ𝑖𝑖� and 𝑆𝑆𝑇𝑇 = �γ𝑖𝑖�, show shape function matrices. Displacement field of complete 
structure is discretized to an individual element. 𝑥𝑥𝑇𝑇(𝑦𝑦) = 𝑥𝑥𝑇𝑇𝑆𝑆𝑇𝑇 and 𝑥𝑥𝐵𝐵(𝑦𝑦) = 𝑥𝑥𝐵𝐵𝑆𝑆𝐵𝐵. Kinetic 
and potential energy terms are given in [19], where, 𝑥𝑥𝐵𝐵

.
= 𝑑𝑑

𝑑𝑑𝑑𝑑
(𝑥𝑥𝐵𝐵) and 𝑆𝑆𝐵𝐵 ′′ = 𝑑𝑑2(𝑆𝑆𝐵𝐵)

𝑑𝑑2𝑦𝑦
.  𝑆𝑆𝐵𝐵 shows 

the curvature of beam, which is a second spatial derivative of bending shape functions. A 
uniform beam element is considered, where, L, EI, GJ, m and Iθ shows, length, flexural rigidity, 
torsional rigidity, mass per unit length and moment of inertia for twist per unit length. Finally, 
by the application of Lagrange method, stiffness and mass matrices are calculated. The spatial 
derivatives are transformed from global coordinate y to a non-dimensional local coordinate η 
which is defined from -1 to 1. The integration is carried out on the integrals ranging from -1 
to 1 instead of 0 to L which is total length of beam. 

𝐾𝐾𝐵𝐵 =
8𝐸𝐸𝐸𝐸
𝐿𝐿3

� 𝐵𝐵𝐵𝐵 ′′
1

−1
𝐵𝐵𝐵𝐵 ′′𝑡𝑡𝑑𝑑η;𝑀𝑀𝐵𝐵 =

𝑚𝑚𝑚𝑚
2
� 𝐵𝐵𝐵𝐵𝑡𝑡
1

−1
𝐵𝐵𝐵𝐵𝑑𝑑η 

𝐾𝐾𝑇𝑇 =
2𝐺𝐺𝐺𝐺
𝐿𝐿
� 𝐵𝐵𝑇𝑇 ′
1

−1
𝐵𝐵𝑇𝑇 ′𝑡𝑡𝑑𝑑η;𝑀𝑀𝑇𝑇 =

𝐼𝐼θ𝐿𝐿
2
� 𝐵𝐵𝑇𝑇
1

−1
𝐵𝐵𝑇𝑇𝑡𝑡𝑑𝑑η 

𝐾𝐾𝐵𝐵𝐵𝐵 =
𝐶𝐶
𝐿𝐿
� 𝐵𝐵𝐵𝐵 ′′𝑡𝑡
1

−1
𝐵𝐵𝑇𝑇 ′𝑑𝑑η;𝑀𝑀𝐵𝐵𝐵𝐵 =

𝑚𝑚𝑚𝑚𝑚𝑚𝑥𝑥θ

2
� 𝐵𝐵𝐵𝐵𝑡𝑡
1

−1
𝐵𝐵𝑇𝑇𝑑𝑑η 

(20) 
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BB shows the shape function, transformed from global coordinate to local coordinate 
represented in terms of η = 2𝑦𝑦

𝐿𝐿
− 1. 𝐵𝐵𝐵𝐵 ′′ = 𝑑𝑑2

𝑑𝑑𝜂𝜂2
(𝐵𝐵𝐵𝐵). The coupling stiffness and mass matrix 

are shown below, where C shows the coupling factor [20]. Coupling will be present, if the 
centre of gravity axis and elastic axis does not coincide with each other. Distance between 
elastic axis and CG axis non dimensional with half chord b is shown by 𝑏𝑏𝑥𝑥θ. 

