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Abstract: In this paper we address the subject of mathematical modelling, more precisely the 
optimization of algorithms for numerically solving partial differential equations. The problem proposed 
to be tackled in this paper is the implementation of an algorithm for solving partial differential 
equations in a significantly faster way than that obtained through applying finite difference schemes.  
The proper orthogonal decomposition (POD) method is a modern and efficient method of reducing the 
number of variables that occur as a result of applying centred difference schemes to partial differential 
equations, thus reducing the running time of the algorithm and the accumulation of truncation errors. 
Therefore, the POD method has been implemented to obtain a reduced order scheme applied to different 
partial differential equations, with some practical applications and comparisons with the analytical 
solutions. 

Key Words: Reduced order method (ROM), Proper orthogonal decomposition (POD), Singular value 
decomposition (SVD) 

1. INTRODUCTION 
Today, as is well known, we are living in an age of speed in which information is flowing 
faster and faster. Each of us uses at least one device that has an internet connection to navigate 
through the millions and millions of data circulating around the globe every second.For such 
a high processing speed and such a large volume of information, the problem arises quickly: 
processing time and storage space. The intuitive action of engineers and scientists is to build 
faster and more efficient computers, more capable of storing information. Another method that 
is starting to be implemented more and more nowadays is that of optimizing computational 
algorithms, the mathematical models on which they are based. 

In this paper we address the subject of engineering, to improve algorithms that solves 
numerically partial differential equations which model physical phenomena studied in this part 
of science. In the following, we will present a topic that has been talked about more and more 
lately: reducing the number of freedom degrees for a faster computational solution of partial 
differential equation. In order to do this, an intense study of the specialized works was needed, 
but also a better knowledge of the mathematical tools necessary to solve such problems. Over 
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the years, several authors have dealt with this subject, of which we would like to mention those 
presented in the reference chapter. We tried to take the best of the mentioned works and make 
some improvements where necessary. The present paper focuses on the field of numerical 
analysis, mainly on solving numerically, higher order partial differential equations. A Reduced 
Order Central Difference Scheme (ROECD) will be considered to solve such equations, the 
results of which will be analyzed and compared with “classical” numerical schemes (CD). 

2. MATHEMATICAL MODEL 

The problem proposed for solving in this paper is the implementation of an algorithm for 
solving partial differential equations significantly faster than that obtained by applying finite 
difference schemes. As presented in the work mentioned in the reference chapter, orthogonal 
decomposition method (POD) is a modern and effective method of reducing the number of 
unknowns that occur as a result of applying centered difference schemes, reducing in this way 
the running time of the algorithm and the accumulation of truncation errors. The steps to be 
followed for the implementation of the reduced order scheme are briefly presented below, and 
their implementation on a particular case is illustrated after the theoretical part. 

In the first step we implement the finite difference scheme [6] and extract the snapshots 
[1], [2], [3]. The scheme with finite differences in vector form will be implemented for the 
first L time steps and the solutions of the equation will be stored in the columns of the snapshot 
matrix ( A ). For the case of a 2D parabolic equation, the solution of the equation at a time n  
can be written as follows: 

𝑢𝑢𝑖𝑖,𝑗𝑗𝑛𝑛 = 𝑢𝑢�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗 , 𝑡𝑡𝑛𝑛� = 𝑢𝑢𝑚𝑚𝑛𝑛 , 0 ≤ 𝑛𝑛 ≤ 𝑁𝑁 (1) 

𝐮𝐮𝑛𝑛 = (𝑢𝑢1𝑛𝑛,𝑢𝑢2𝑛𝑛,𝑢𝑢3𝑛𝑛 , . . . ,𝑢𝑢𝑚𝑚𝑛𝑛 , . . . ,𝑢𝑢𝑀𝑀𝑛𝑛 )𝑇𝑇 ,𝑚𝑚 = (𝑗𝑗 − 1) ⋅ 𝐼𝐼 + 𝑖𝑖
  
