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Abstract: The safety of airport operations is increasingly threatened by the proliferation of civilian 
drones that can enter unauthorised airport airspace. This article analyses the risks associated with 
drones in civil aviation security from both a theoretical and a practical perspective, drawing on recent 
literature and risk prediction models. In the first part, we review the rapid growth in the number of 
recreational drones being sold and their implications, including the possibility of terrorist groups easily 
accessing this technology. In the methodology part, the autoregressive (AR), moving average (MA), 
autoregressive moving average (ARMA), and long-short-term memory (LSTM) neural networks used 
for risk modeling and forecasting are presented, along with the key mathematical formulas and 
advantages of each model. Next, a simulation on synthetic data is performed, demonstrating the 
practical application of these models in drone incident prediction, how to select the optimal parameters, 
and how to evaluate the performance using multiple error metrics - Root Mean Square Error (RMSE), 
Mean Absolute Error (MAE), and Normalized RMSE (NRMSE). The latter is used to provide a scale-
independent assessment of model accuracy, enabling fairer and more interpretable comparisons. The 
results obtained highlight the potential of the LSTM model to deliver the most accurate and stable 
predictions, particularly in scenarios involving nonlinear temporal patterns. The conclusions 
underscore the practical relevance of this approach and recommend its application in real airport 
security scenarios, where proactive risk forecasting can support more efficient resource allocation and 
mitigation planning. 
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1. INTRODUCTION 
Recent technological developments have led to increased accessibility and popularity of 
recreational drones worldwide [14]. Due to their ease of operation and relatively low cost, the 
barrier to entry for users is very low, increasing the number of drones in circulation [1]. 

This upward trend, while beneficial for innovation and various commercial and 
recreational applications, poses significant risks to civil aviation safety. Incidents involving 
drones entering the vicinity of airports are increasingly reported around the world, causing 
disruptions to air traffic. In many cases, the unauthorized presence of a drone in the controlled 
airspace of an airport has led to massive flight delays and even temporary runway closures. 
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A notorious incident occurred at Heathrow Airport in April 2016, when a drone was 
suspected of colliding with an Airbus A320 aircraft during landing; although the incident was 
later clarified, it highlighted the potentially disastrous consequences of a drone-aircraft 
collision. According to BBC reports [2], the 2018 incident at Gatwick Airport highlighted the 
extent of disruption that drones can cause to air traffic. 

In addition to careless users, there is also the threat of deliberate action: easy access to 
advanced drones allows terrorist or criminal groups to use these devices for hostile purposes. 
Studies show a substantial increase in the sophistication and availability of drone technologies 
in the civilian market, making them attractive to malicious actors [2]. 

Drones thus offer new aerial capabilities to terrorists without requiring traditional aviation 
infrastructure, making them ideal for asymmetric warfare. For example, terrorist organizations 
have adapted consumer drones for surveillance or even to carry improvised explosive devices, 
extending their range and danger to civilian targets. This democratization of aviation 
technology allows drones to be increasingly acquired and integrated by violent groups into a 
wide range of nonlethal and lethal operations [3]. 

As a result, future technological developments could significantly improve terrorist aerial 
capabilities, increasing the level of threat. In response to these emerging risks, the relevant 
authorities have taken steps to assess and counter the threat posed by drones. At the European 
level, the European Union Aviation Safety Agency (EASA) recognized the danger and 
established a dedicated task force (Drone Collision Task Force) in 2016 to investigate the risks 
of drone-aircraft collisions and identify research needs [4]. 

The report of this working group formed the basis for subsequent research projects funded 
by the European Commission, aimed at quantifying the potential severity of collisions between 
different types of drones and aircrafts. At the same time, EASA issued guidelines for the 
management of drone incidents in aerodromes, promoting a coordinated ”defense-in-depth” 
approach to prevent, detect and neutralize unauthorized drones within airport perimeters [5]. 

Internationally, aviation authorities (FAA in the US, etc.) have tightened regulations on 
drone operations in the vicinity of airports and invested in anti-drone systems. However, 
incidents continue to multiply. A recent study by Pyrgies (2019) inventoried 139 serious drone 
incidents in the vicinity of airports around the world, concluding that they are more numerous 
than anticipated and occur at higher altitudes and distances from airports than expected, 
including in terminal control areas (TMAs) tens of kilometers from the airport [6]. 

These findings suggest that the risk posed by drones goes beyond classic threat scenarios, 
requiring new tools for risk analysis and prediction. To date, the literature has mainly addressed 
the threat posed by drones in terms of accident/incident analysis and qualitative risk 
assessment. Wild et al. (2016) analyzed 152 RPAS (Remotely Piloted Aircraft Systems) events 
between 2006 and 2015 to identify incident types and contributing factors, highlighting major 
differences from traditional commercial aviation [7]. 

Pyrgies [6] applied the FAA’s formal Safety Risk Management process to determine the 
severity and probability of hazards associated with drones at airports, while also proposing 
risk mitigation measures. Similarly, Zhang et al. (2020) proposed a stochastic model for 
assessing the probability of collision between an intruding drone and a commercial aircraft, 
demonstrating through simulations that risks can be quantified even with limited information 
about the drone’s trajectory [1]. The conclusions of these studies highlight the need for more 
advanced methods of anticipating dangerous drone events. Proactive risk prediction - for 
example, estimating the probability or frequency of drone incursions over a time horizon - 
would allow airport authorities to take preventive measures (such as raising the alert level, 
activating countermeasure systems, or informing pilots) before an incident escalates. 