𝐾𝐾𝑠𝑠 = �
𝐾𝐾𝐵𝐵 𝐾𝐾𝐵𝐵𝐵𝐵
𝐾𝐾𝐵𝐵𝐵𝐵𝑇𝑇 𝐾𝐾𝑇𝑇 � ;𝑀𝑀𝑠𝑠 = �

𝑀𝑀𝐵𝐵 𝑀𝑀𝐵𝐵𝐵𝐵
𝑀𝑀𝐵𝐵𝐵𝐵

𝑇𝑇 𝑀𝑀𝑇𝑇 � (21) 

4 ANALYSIS 
The most general form of aeroelastic governing equations is given below, 

𝑀𝑀𝑠𝑠𝑥𝑥
..

+ 𝐾𝐾𝑠𝑠𝑥𝑥 = 𝑃𝑃𝑎𝑎 

𝑀𝑀𝑠𝑠𝑥𝑥
..

+ 𝐾𝐾𝑠𝑠𝑥𝑥 = �
𝐿𝐿
0
𝑀𝑀
� 

(22) 

where, x, shows the displacement degrees of freedom. Pa shows the external aerodynamic 
forces which are acting on structure and consists of lift force L and a moment around elastic 
axis M. 𝑀𝑀𝑠𝑠 and 𝐾𝐾𝑠𝑠 shows the global structural mass and stiffness matrices, respectively. 
Lift is associated with out of plane displacement h and will also take care of total bending 
rotation φ, but the bending itself will not be covered by bending loads due to aerodynamics. 
Moment around the elastic axis is associated with torsional rotation θ. Putting the Lift and 
moment expressions from Eq. (17) and Eq. (18), into Eq. (22) we get. 

𝑀𝑀𝑠𝑠𝑥𝑥
..

+ 𝐾𝐾𝑠𝑠𝑥𝑥 = 𝑀𝑀𝑎𝑎𝑥𝑥
..

+ 𝐶𝐶𝑎𝑎𝑥̇𝑥 + 𝐾𝐾𝑎𝑎𝑥𝑥 + 𝑊𝑊𝑥𝑥𝑎𝑎 (23) 

where, 𝑀𝑀𝑎𝑎, 𝐾𝐾𝑎𝑎 and 𝐶𝐶𝑎𝑎 shows the aerodynamic mass, stiffness, and damping matrices, 
respectively. W shows the aerodynamic lag states matrix and 𝑥𝑥𝑎𝑎 shows the aerodynamic lag 
states degrees of freedom. Separating the relevant terms from the lift and moment expressions 
we get aerodynamic matrices as shown below. 

𝑀𝑀𝑎𝑎 = �

ρ𝑏𝑏2𝑆𝑆π 0 −ρ𝑏𝑏3𝑆𝑆π𝑎𝑎
0 0 0

ρ𝑏𝑏3𝑆𝑆π𝑎𝑎 0 −ρ𝑏𝑏4𝑆𝑆π(
1
8

+ 𝑎𝑎2)
� (24) 

𝐶𝐶𝑎𝑎 =

⎣
⎢
⎢
⎢
⎡ −2ρ𝑏𝑏𝑏𝑏𝑏𝑏πφ(0) 0 ρ𝑏𝑏2𝑆𝑆𝑆𝑆π(1 + 2(

1
2
− 𝑎𝑎)φ(0))

0 0 0

−2ρ𝑏𝑏2𝑈𝑈𝑈𝑈π(
1
2

+ 𝑎𝑎)φ(0) 0 ρ𝑏𝑏3𝑈𝑈𝑈𝑈π(
1
2
− 𝑎𝑎)(−1 + 2(

1
2

+ 𝑎𝑎)φ(0))⎦
⎥
⎥
⎥
⎤
 (25) 

𝐾𝐾𝑎𝑎 = 2ρ𝑈𝑈2𝑆𝑆π(ψ1ε1 + ψ2ε2)

⎣
⎢
⎢
⎢
⎢
⎢
⎡

−1 0
𝑏𝑏(φ(0) + (ψ1ε1 + ψ2ε2)(1

2 − 𝑎𝑎))
(ψ1ε1 + ψ2ε2)