�⎯��

1 ≤ 𝑖𝑖 ≤ 𝐼𝐼 + 1
1 ≤ 𝑗𝑗 ≤ 𝐽𝐽 + 1

1 ≤ 𝑚𝑚 ≤ 𝑀𝑀 = (𝐼𝐼 + 1)(𝐽𝐽 + 1)
� (2) 

𝐀𝐀 =

⎝

⎛
𝑢𝑢11 𝑢𝑢12 … 𝑢𝑢1𝐿𝐿

𝑢𝑢21 𝑢𝑢22 … 𝑢𝑢2𝐿𝐿
⋮ ⋮ ⋱ ⋮
𝑢𝑢𝑀𝑀1 𝑢𝑢𝑀𝑀2 ⋯ 𝑢𝑢𝑀𝑀𝐿𝐿 ⎠

⎞ = (𝐮𝐮1 𝐮𝐮2 . . . 𝐮𝐮𝐿𝐿) (3) 

The second step refers to decomposition into singular values (SVD) of the 𝐀𝐀𝑇𝑇𝐀𝐀 matrix. 
The SVD will be applied to the matrix 𝐀𝐀𝑇𝑇𝐀𝐀, obtaining the following equality according to [3]: 
𝐀𝐀𝑇𝑇𝐀𝐀 = 𝐔𝐔𝐔𝐔𝐕𝐕𝑇𝑇. According to the relations between the decomposition into singular values and 
the decomposition into eigenvalues illustrated in [1], [2], [3], [4], the matrix 𝐕𝐕 = 𝐔𝐔 is the 
matrix of eigenvectors of 𝐀𝐀𝑇𝑇𝐀𝐀 and is also the matrix of singular vectors to the right of A, and 
is the diagonal matrix containing the non-zero eigenvalues of 𝐀𝐀𝑇𝑇𝐀𝐀. 

𝐀𝐀𝑇𝑇𝐀𝐀 = 𝐔𝐔�
𝐔𝐔𝑑𝑑×𝑑𝑑 𝟎𝟎𝑑𝑑×(𝐿𝐿−𝑑𝑑)

𝟎𝟎(𝑀𝑀−𝑑𝑑)×𝑑𝑑 𝟎𝟎(𝑀𝑀−𝑑𝑑)×(𝐿𝐿−𝑑𝑑)
�𝑽𝑽𝑇𝑇 (4) 

where 𝐔𝐔 = 𝐕𝐕 = (𝜙𝜙1 𝜙𝜙2 . . . 𝜙𝜙𝐿𝐿), and the diagonal matrix is: 

𝐔𝐔𝑑𝑑×𝑑𝑑 = �

𝜆𝜆1 0 … 0
0 𝜆𝜆2 … 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 𝜆𝜆𝑑𝑑

� 
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The third step consists in creating the POD basis. The matrix 𝐔𝐔 contains on the main 
diagonal, in descending order, the eigenvalues of 𝐀𝐀𝑇𝑇𝐀𝐀, denoted by 𝛌𝛌. According to [1], [2], 
[3] and [4] the condition that must be met in the formulation of the POD basis for the reduced 
order scheme to be convergent is that the expression: 

|𝑢𝑢𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑢𝑢𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑| = (1 + 𝛿𝛿)𝑁𝑁−𝐿𝐿 ⋅ �𝜆𝜆𝑘𝑘+1 (5) 

does not exceed the order of magnitude of the errors obtained by implementing the finite 
difference scheme. 𝛿𝛿 is a strictly positive term that depends on the implementation of the finite 
difference scheme, N is the number of time steps that are intended to be calculated, and k + 1 
is the index of the eigenvalue for which the condition is met. To ensure the convergence of the 
reduced order scheme, we choose 𝑘𝑘 = 𝑑𝑑 = 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝐀𝐀), so that 𝜆𝜆𝑑𝑑+1 = 0. If the rank of the 
matrix is maximum (d = L) and 𝜆𝜆𝑑𝑑+1 does not exist, return to: First step and choose another L 
(number of snapshots). 