83 Assessing the drone threat to aviation security 
 

INCAS BULLETIN, Volume 17, Issue 3/ 2025 

However, there is a gap in the current literature regarding quantitative predictive modeling 
of drone-related risks, particularly in the context of airport operational forecasting. While most 
studies adopt qualitative assessments or focus on stochastic collision simulations, few - if any 
- attempt to employ sequential models such as ARMA or LSTM for proactive risk prediction. 

Original contribution. This paper proposes a novel modeling framework for forecasting 
the monthly evolution of drone-related risks near airports, using both classical autoregressive 
methods and LSTM neural networks. To our knowledge, this is the first structured application 
of LSTM in the context of UAV threats to aviation security, benchmarked against AR, MA, 
and ARMA models over synthetic time series data. The use of Normalized RMSE (NRMSE) 
further ensures a robust, scale-independent performance evaluation. The approach contributes 
both methodological innovation and empirical validation for integrating predictive tools into 
airport security decision-making processes. 

2. METODOLOGY 
To quantify and forecast the risk of drone incursions in airport space, we utilized time series 
mathematical models and machine learning algorithms specialized in modeling sequential 
data. This section describes in turn the classical autoregressive models (AR, MA, ARMA) and 
the Long Short-Term Memory (LSTM) neural network model, highlighting the basic 
mathematical formulations, implicit assumptions, advantages of each, and how they can be 
used in the context of drone risk analysis. 

The choice of these models is motivated by their proven ability to capture temporal 
dependencies in sequential data. Classical statistical models like AR, MA, and ARMA have 
been widely used in operational forecasting across security, traffic, and infrastructure domains, 
where risk evolves over time with short-term memory effects [14, 15]. Their transparency and 
ease of implementation make them attractive for real-time monitoring systems, especially in 
regulated environments like aviation. In contrast, neural networks such as LSTM allow for the 
modeling of nonlinear, long-range dependencies and adapt well to irregular patterns—features 
often observed in incident data involving UAVs [13, 16]. 

Recent studies demonstrate that LSTM-based approaches can outperform traditional 
models in security forecasting applications, including anomaly detection in restricted airspace, 
early warning systems, and adaptive control [12, 13]. 

By combining traditional and modern approaches, we aim to explore whether simple 
models suffice in practice, or whether the added complexity of deep learning architectures 
brings measurable improvements. The comparison is performed under controlled conditions, 
using synthetic time series reflecting realistic operational scenarios, thus enabling a fair 
performance assessment across models. 

This methodological framework allows us to simulate, evaluate, and compare predictive 
capabilities relevant to drone risk forecasting, while preserving both interpretability (via 
AR/MA/ARMA) and adaptability to complex patterns (via LSTM). 

2.1 The Autoregressive (AR) model 

An autoregressive model of order p, denoted AR(p), expresses the current value of a time series 
(Xt) as a function of its immediate past values. In its general form, an AR(p) model can be 
written as: 

Xt = c + φ1 X(t − 1) + φ2 X(t − 2) + ... + φp X(t − p)+ εt (1) 
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where (c) is a constant (the process mean), the coefficients (φ1,φ2,...,φp) indicate the influence 
of each past value, and (εt) is the error term at time (t), usually assumed to be “white noise” 
with zero mean and constant variance. Intuitively, an AR model estimates that the series has 
finite memory: the last (p) previous values contain all the necessary information to predict the 
near future [8]. 

The stationarity condition of the process requires that the roots of the characteristic 
polynomial 

1 − φ1z − ... − φpzp = 0 (2) 

must satisfy |φi| < 1 in simple cases (for example, for AR(1), it is necessary that |φ1| < 1) [8]. 
Advantages of AR: The model is relatively simple and interpretable the coefficients 

indicate the degree of dependence on past values, and parameter estimation can be efficiently 
performed using the least squares method. AR models effectively capture short-term trends 
and system inertia; for example, if many drone incursions are recorded in one month, an AR 
model can incorporate this information and increase the estimated probability for the following 
month. In the context of airport risk assessment, an AR model may be suitable if the frequency 
of drone incidents follows an autoregressive behavior (either due to short-term seasonality or 
because of authorities’ reactions - e.g., a recent incursion may temporarily increase vigilance 
and reduce the immediate likelihood of another, or conversely, it may indicate a pattern that 
tends to repeat). 

However, the AR model assumes linearity and stationarity. If the event series exhibits a 
trend (e.g., an increasing number of incidents annually as more drones are used) or pronounced 
seasonality (e.g., peaks in summer), the simple AR model needs to be extended—usually by 
applying data differencing (resulting in ARIMA models) or by adding seasonal terms. In this 
work, we will limit ourselves to the hypothesis of local stationarity over the analyzed interval, 
with trends addressed separately if necessary. Additionally, selecting the order p is critical: a 
too small p may omit important dependencies, while a too large p risks overfitting. In practice, 
the partial autocorrelation function (PACF) and the Akaike Information Criterion (AIC) are 
used to determine an optimal p [8]. 

AIC = −2 × ln(L) + 2k (3) 

where L is the likelihood function of the model, which measures how well the model fits the 
observed data, and k is the number of parameters in the model [6]. 

𝐿𝐿(𝜃𝜃|𝑦𝑦𝑖𝑖) = �𝑓𝑓(𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

|𝜃𝜃) (4) 

where 𝐿𝐿(𝜃𝜃|𝑦𝑦𝑖𝑖)  depends on the parameters θ and the observed data (𝑦𝑦𝑖𝑖 ), and the product 
∏ 𝑓𝑓(𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1 |𝜃𝜃)  signifies the product of all values 𝑓𝑓(𝑦𝑦𝑖𝑖|𝜃𝜃)  for each i. This is the probability 

density (or probability mass) function of the data yi, given the parameters θ [8]. 