0 0 0

𝑏𝑏(
1
2

+ 𝑎𝑎) 0
𝑏𝑏2(1

2 + 𝑎𝑎)(φ(0) + (ψ1ε1 + ψ2ε2)(1
2 − 𝑎𝑎))

(ψ1ε1 + ψ2ε2) ⎦
⎥
⎥
⎥
⎥
⎥
⎤

 (26) 
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𝑊𝑊 = 2πρ𝑈𝑈3(
1
2

+ 𝑎𝑎)𝑆𝑆

⎣
⎢
⎢
⎢
⎢
⎢
⎡ ψ1ε12

𝑏𝑏(1
2 + 𝑎𝑎)

ψ2ε22

𝑏𝑏(1
2 + 𝑎𝑎)

ψ1ε1(1 − ε1(1
2 − 𝑎𝑎))

(1
2 + 𝑎𝑎)

ψ2ε2(1 − ε2(1
2 − 𝑎𝑎))

(1
2 + 𝑎𝑎)

0 0 0 0

ψ1ε1ε1 ψ2ε2ε2 ψ1ε1(1 − ε1(
1
2
− 𝑎𝑎))𝑏𝑏 ψ2ε2(1 − ε2(

1
2
− 𝑎𝑎))𝑏𝑏⎦

⎥
⎥
⎥
⎥
⎥
⎤

 (27) 

𝑊𝑊0 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡−

ε1𝑈𝑈
𝑏𝑏

0 0 0

0 −
ε2𝑈𝑈
𝑏𝑏

0 0

0 0 −
ε3𝑈𝑈
𝑏𝑏

0

0 0 0 −
ε4𝑈𝑈
𝑏𝑏 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (28) 

Aeroelastic mass and stiffness matrices Mae and Kae are shown in Eq. (29). 
𝑀𝑀𝑎𝑎𝑎𝑎𝑥𝑥

..
− 𝐶𝐶𝑎𝑎𝑥𝑥

.
− 𝐾𝐾𝑎𝑎𝑎𝑎𝑥𝑥 + 𝑊𝑊𝑥𝑥𝑎𝑎 

𝑀𝑀𝑎𝑎𝑎𝑎 = 𝑀𝑀𝑠𝑠 −𝑀𝑀𝑎𝑎 
𝐾𝐾𝑎𝑎𝑎𝑎 = 𝐾𝐾𝑠𝑠 − 𝐾𝐾𝑎𝑎 

(29) 

General form of state space equation is presented in Eq. (30) given by Fortmann [21]. The 
state space technique uses the first order ordinary differential equations to describe the 
governing aeroelastic equation, which are of second order. A state space approach similar to 
Karpel [14] is used in this paper. X is states of the system and u is inputs to the system. For 
aeroelastic stability analysis inputs u do not affect the stability of the system. 

 𝑋𝑋
.

= 𝐴𝐴𝐴𝐴 + 𝐵𝐵𝐵𝐵 

𝑋𝑋
.

= 𝐴𝐴𝐴𝐴;𝑋𝑋 = �
𝑥𝑥
.

𝑥𝑥
𝑥𝑥𝑎𝑎
� 

(30) 

Writing the matrices in state space form we get the state space matrix A, given below. 

𝐴𝐴 = �
𝑀𝑀𝑎𝑎𝑎𝑎

−1𝐶𝐶𝑎𝑎 −𝑀𝑀𝑎𝑎𝑎𝑎
−1𝐾𝐾𝑎𝑎𝑎𝑎 𝑀𝑀𝑎𝑎𝑎𝑎

−1𝑊𝑊
𝐼𝐼 0 0
0 𝐼𝐼𝐼𝐼 𝑊𝑊0

� (31) 

𝐼𝐼 = �
1 0 0
0 1 0
0 0 1

� ; 𝐼𝐼𝐼𝐼 = �

1 0 0
1 0 0
0 0 1
0 0 1

� (32) 