According to [2], the POD base has the following form: 𝚽𝚽𝑑𝑑×𝑑𝑑 = (𝛗𝛗𝟏𝟏 𝛗𝛗𝟐𝟐 . . . 𝛗𝛗𝐝𝐝) 
where the vectors are given by: 

𝛗𝛗𝑗𝑗 = 𝐀𝐀𝜙𝜙𝑗𝑗 �𝜆𝜆𝑗𝑗� , 1 ≤ 𝑗𝑗 ≤ 𝑑𝑑 (6) 

In the last step we solve the reduced order scheme that will be implemented as described 
in [2], so that the 𝒖𝒖𝒏𝒏 will be replaced with the 𝐮𝐮𝐧𝐧∗ = 𝚽𝚽𝐝𝐝×𝐝𝐝 × 𝛂𝛂𝐧𝐧 and the newly obtained scheme 
in the variable 𝛂𝛂𝐧𝐧 = (𝛂𝛂𝟏𝟏𝐧𝐧 𝛂𝛂𝟐𝟐𝐧𝐧 ... 𝛂𝛂𝐝𝐝𝐧𝐧)𝐓𝐓 will be solved. This is possible due to the property: 

𝚽𝚽𝐓𝐓𝚽𝚽 = 𝐈𝐈𝐝𝐝 (7) 

*Note: According to the references there is also a step 5, which involves recalculating the 
POD basis if the convergence condition is not met. However, if the formulation of the POD 
basis in step 3 is followed, this step of renewing the base is no longer necessary, as the reduced 
order scheme is thus convergent, whatever the number of time steps. 

In the next pages we will present two tests that solve a parabolic problem (in 2D) and a 
hyperbolic problem of order 4 (in 2D). 

The 2D parabolic equation is given in a general form: 

⎩
⎨

⎧
𝜕𝜕𝑢𝑢
𝜕𝜕𝑡𝑡

− 𝛥𝛥𝑢𝑢 = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡),                (𝑥𝑥,𝑦𝑦, 𝑡𝑡) ∈ Ω × [0,𝑇𝑇𝑓𝑓) ⊆ 𝐑𝐑2 × 𝐑𝐑

𝑢𝑢|𝜕𝜕𝜕𝜕(𝑥𝑥, 𝑦𝑦, 𝑡𝑡) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑡𝑡), 𝑡𝑡 ∈ [0,𝑇𝑇𝑓𝑓)
𝑢𝑢(𝑥𝑥,𝑦𝑦, 0) = ℎ(𝑥𝑥,𝑦𝑦),                   (𝑥𝑥,𝑦𝑦) ∈ Ω

 (8) 

The 2D 4-th order hyperbolic equation is given in a general form: 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧𝜕𝜕

2𝑢𝑢
𝜕𝜕𝑡𝑡2

+ 𝜇𝜇𝛥𝛥2𝑢𝑢 = 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑡𝑡),                 (𝑥𝑥,𝑦𝑦, 𝑡𝑡) ∈ Ω × [0,𝑇𝑇𝑓𝑓) ⊆ 𝐑𝐑2 × 𝐑𝐑

𝑢𝑢|𝜕𝜕Ω(𝑥𝑥,𝑦𝑦, 𝑡𝑡) = 𝑔𝑔(𝑥𝑥,𝑦𝑦, 𝑡𝑡),                 𝑡𝑡 ∈ [0,𝑇𝑇𝑓𝑓)
𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥�𝜕𝜕Ω

= ℎ1(𝑥𝑥,𝑦𝑦, 𝑡𝑡);              
𝜕𝜕𝑢𝑢
𝜕𝜕𝑦𝑦�𝜕𝜕Ω

= ℎ2(𝑥𝑥,𝑦𝑦, 𝑡𝑡)

𝑢𝑢(𝑥𝑥,𝑦𝑦, 0) = ℎ(𝑥𝑥,𝑦𝑦),                          (𝑥𝑥,𝑦𝑦) ∈ Ω
𝜕𝜕𝑢𝑢(𝑥𝑥,𝑦𝑦, 0)