2.2 The Moving Average (MA) model 

The moving average model of order q, denoted MA(q), represents the series as a weighted sum 
of recent shocks (errors). In mathematical form: 

Xt = µ + εt + θ1εt−1 + θ2εt−2 + ... + θqεt−q (5) 
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where (µ) is the mean (constant level) of the process, and (εt−1,εt−2,...,εt−q) are independent, 
identically distributed error terms affecting the system at those moments [8]. The coefficients 
(θ1,...,θq) indicate the influence of past shocks on the current value. 

Unlike the AR model, which uses past values of the series, the MA model uses past errors: 
a simple example, MA(1), has the form: 

Xt = µ + εt + θ1εt−1 (6) 

this means that an unexpected disturbance at time (t - 1) (e.g., a rare event - in our context, 
an unexpected security incident) may influence the value at time t (for example, the number 
of incidents in the next month could be affected by the previous month’s incident through a 
residual effect) [8]. 

Advantages of MA: It can efficiently model processes in which the effect of shocks 
diminishes relatively quickly. In the context of drone risks, if response measures to an incident 
(a shock) are intense immediately afterward - for example, after a major incident, security 
measures are temporarily increased, reducing the likelihood of another incident in a short 
period - then an MA model could capture this sudden decrease in risk later on. Additionally, 
MA models are finite (of order (q)) and always stationary (they do not require special 
stationarity conditions on the coefficients, unlike AR models). 

A limitation of the MA model is that long-term relationships (more than q periods) cannot 
be directly captured because the influence of any shock completely disappears after q lags in 
the model. If the series of incidents exhibits long-term dependencies, a pure MA model may 
not be appropriate. The choice of q is typically based on the Akaike Information Criterion 
(AIC) or the autocorrelation function (ACF): an ACF that shows a limited number of 
significant lags followed by values close to zero suggests an MA model, with the number of 
significant lags indicating q [8]. 

2.3 The Autoregressive Moving Average (ARMA) model 

The ARMA (Autoregressive Moving Average) model combines the autoregressive and moving 
average components, providing a more flexible framework for modeling stationary series. An 
ARMA of order (p,q) lends the two previous relationships as follows: 

Xt = c + φ1Xt−1 + ... + φpXt−p + εt + θ1εt−1 + ... + θqεt−q (7) 

thus, ARMA(p,q) can represent short-term behaviors through the MA component and longer 
dependencies via the AR part [8]. In practice, many time series can be adequately modeled 
with a low-order ARMA, which is why classical time series analysis methodologies focus on 
correctly identifying the parameters p and q that strike the best balance between model 
complexity and autocorrelation decay speed. 

Model selection between AR/MA vs. ARMA: The analysis of correlograms provides 
clues: if the autocorrelation function (ACF) gradually decreases exponentially, while the 
partial autocorrelation function (PACF) has a finite number of significant peaks, this suggests 
a predominantly AR model; conversely, if the ACF has a finite number of peaks and the PACF 
decays exponentially, it indicates an MA model. When both ACF and PACF display gradual 
declines or more complex patterns, an ARMA model (a combination of the two) is necessary 
to explain the correlations in the data. 

In the case of non-stationary series (where the ACF does not tend toward zero even for 
large lags), differencing is applied and the model is extended to ARIMA. However, as 
mentioned, in the current analysis we will assume the input data are stationary (for example, 
focusing on deviations from a known mean or trend). 
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The main advantage of the ARMA model is its versatility: it can represent a wide range 
of behaviors by simply adjusting the two parameters p and q. Moreover, if the true underlying 
structure of the series is AR or MA, a wellcalibrated ARMA model can approximate it very 
accurately (for example, a purely AR series can be captured by an ARMA where q = 0, and 
similarly, a purely MA series with p = 0). In the context of drone risks, if the frequency of 
incidents or a composite risk index exhibits both persistence (e.g., a high risk level in one 
month increases the chances that the following month will also be risky) and transient effects 
(e.g., a sudden implementation of countermeasures reduces risk only in the short term), then 
an ARMA model can incorporate both aspects simultaneously. 

2.4 The Long Short-Term Memory (LSTM) neural network model 

The previously discussed autoregressive models are all fixed linear parametric models, 
suitable for stationary series and direct relationships between variables. However, in practice, 
the evolution of risks may be influenced by complex and nonlinear factors - such as the 
interaction between drone traffic density in the airspace, weather conditions affecting drone 
detection, the level of active anti-drone measures, and so forth. To capture such relationships 
and leverage larger datasets, models based on recurrent neural networks are used, particularly 
the Long Short-Term Memory (LSTM) architecture [9]. 

LSTM (Long Short-Term Memory) is a special type of recurrent neural network (RNN) 
introduced by Hochreiter and Schmidhuber (1997) [10], designed to address the problem of 
long-term memory loss in traditional RNNs. Through an internal input-output mechanism, 
LSTM can learn dependencies over long periods, managing to retain important past 
information while ignoring noise or irrelevant data. 