𝜆𝜆𝜆𝜆 = 𝐴𝐴𝐴𝐴 
(𝐴𝐴 − 𝜆𝜆𝜆𝜆)𝑋𝑋 = 0 
𝑑𝑑𝑑𝑑𝑑𝑑[𝐴𝐴 − 𝜆𝜆𝜆𝜆] = 0 

(33) 

Aeroelastic stability analysis is basically a complex Eigen value analysis of the state space 
matrix A, which yields complex Eigen values, λ = σ + iω, where, damping σ and frequency 
ω, show real and imaginary parts, respectively. 
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Due to the fact that aerodynamic stiffness and damping matrices are dependent on airspeed, 
so to determine the aeroelastic instability, complex Eigen value analysis is needed to be 
performed over the range of different air speeds. 
Aeroelastic system will be unstable when σ > 0. Additionally, ω ≠ 0 shows flutter while, 
ω = 0 shows divergence. 
Divergence can also be found out by performing real eigen value analysis of static aeroelastic 
equation given below. 

(𝐾𝐾𝑠𝑠 − 𝑞𝑞𝐾𝐾𝑎𝑎 − 𝜆𝜆)𝑋𝑋 = 0 
𝑑𝑑𝑑𝑑𝑑𝑑[𝐾𝐾𝑠𝑠 − 𝑞𝑞𝐾𝐾𝑎𝑎 − 𝜆𝜆] = 0 

(34) 

5. RESULTS AND VALIDATION 
Aircraft model data are obtained from [4]. Material properties of wing are selected on hit and 
trial basis to get the desired modal frequencies of wing. 
Eigen value analysis of structural mass and stiffness matrices is performed using MATLAB 
to compute normal modes of wing. The mode shapes of the first few modes are shown in 
Figure 1. 

  
(a) 1st Flatwise Bending Mode (b) 2nd Flatwise Bending Mode 

  
1s Torsion Mode 3rd Flatwise Bending Mode 

Figure 1. Normal Modes Analysis of Wing 
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Figure 2. Flight Speed vs Damping 

Flutter speed will be the lowest speed at which at least one Eigen value yields positive damping 
and non-zero frequency. From the Figure 2, it is seen that there are two curves crossing the 
zero-damping line. Flutter curve crosses the damping line at lower speed. Modes of the 
structure coalesce with each other to cause flutter instability at a certain frequency as shown 
in Figure 3. The lowest speed at which at least one Eigen value yields positive damping and 
zero frequency will give out divergence speed. Divergence corresponds to the zero frequency 
as shown in Figure 3. The divergence analysis is performed using two methods, firstly using 
the State Space Matrix A and secondly using the Static Aeroelastic equation Eq. (34). 

 
Figure 3. Flight Speed vs Frequency 
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The convergence of flutter and the divergence speed with increasing number of beam elements 
are shown below in Figure 4. It is seen that the flutter speed decreases rapidly as the number 
of beam elements increases but converges for about 16 beam elements. The divergence speed 
does not vary significantly with change in number of elements. 

  
(a) Convergence of Flutter Speed  (b) Convergence of Divergence Speed  

Figure 4. Convergence of Flutter and Divergence speed with increasing number of beam elements 

In aeroelasticity, the stiffness matrix is complex, so we get complex Eigen values and 
subsequently, complex Eigen modes. The Complex Eigen modes are different from the real 
modes. The Real modes are just a scaling of a certain shape of motion of wing. A complex 
mode has always to plot in time, as there is a phase shift between the motions of the different 
points along the wing, due to the presence of imaginary part. The complex flutter mode are 
plotted separately over the wing span in Figure 5. 