𝜕𝜕𝑡𝑡
= ℎ3(𝑥𝑥,𝑦𝑦)                       (𝑥𝑥,𝑦𝑦) ∈ Ω

 (9) 
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The classical schemes with centered differences expressed in a matrix formulation are for 
parabolic equation, 

𝒖𝒖𝑛𝑛+1 = 𝒖𝒖𝑛𝑛 +
𝑑𝑑𝑡𝑡
𝑑𝑑𝑥𝑥2

𝑩𝑩𝒖𝒖𝑛𝑛 +
𝑑𝑑𝑡𝑡
𝑑𝑑𝑦𝑦2

𝑪𝑪𝒖𝒖𝑛𝑛 + 𝑑𝑑𝑡𝑡𝑻𝑻 (10) 

and respectively for hyperbolic equation 

𝐮𝐮𝑛𝑛+1 = 2𝐮𝐮𝑛𝑛 − 𝐮𝐮𝑛𝑛−1 − 𝜇𝜇
(𝑑𝑑𝑡𝑡)2

(𝑑𝑑𝑥𝑥)4 𝐊𝐊𝐮𝐮
𝑛𝑛 − 𝜇𝜇

(𝑑𝑑𝑡𝑡)2

(𝑑𝑑𝑦𝑦)4 𝐏𝐏𝐮𝐮
𝑛𝑛 − 2𝜇𝜇

(𝑑𝑑𝑡𝑡)2

(𝑑𝑑𝑥𝑥)2(𝑑𝑑𝑦𝑦)2 𝐃𝐃𝐮𝐮
𝑛𝑛 + (𝑑𝑑𝑡𝑡)2𝐓𝐓𝑛𝑛 (11) 

In the preparatory step we define the computational domain which has a rectangular shape 
and we divide it in equal intervals, then the space step, corresponding to the chosen space 
division, is calculated. The time step is chosen according to [1], [2] and [3] as follows: 

𝑑𝑑𝑡𝑡 ≤
1

4 � 1
𝑑𝑑𝑥𝑥2 + 1

𝑑𝑑𝑦𝑦2�
 (12) 

After calculating the values at the initial moment and entering them in the linearized form 
on the first column of the matrix 𝐀𝐀, as presented by relation (2), the matrices in equation (10) 
(for the parabolic equation) are implemented as: 

𝑩𝑩 =

⎝

⎜
⎛
𝐁𝐁′ ⋯ ⋯ ⋯ 0
⋮ 𝐁𝐁′′ ⋮
⋮ ⋱ ⋮
⋮ 𝐁𝐁′′ ⋮
0 ⋯ ⋯ ⋯ 𝐁𝐁′⎠

⎟
⎞
𝐂𝐂 =

⎝

⎜
⎛
𝐂𝐂′ ⋯ ⋯ ⋯ 0
⋮ 𝐂𝐂′′ ⋮
⋮ ⋱ ⋮
⋮ 𝐂𝐂′′ ⋮
0 ⋯ ⋯ ⋯ 𝐂𝐂′⎠

⎟
⎞

 (13) 

where 𝐁𝐁′,𝐁𝐁″,𝐂𝐂′,𝐂𝐂″ ∈ 𝑀𝑀(𝑁𝑁𝑥𝑥+1)×(𝑁𝑁𝑥𝑥+1)are the following: 

𝐁𝐁′ = 𝐂𝐂′ = (−2)𝐈𝐈(𝑁𝑁𝑥𝑥+1)×(𝑁𝑁𝑥𝑥+1) (14) 

𝐁𝐁′′ =

⎝

⎜
⎜
⎜
⎛

−2 0 0 ⋯ 0 0 0
1 −2 1 ⋱ 0 0 0
0 1 −2 ⋱ 0 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 0 ⋱ −2 1 0
0 0 0 ⋱ 1 −2 1
0 0 0 ⋯ 0 0 −2⎠

⎟
⎟
⎟
⎞

 (15) 