At each time step t, an LSTM cell receives an input vector xt (which may include the time 
series values at t and possibly other exogenous factors) and produces a hidden state ht (serving 
as the network’s output, such as the predicted value), while updating its internal memory state 
Ct. The update process involves three sigmoidal gates and an intermediate state, as follows:  

Forget Gate 

ft = σ (Wf [ht−1,xt] + bf) (8) 

this gate determines which parts of the previous cell state Ct−1 are retained (value close to 1) 
or forgotten (value close to 0) [9]. The sigmoid function, as used in neural networks [10], is a 
non-linear “S”- shaped function that transforms any real value into a range between 0 and 1. 
Its formula is: 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
 (9) 

where x is the input to the sigmoid function, and e is Euler’s number (approximately 2.71828): 

Input Gate 

it = σ (Wi[ht−1,xt] + bi) (10) 

controls how much of the candidate new information 𝐶̃𝐶𝑡𝑡 will be added to the cell state, where: 

�𝐶̃𝐶�𝑡𝑡 = tanh(𝑊𝑊𝐶𝐶[ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑐𝑐) (11) 

𝐶̃𝐶𝑡𝑡  is a candidate state computed similarly to a standard RNN [9]. The hyperbolic tangent 
function (tanh) is another non-linear function with a similar shape to sigmoid but outputs 
values between -1 and 1. Its formula is: 
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tanh(𝑥𝑥) =
𝑒𝑒𝑥𝑥 − 𝑒𝑒−𝑥𝑥

𝑒𝑒𝑥𝑥 + 𝑒𝑒−𝑥𝑥
 (12) 

where x is the input to tanh, and e is Euler’s number. 

Memory Cell State 
The cell state is updated by combining the old state and the candidate, via element-wise 
multiplication: 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡  ⊙𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶̃𝐶𝑡𝑡   (13) 

where ⊙ denotes element-wise product [8]. 

Output Gate 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡  ⊙𝐶𝐶{𝑡𝑡−1} + 𝑖𝑖𝑡𝑡 ⊙ {𝐶𝐶}� 𝑡𝑡  (14) 

controls how much of the internal memory Ct is reflected in the hidden state (output). The final 
hidden state becomes 

ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡  ⊙ tanh(𝐶𝐶𝑡𝑡)  (15) 

this hidden state ht serves as the output for the current time step, as well as the input to the next 
step [9]. 

Advantages of LSTM: Thanks to its memory mechanism, LSTM can better capture long-
term dependencies compared to AR/MA/ARMA models or simple RNNs. In time series 
prediction tasks, LSTM has become a benchmark for performance across various applications, 
from speech recognition to traffic modeling, precisely because it can model complex and 
nonlinear relationships in data. [9], [11] 

In the case of drone-related risks, an LSTM could, for example, learn complex patterns: 
it can identify annual seasonality (e.g., incident peaks in summer), correlate fluctuations in 
incidents with other contextual variables (such as monthly drone sales, legislative conditions 
if provided), and respond to subtle signals in past dynamics that linear models might overlook. 
Another advantage is that LSTM does not require the series to be stationary - the network can 
learn and capture overall trends or seasonality directly from raw data without explicit 
transformations like differencing. 

Challenges in using LSTM: On the other hand, LSTM networks have many parameters, 
which require a larger volume of data for training and pose a risk of overfitting if the 
architecture is not properly tuned. Training typically involves algorithms like backpropagation 
through time (BPTT) and can be computationally intensive due to the sequential nature of the 
data and the need to compute gradients at each time step for long sequences. The choice of 
parameters (such as the number of LSTM cells, number of layers, learning rate, input window 
size, etc.) is often empirical and requires experimentation. 

Additionally, the results of a neural network are less interpretable compared to statistical 
models - for example, they do not directly provide coefficients indicating simple causal 
relationships. Nonetheless, when prediction accuracy is critical, LSTMs tend to deliver 
superior performance, which is why we will explore their applicability in our simulation. 

To apply the above models to the drone risk problem, we will generate a time series 
quantifying the risk level or incident frequency within a regular interval (for example, the 
number of drone-related incidents reported monthly at a certain airport or a risk score 
computed quarterly based on various factors). 

 



Florin Daniel SIMION 88 
 

INCAS BULLETIN, Volume 17, Issue 3/ 2025 

3. TRAINING THE MODELS 
To operationalize the described forecasting models, a simulation environment was 
implemented in Python. The logical flow of this implementation is illustrated in Figure 1, 
which summarizes the key computational steps: synthetic data generation, model training, 
prediction, and performance evaluation. 

 
Figure 1: Logical diagram of the Python code 

As illustrated, each model follows a consistent structure in its application—from input 
preparation to output evaluation—allowing for a controlled comparison of forecasting 
accuracy across different methodologies. 

The following sections present the steps for running the code and performing the 
corresponding calculations, noting that each execution of the code generates a new dataset due 
to implicit randomness. Although the numeric values may vary slightly between runs, the 
overall trend of the results remains consistent. For clarity and practical applicability, some 
calculations have been deliberately simplified, as certain operations - especially those related 
to the LSTM model - cannot be fully reproduced manually as they are processed by Python 
libraries. 

3.1 Generation of the synthetic series 

To illustrate the practical application of the discussed models, a synthetic time series was 
generated representing a monthly risk index (or number of drone incidents) over several years. 

The series was constructed to exhibit stationary behavior but with short-term 
dependencies, making it suitable for approximation with an ARMA(1,1) model (an 
autoregressive model of order 1 combined with a moving average of order 1). 

Although, in reality, the number of incidents is a count variable (an integer and positive), 
the series generated via the ARMA model is continuous and contains real-valued data. This 
intentionally reflects an operational risk index rather than an actual incident counter. Using 
continuous values allows for more refined trend analysis and facilitates the application of 
numerical models such as LSTM, which require normalized and dense data. In an operational 
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context, these values can later be discretized or calibrated to correspond to alert thresholds or 
pragmatic risk interpretations. 