  

(a) Real Flutter Eigen Mode (b) Imaginary Flutter Eigen Mode 

Figure 5. Complex Flutter Mode 

MSC Nastran and Patran are used for structural and aerodynamic modelling and analysis. 
Wing structure is modeled using 16 CBEAM elements each of length of 1m as shown in Figure 
6(a). Wing material properties are selected after reading several papers and properties of 
Elastic modulus E = 70 GPa and Poisons Ratio = 0.3 is used. Properties of beam elements are 
added using PBEAM card. The area moment of inertia I11 and I22 are obtained by dividing 
Span wise and Chord wise bending Rigidity by E elastic modulus value. The Torsional 
Constant is obtained by dividing Torsional rigidity by G modulus of rigidity value. 
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The Weight of structure is added using lumped masses using CONM2 point elements. The 
Mass per unit length is used to calculate the value of each point mass. CONM2 elements 
distance from the structural nodes are varied to get the Moment of inertia per unit length equal 
to 0.1 Kg.m and finally placed at ±0.371m of each of the 17 structural nodes. 
The Structural nodes are connected to CONM2 elements using Rigid Bars RBE2. The Wing 
is modeled as cantilever beam, so Root node of Wing is constrained in all 6 Degree of 
freedoms. The Aerodynamic mesh of 32 span wise boxes and 10 chord wise boxes, as shown 
in Figure 6(b), is given by CAERO card. 

  
(a) Nastran Structural Model Wing (b) Nastran Aerodynamic Model Wing 

Figure 6 . MSC Nastran Wing Model 

MKAERO2 card defines the reduced frequency and Mach pairs. FLFACT card defines the 
velocity and density ratio. SPLINE5 is used for coupling of structural and aerodynamic model. 
EIGRL card is used to call Eigen value analysis, whereas FLUTTER card is used to call flutter 
analysis using MSC Nastran as solver. Nastran SOl 103 is used for modal analysis while SOl 
145 is used for flutter analysis [22]. 

  
(a) 1st Flatwise Bending Mode (b) 2nd Flatwise Bending Mode 

  
(c) 1st Torsion Mode (d) 3rd Flatwise Bending Mode 

Figure 7. Normal Modes of Wing MSC Nastran 

Modal analysis of wing is performed in MSC Nastran using SOL 103.Mode shapes of first 
few normal modes are shown in Figure 7. Nastran flutter summary is given in Figure 8 and 
Figure 9, respectively. 
Table 1 and Table 2 show the modal analysis and aeroelastic analysis results performed using 
the current method and are found to be accurately validated with commercial software like 
MSC Nastran and analysis performed by Patil [4]. 
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Table 1. Normal Modes Analysis Results and Validation 

Mode Shape Current Analysis  MSC Nastran Sol 103 Patil [4] 
 Frequency(rad/s) 

1st Flatwise Wing Bending 2.243 2.232 2.247 
2nd Flatwise Wing Bending 14.056 14.016 14.056 

1st Wing Torsion 31.058 31.321 31.046 
3rd Flatwise Wing Bending 39.358 39.315 39.356 

Table 2. Aeroelastic Stability Analysis Results and Validation 

Aeroelastic Stability 
Parameters 

Current Analysis MSC Nastran 
Sol 145 

Patil 
[4] State Space Matrix A Static Aeroelastic 

Equation 
Flutter Speed (m/s) 31.86  30.63 32.21 

Flutter Frequency (rad/s) 23.97  24.52 22.61 
Divergence Speed (m/s) 37.91 37.13 39.45 37.29 

 

 
Figure 8. Nastran Flutter Summary: Flight Speed vs Damping 

 
Figure 9. Nastran Flutter Summary: Flight Speed vs Frequency 
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6. CONCLUSIONS 
The flutter and divergence characteristics of the wing are dependent on the complex Eigen 
modes of the wing. The structural modes of the wing coalesce with each other at a certain 
frequency and at a certain airspeed which cause an aeroelastic instability like flutter to occur. 
Low frequency modes of structure are more important for the aeroelastic instability. It is 
evident from analysis that the flutter aeroelastic instability is more critical as it occurs at low 
flight speed. The development of this method provides an accurate and time efficient method 
to compute the aeroelastic stability of high aspect ratio wing and can replace other methods 
like Doublet Lattice method and Computational fluid dynamics and commercial packages like 
MSC Nastran for the initial design phases of the wing. 
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