𝐂𝐂′′ =

⎝

⎜
⎜
⎜
⎜
⎜
⎛
−2 ⋯⏞

𝑑𝑑𝑒𝑒𝑁𝑁𝑥𝑥𝑜𝑜𝑜𝑜𝑖𝑖0

0
−2 1

1 −2 1
1 ⋱ ⋱

⋱ −2 1
1 −2

0 ⋯⏟
𝑑𝑑𝑒𝑒𝑁𝑁𝑥𝑥𝑜𝑜𝑜𝑜𝑖𝑖0

−2
⎠

⎟
⎟
⎟
⎟
⎟
⎞

 (16) 

For the hyperbolic equation, the 𝐊𝐊,𝐏𝐏,𝐃𝐃 ∈ 𝑀𝑀(𝑁𝑁𝑒𝑒+1)×(𝑁𝑁𝑁𝑁+1)matrices have the following form: 
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𝐊𝐊 =

⎝

⎜
⎛
𝐊𝐊′ ⋯ ⋯ ⋯ 0
⋮ 𝐊𝐊″ ⋮
⋮ ⋱ ⋮
⋮ 𝐊𝐊″ ⋮
0 ⋯ ⋯ ⋯ 𝐊𝐊′⎠

⎟
⎞

     𝐏𝐏 =

⎝

⎜
⎛
𝐏𝐏′ ⋯ ⋯ ⋯ 0
⋮ 𝐏𝐏″ ⋮
⋮ ⋱ ⋮
⋮ 𝐏𝐏″ ⋮
0 ⋯ ⋯ ⋯ 𝐏𝐏′⎠

⎟
⎞

 (17) 

where 𝐊𝐊′,𝐊𝐊″,𝐏𝐏′,𝐏𝐏″ are auxiliary matrices 

𝐊𝐊′ = 𝐏𝐏′ = 6𝐈𝐈2(𝑁𝑁𝑥𝑥+1)×2(𝑁𝑁𝑥𝑥+1) (18) 

𝐊𝐊′′ =

⎝

⎜
⎜
⎜
⎛

6 0 0 ⋯ 0 0 0
0 6 0 ⋱ 0 0 0
1 −4 6 −4 1 0 0
⋮ ⋱ ⋱ ⋱ ⋱ ⋱ ⋮
0 0 1 −4 6 −4 1
0 0 0 ⋱ 0 6 0
0 0 0 ⋯ 0 0 6⎠

⎟
⎟
⎟
⎞

(𝑁𝑁𝑒𝑒+1)×(𝑁𝑁𝑒𝑒+1)

 (19) 

𝐏𝐏′′ =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

6 ⋯⏞
𝑁𝑁𝑒𝑒𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑁𝑁0

0 ⋯⏞
𝑁𝑁𝑒𝑒𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑁𝑁0

0
⋮ 6 0 0

−4 6 −4 ⋱⏞
1

⋮ −4 6 ⋱ 1
1 ⋱ ⋱ ⋱ 1

1 ⋱ 6 −4 ⋮
⋱ −4 6 −4

0 0 6 ⋮
0 ⋯ 0 ⋯ 6 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

(𝑁𝑁𝑒𝑒+1)×(𝑁𝑁𝑒𝑒+1)

 (20) 

𝐃𝐃 =

⎝

⎜
⎛
𝐃𝐃′ ⋯ ⋯ ⋯ 0
⋮ 𝐃𝐃′′ ⋮
⋮ ⋱ ⋮
⋮ 𝐃𝐃′′ ⋮
0 ⋯ ⋯ ⋯ 𝐃𝐃′⎠

⎟
⎞

 (21) 

where 𝐃𝐃′,𝐃𝐃″ are auxilary matrices 

𝐃𝐃′ = 4𝐈𝐈2(𝑁𝑁𝑥𝑥+1)×2(𝑁𝑁𝑥𝑥+1) (22) 