Such characteristics could correspond to a scenario where the risk in a given month is 
moderately dependent on the level in the previous month (autoregressive component) and 
influenced by a transient shock (for example, a recent alert or incident that has immediate 
effects but does not last long, captured by the MA component). 

In this stage, an artificial dataset is constructed to simulate the monthly evolution of a risk 
index associated with drone operations near airports. To reflect both the characteristics of 
temporal dependence and the effects of unexpected shocks, the series is generated using a 
stochastic ARMA(1,1) model. This model relies on two key parameters: the autoregressive 
coefficient φ = 0.6, which measures the influence of the previous value on the current one, and 
the moving average coefficient θ = 0.5, which quantifies the impact of past shocks. 

The value φ = 0.6 indicates a moderate dependence on previous values, suggesting that 
risk levels in one month significantly, but not definitively, influence the following month—an 
often observed feature in security processes exhibiting operational inertia. The value θ = 0.5 
captures the effects of temporary shocks, such as an isolated event (e.g., a serious drone 
intrusion) that immediately impacts the risk level, but whose effect dissipates quickly. 

Starting from formula (7), which defines an ARMA(1,1) model with initial values X0 = 
0.4967, ε0 = 0.6477, and ε1 = −0.2342 generated randomly, we obtain: 

X1 = 0.6 × 0.4967 + (−0.2342) + 0.5 × 0.6477 (16) 

Calculating step by step, we have 0.6 × 0.4967 = 0.2980 and 0.5 × 0.6477 = 0.3239, which 
leads to: 

X1 = 0.2980 − 0.2342 + 0.3239 = 0.3877 (17) 

In this modeling, the constant term c in the general ARMA form was assumed to be zero, 
considering that the simulated series is centered around zero. The focus of the analysis is solely 
on the dynamics of fluctuations and the impact of stochastic shocks. 

By consecutively applying this relation at each time step, the entire synthetic series is 
constructed, reflecting both the persistence of the phenomenon and the stochastic influence of 
unpredictable events. The resulting dataset serves as a standardized testing basis, allowing 
evaluation and comparison of forecasting models within a controlled environment that 
sufficiently approximates the real behavior of drone-induced risks at airports. 

The resulting series was divided into two subsets: a training set of 200 values and a test 
set of 50 values, in order to evaluate the forecasting performance on data outside the training 
sample. 

3.2 Modeling AR 

This model assumes that the value of a variable at time t is linearly dependent on its previous 
value at time t−1, with the relationship expressed by formula (1). 

In this initial modeling step, it was considered that the constant c equals zero. This choice 
is based on the observation that the data series does not display a systematic upward or 
downward trend, justifying the omission of a constant offset. Additionally, to more clearly 
evaluate the relationship between successive values, it was initially assumed that the stochastic 
error is zero (ϵt = 0). 

The estimation of the coefficient φ was performed using the 200 values of the series 
generated in the previous step, employing the formula: 
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𝜑𝜑 =
∑(𝑋𝑋𝑡𝑡−1 − 𝑋𝑋�)(𝑋𝑋𝑡𝑡 − 𝑋𝑋�)

∑(𝑋𝑋𝑡𝑡−1 − 𝑋𝑋�)2
 (18) 

where Xt−1 represents the lagged values (shifted by one time step), Xt is the current value, and 
𝑋𝑋�  is the arithmetic mean of the series. The numerator in this expression measures the 
covariance between successive values, while the denominator indicates the variance of the 
lagged values relative to the mean. The ratio of these two components quantifies the strength 
and direction of the linear relationship between consecutive values in the series. 

After applying the formula, the arithmetic mean of the series was calculated as 𝑋𝑋�  ≈ 
−0.1365, and the estimated regression coefficient was φ ≈ 0.7375. Using this coefficient, the 
AR(1) model was constructed. For each forecast, the following formula is applied: 

Xt = φ1Xt−1 (19) 

thus, to estimate the value X201, the observed value X200 was used. Given that X200 = −1.3094 
the prediction for X201 was calculated as: 

X201 = 0.7375 × (−1.3094) ≈ −0.9667 (20) 

The AR(1) model will subsequently be used to generate a sequence of 50 future 
predictions, each based on the previously estimated value. These predictions will be compared 
with the actual series values to evaluate the model’s performance. 

The negative values in the predictive model output reflect fluctuations around a theoretical 
mean and do not indicate negative incidents in practice. Real-world applications would require 
post-processing adjustments to ensure physically meaningful, non-negative predictions. 

3.3 Modeling MA 

This model assumes that the value of a variable at time t is influenced by a linear combination 
of the current error and the error recorded at the previous step. Using formula (7), in this 
modeling stage, it was considered that the constant c equals zero, as no systematic trend of 
shift was observed in the series. Additionally, to initialize the prediction process, it was 
assumed that the current stochastic error εt is zero. 

The estimation of the coefficient φ was performed based on the approximate relation: 

𝜃𝜃 =
∑(𝑋𝑋𝑡𝑡−1 − 𝑋𝑋�)(𝑋𝑋𝑡𝑡 − 𝑋𝑋�)

∑(𝑋𝑋𝑡𝑡−1 − 𝑋𝑋�)2
 (21) 

where Xt−1 represents the lagged values (shifted by one time step), Xt the current values, and 𝑋𝑋� 

the arithmetic mean of the series. 
It should be noted that this estimation method constitutes an approximation, since 

formally, the coefficient θ1 in an MA(1) model should be estimated based on the 
autocorrelation of the errors, not directly from the series values. This choice was made to 
maintain methodological consistency and simplicity in practical applications. 

By calculating the mean of the series of 200 values, we obtained 𝑋𝑋� ≈ −0.1365, and the 
moving average coefficient is θ ≈ 0.7375. 

Based on these parameters, future predictions of the series can be made. To estimate the 
value X201, the last known value X200 = −1.3094 was used, along with the MA(1) model 
formula, assuming the current error is zero, as follows: 

X201 = θ1 ∗ (X200 − (−0,1365)) = 0,7375 ∗ (−1,1729) ≈ −0,86450000 (22) 
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Next, the MA(1) model will be used to generate a sequence of 50 future predictions, each 
based on the previously estimated error. The accuracy of the model will be evaluated by 
comparing the predicted values with the actual series values, similar to the AR model 
approach. 

The negative values in the predictive model output reflect fluctuations around a theoretical 
mean and do not indicate negative incidents in practice. Real-world applications would require 
post-processing adjustments to ensure physically meaningful, non-negative predictions. 

3.4 Modeling ARMA 

The data series was modeled using a first-order autoregressive moving average model, referred 
to as ARMA(1,1). This model combines autoregressive (AR) and moving average (MA) 
components, aiming to capture both the dependence on past values and the influence of 
previous errors on the series evolution, as expressed by formula (7). 

In this modeling stage, similar to previous models, it was assumed that the constant c 
equals zero to reflect the absence of a systematic trend in the data series. Additionally, to 
initiate the prediction process, the current error ϵt was presumed to be zero. The model 
coefficients were previously estimated as follows: the autoregressive coefficient φ ≈ 0.7375, 
the moving average coefficient θ ≈ 0.7375, and the arithmetic mean of the series 𝑋𝑋� ≈ −0.1365. 

To estimate the value X201, the known values X199 and X200 were used. First, the previous 
error ε200 was estimated using the relation: 

∈200= X200 − φX199 (23) 

Substituting the values: 

∈200= −1,3094 − (0,7375 × −0,7683) ≈ −0,7427 (24) 

Subsequently, the prediction for X201 was made by applying the full ARMA(1,1) model 
formula: 

X201 = φX200 + θ1 ∈200 = (0,7375 × −1,3094) + (0,7375 × −0,7427) ≈ −1,51440000 (25) 

The ARMA(1,1) model will be used to generate a sequence of 50 future predictions, each 
based on the previously estimated values and associated errors. The accuracy of the model will 
be evaluated similarly to the previous models. 

3.5 Modeling LSTM 

Building on the previously used classical methods, the data series was modeled using an LSTM 
(Long Short-Term Memory) neural network. This type of network is renowned for its ability 
to learn long-term dependencies in time series, surpassing the limitations of traditional 
statistical models. 

An LSTM cell involves four main components: the forget gate (expressed by formula (8)), 
the input gate (10), the candidate state (11), and the output gate (14). To facilitate an intuitive 
understanding of the internal mechanism of the LSTM model at this stage, a simplification 
was applied: all weights (Wf,Wi,WC) were set equal to 1, and all biases (bf,bi,bC) were set equal 
to 0. 

In general, weights represent adjustable coefficients that control the influence of each 
input element (either the previous value or the hidden state) on the activation of the gates 
within the LSTM cell. These weights are typically optimized automatically during the 
network’s training process to minimize the prediction error. 
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Biases are additional terms introduced into each gate’s calculations, serving to shift the 
activation function and provide the network with extra flexibility in adjusting its response to 
the input data. By setting all weights to 1 and biases to 0, the aim was to create a transparent 
and reproducible calculation example, where results can be explicitly derived without the need 
for a complex training or automatic optimization process. 

For simplification of the manual calculation process, it was assumed that the previous 
hidden state ht−1 is equal to the last observed value, thus: 

ht−1 = X200 (26) 

Typically, in trained LSTM networks, ht−1 represents a function of the internal memory 
state Ct−1, activated via the tanh function (12). 

However, in the absence of a predefined hidden state and to maintain consistency with the 
available data, the assumption ht−1 = X200 was adopted to enable transparent calculation 
procedures. 

Starting from the last available value X200 = −1.3094, the following can be calculated:  

Forget Gate 

ft = σ(ht − 1 + xt) = σ(−2,6188) ≈ 0,0679 (27) 

Input Gate 

it = σ(ht − 1 + xt) ≈ 0,0679 (28) 

Candidate State 

�𝐶̃𝐶�𝑡𝑡 = tanh(−2,6188) ≈ 0,679 (29) 

Memory state 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡  ⊙𝐶𝐶𝑡𝑡−1 + 𝑖𝑖𝑡𝑡 ⊙ 𝐶̃𝐶𝑡𝑡 = −0.1561 (30) 

Output Gate 

ot = σ(ht − 1 + xt) ≈ 0,0679 (31) 

Table 1: Results for AR, MA, ARMA, and LSTM 

Model NRMSE RMSE MAE 
AR(1) 0,0638 1.8360 1.3189 
MA(1) 0,0712 1.7759 1.3686 

ARMA(1,1) 0,0641 1.8626 1.3506 
LSTM 0,0639 1.8063 1.2994 

Final hidden state (prediction): 

ht = ot ⊙ tanh (Ct) ≈ −0,0105 (32) 

Therefore, the predicted value of X201 using the LSTM model was obtained as: 

X201 ≈ −0,01050000 (33) 

The LSTM model will be used to generate a sequence of 50 future predictions, each based 
on previously estimated values in an autoregressive regime. 
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The model’s accuracy will be assessed by comparing predicted values with the actual 
series values. 

The constructed models (AR(1), MA(1), ARMA(1,1), and LSTM) were employed to 
produce forecasts over a horizon of 50 steps ahead, starting from the last available data point. 
Each model was applied according to its specific methodology, using previously estimated 
parameters and assuming controlled initial conditions (constant c = 0, zero current error for 
statistical models, and approximate initial states for the LSTM). 

3.6 Performance evaluation 

The predictions generated by each method were compared with the actual series values 
extracted from the original dataset to assess the accuracy of each model. The evaluation was 
performed using three well-established metrics in the literature: the Root Mean Square Error 
(RMSE), the Mean Absolute Error (MAE), and the Normalized Root Mean Square Error 
(NRMSE). 

The Root Mean Square Error (RMSE): 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
�(𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑡𝑡)2
𝑁𝑁

𝑡𝑡=1

 (34) 

This metric penalizes larger errors more strongly and is sensitive to significant deviations 
from the actual values. The Mean Absolute Error (MAE): 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��|𝑦𝑦�𝑡𝑡 − 𝑦𝑦𝑡𝑡|

𝑁𝑁

𝑡𝑡=1

 (35) 

where yt is the actual value and ybt is the predicted value. 
RMSE penalizes large errors more strongly due to the squaring, while MAE provides a 

more direct interpretation. This metric offers an intuitive measure of the average deviation 
between predictions and actual values and is more robust to extreme values compared to 
RMSE. 

In addition to RMSE and MAE, the Normalized RMSE (NRMSE) was also calculated to 
provide a scale-independent assessment of predictive accuracy. This metric enables a fairer 
comparison of model performance across different data ranges and contexts. NRMSE is 
computed as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
 (36) 

where ymax and ymin are the maximum and minimum observed values in the dataset. By 
normalizing RMSE, this metric contextualizes the prediction error relative to the range of 
variation in the actual data. 

By using all three measures simultaneously, a balanced evaluation of each model’s 
performance is achieved—considering average errors, the impact of large deviations, and 
scale-independence. 
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4. RESULTS AND DISCUSSION 
The performance evaluation of the models using the three previously mentioned metrics 
(RMSE, MAE, and NRMSE) was carried out after computing the 50 predictions. Table 1 
presents the computed error metrics—RMSE, MAE, and NRMSE—for each forecasting 
model, evaluated over a 50-step prediction horizon. These values provide a synthetic 
comparison of model performance, highlighting both absolute and normalized prediction 
errors. 

The presented RMSE, MAE, and NRMSE values are calculated as overall averages over 
the test set containing 50 observations. RMSE reflects the sensitivity to large errors, MAE 
quantifies the average deviation from actual values, while NRMSE contextualizes these errors 
relative to the variability of the observed data, offering a normalized and thus comparable 
performance metric. 

A comparative analysis of the errors reveals several relevant observations. The MA(1) 
model achieved the lowest RMSE value, suggesting that, on average, the squared deviations 
between predicted and actual values are the smallest in its case. This performance indicates 
that the MA(1) better handles large deviations, being less sensitive to extreme fluctuations in 
the series. 

On the other hand, the LSTM model stood out with the lowest MAE value. This shows 
that, on average, the absolute deviations from the real values are the smallest, suggesting more 
stable and uniformly distributed predictions. Given that MAE is less sensitive to isolated large 
errors, it can be inferred that the LSTM tends to produce more controlled and predictable errors 
throughout the entire prediction sequence. 

In terms of NRMSE, which accounts for the scale of the data, the AR(1) model achieved 
the lowest score (0.0638), closely followed by LSTM (0.0639) and ARMA(1,1) (0.0641). 
These values indicate that, relatively to the data’s range, all three models maintain similarly 
low normalized errors. Interestingly, although MA(1) had the lowest RMSE in absolute terms, 
it performed the worst in normalized terms (NRMSE = 0.0712), reinforcing that absolute 
performance can be misleading when comparing across datasets or metrics. 

These findings confirm the added value of NRMSE as a complementary indicator: it 
highlights that AR(1), despite its simplicity, performs competitively in relative terms, while 
LSTM maintains a strong balance across all three metrics. 

It is also noteworthy that the ARMA(1,1) model, although combining two theoretically 
complementary components (autoregression and moving average), did not outperform the 
simpler models within the given data context. This outcome suggests that, under certain 
conditions, added complexity does not automatically guarantee higher predictive accuracy. 

Based on these results, it can be stated that, in the present analysis, the LSTM model offers 
the best overall performance, thanks to its minimal MAE value and near-optimal NRMSE. The 
differences between the MA(1) and LSTM models are relatively small, so the final choice 
between them may depend on the specific application and on the importance given to stability 
versus sensitivity to extreme deviations. 

5. PRACTICAL APPLICABILITY IN REAL-WORLD CONTEXT 
The prediction models analyzed, especially the LSTM model, show significant practical 
potential for integration into systems dedicated to monitoring and forecasting drone-related 
risks at airports. In a dynamic and complex operational environment, the capability to 
anticipate potential threats is essential for maintaining high security levels. 
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LSTM, by its nature, is well-suited for processing and learning from complex time series 
data, where relationships between successive observations can be nonlinear and span long 
periods. This characteristic makes it particularly recommended for applications like predicting 
drone incidents, where traditional statistical models may struggle to capture all nuances of the 
phenomenon. Moreover, the inclusion of NRMSE allowed a scale-independent evaluation of 
performance, confirming that models like AR(1) may still offer competitive relative accuracy 
in simpler operational settings. 

However, practical deployment of an LSTM model in a real-world operational context 
requires meeting several essential conditions: 

1. Data availability and quality: LSTM models need large volumes of well-labeled, 
relevant data for training.Lack of such data can considerably reduce accuracy; 

2. Computational power and infrastructure: Implementing an LSTM in real-time systems 
demands infrastructurecapable of continuous data processing and delivering 
predictions with minimal delay; 

3. Robustness to unexpected variations: Given the unpredictable factors in airport 
environments, models must beresilient enough to handle such variations without 
significant performance loss. 

While in this study the LSTM didn’t demonstrate full superiority - mainly because 
synthetic data didn’t include external factors or complex patterns - it could, in a more complex 
real scenario, capture nonlinear relationships - such as risk increasing more than linearly with 
the number of drones or seasonal dependencies (more incidents in summer). 

If trained on sufficiently rich data - including incident history and explanatory variables 
such as weather, drone sales, air traffic levels - it could offer multidimensional risk forecasts, 
not merely trend extrapolation. Practically, robustness and interpretability are crucial: aviation 
decision-makers prefer transparent tools. ARMA models are attractive because they are 
understandable and explainable (e.g., ”if an incident happened last month, the risk increases 
by X this month”). Conversely, LSTM acts as a “black box,” which raises trust issues—if it 
indicates a sudden risk rise, explaining what pattern it identified becomes difficult, making it 
harder for authorities to act confidently. 

A potential approach is combining both: using LSTM for accuracy and traditional 
statistical models or sensitivity analysis for interpretability. Moreover, risk-based 
methodologies tailored to infrastructure resilience have been proposed as essential in proactive 
threat detection [13]. In the literature, LSTM has been explored for risk monitoring in aviation 
and surveillance, focusing on anomaly detection or trajectory prediction in restricted airspace 
[12][13]. However, I have not found studies specifically addressing integrating LSTM into 
airport security strategies aimed at anticipating drone threats. 

6. CONCLUSIONS 
The increasing prevalence of drone-related incidents in airport environments poses a 
multidimensional threat to civil aviation, requiring proactive, data-driven risk forecasting 
strategies. The current study addressed this need by exploring whether time series prediction 
models can effectively estimate short-term UAV-related risks and support airport decision-
making processes. 

The main objective was to compare the forecasting performance of classical 
autoregressive models - AR(1), MA(1), and ARMA(1,1) - with that of a recurrent neural 
network model (LSTM), using synthetic time series data designed to simulate risk fluctuations 
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over time. The modeling process included standardized training-test splits and controlled 
assumptions to ensure a fair comparative framework. 

From a methodological standpoint, the study introduced a triad of performance metrics—
RMSE, MAE, and the less frequently used Normalized RMSE (NRMSE)—which collectively 
provide a robust evaluation of model performance. The inclusion of NRMSE was particularly 
relevant given the continuous and normalized nature of the synthetic data, allowing for scale-
independent comparison. This contributed to a more nuanced understanding of forecasting 
accuracy, especially when differences in absolute error magnitudes were marginal. 

The results demonstrate that LSTM delivered the lowest average absolute error (MAE), 
indicating more stable and evenly distributed predictions across the forecast horizon. 
Surprisingly, the AR(1) model, despite its simplicity, achieved the lowest normalized error 
(NRMSE), reinforcing the value of basic autoregressive structures in data-limited or low-
complexity contexts. The ARMA(1,1) model, although theoretically more expressive, did not 
significantly outperform the simpler alternatives, suggesting that increased model complexity 
does not automatically translate into superior predictive accuracy when applied to stationary 
or low-noise series. 

From an applied perspective, these findings validate the potential for integrating such 
models into operational airport security systems. LSTM, with its ability to capture non-linear 
temporal dependencies, is especially suited for complex real-world scenarios where risk 
dynamics are influenced by multiple, interacting factors. Conversely, simpler models like 
AR(1) or ARMA(1,1) may offer quick, transparent, and interpretable risk forecasts—critical 
attributes for security personnel requiring explainable decision support. A hybrid framework 
that leverages both model categories could provide the optimal trade-off between accuracy and 
interpretability. 

Nevertheless, the scope of the present work is constrained by the use of synthetic data and 
the exclusion of exogenous explanatory variables such as meteorological conditions, drone 
sales, and air traffic volume. Future research should focus on validating these findings using 
real-world UAV incident datasets collected from multiple airport environments and 
incorporating external drivers of risk. Additionally, it would be valuable to assess model 
performance under scenarios of sudden regime shifts - such as new anti-drone technologies or 
policy changes - which may affect the underlying risk dynamics. 

Given the encouraging performance of the LSTM model and the operational simplicity of 
AR(1), the study recommends a pilot implementation wherein airport authorities periodically 
run the models on up-to-date data, evaluate their predictive consistency, and use the outputs to 
inform preventive resource allocation. Such a system, if continuously refined, could offer an 
anticipatory advantage in managing drone incursions - minimizing reactive responses and 
enhancing the resilience of airport operations. 

In conclusion, this study contributes both a methodological framework and an applied 
insight into the role of predictive modeling in UAV threat management. By combining 
statistical and neural approaches, and by introducing scale-independent performance metrics, 
the research highlights a feasible path forward for integrating predictive analytics into airport 
risk assessment ecosystems, while emphasizing the need for further empirical validation in 
operational contexts. 
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