𝐃𝐃′′ =

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

4 ⋯⏞
𝑁𝑁𝑒𝑒−1𝑒𝑒𝑖𝑖𝑚𝑚𝑒𝑒𝑁𝑁0

0 0 0
⋮ 4 0 0 0
1 4 1 −2 1
−2 1 4 1 −2 1
1 −2 1 ⋱ ⋱ ⋱ ⋱

⋱ ⋱ ⋱ 4 1 −2
1 −2 1 4 1

0 0 0 4 ⋮
0 0 0 ⋯ 4 ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

(𝑁𝑁𝑒𝑒+1)×(𝑁𝑁𝑒𝑒+1)

 (23) 
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In first step from the implementation process the matrix 𝐀𝐀 of snapshots is formed by 
calculating the first L moments of time using the classical scheme (10). That L is the smallest 
natural number for which the rank of the matrix 𝐀𝐀 is less than L. For each time moment, 
calculate the vector of free terms and, taking into account the boundaries, calculate the values 
of the function for each next time with the lines code specific to each type of equation: 

Parabolic equation 

𝐚𝐚𝑖𝑖 = 𝐚𝐚𝑖𝑖−1 + 𝜇𝜇𝑒𝑒𝐁𝐁𝐚𝐚𝑖𝑖−1 + 𝜇𝜇𝑁𝑁𝐂𝐂𝐚𝐚𝑖𝑖−1 + 𝑑𝑑𝑡𝑡 ⋅ 𝐓𝐓 (24) 

where 𝐚𝐚𝑖𝑖 is one entire column in the matrix 𝐀𝐀 and 𝜇𝜇𝑒𝑒 = 𝑐𝑐𝑒𝑒
𝑑𝑑𝑒𝑒
𝑑𝑑𝑒𝑒2

, 𝜇𝜇𝑁𝑁 = 𝑐𝑐𝑁𝑁
𝑑𝑑𝑒𝑒
𝑑𝑑𝑁𝑁2

 and 𝑖𝑖 ∈
{1,2, . . . , 𝐿𝐿}. 

Hyperbolic equation 

𝐚𝐚𝑖𝑖 = 2𝐚𝐚𝑖𝑖−1 − 𝐚𝐚𝑖𝑖−2 − 𝜇𝜇𝑒𝑒𝐊𝐊𝐚𝐚𝑖𝑖−1 − 𝜇𝜇𝑁𝑁𝐏𝐏𝐚𝐚𝑖𝑖−1 − 𝜇𝜇𝑒𝑒𝑁𝑁𝐃𝐃𝐚𝐚𝑖𝑖−1 + 𝑑𝑑𝑡𝑡2 ⋅ 𝐓𝐓 (25) 

where 𝜇𝜇𝑒𝑒 = 𝛿𝛿 (𝑑𝑑𝑒𝑒)2

(𝑑𝑑𝑒𝑒)4, 𝜇𝜇𝑁𝑁 = 𝛿𝛿 (𝑑𝑑𝑒𝑒)2

(𝑑𝑑𝑁𝑁)4, 𝜇𝜇𝑒𝑒𝑁𝑁 = 2𝛿𝛿 (𝑑𝑑𝑒𝑒)2

(𝑑𝑑𝑒𝑒)2(𝑑𝑑𝑁𝑁)2 and 𝑖𝑖 ∈ {1,2, . . . , 𝐿𝐿}. 
After forming the snapshot matrix 𝐀𝐀 and after checking the conformity of the errors with 

the chosen scheme, we proceed to the next step. 
For the next step we created in the program the function POD which, having as input 

parameter the matrix 𝐀𝐀, applies the procedure from comercial computing softwaare, svd, for 
the quadratic matrix 𝐀𝐀𝑇𝑇𝐀𝐀. At the end of this step we will have the matrices from the relation 
(4) calculated by means of the above mentioned procedure. 

This 3rd step, theoretically presented previously, is also contained in the newly created 
function, POD. In short, at the current step the proper orthogonal basis for determining the 
solutions of the function u is determined. Thus, using those calculated in the previous step and 
the matrix  A , the POD basis is formed with the following relation. 

𝛗𝛗𝑗𝑗 = 𝐀𝐀𝜙𝜙𝑗𝑗/�𝜆𝜆𝑗𝑗1 ≤ 𝑗𝑗 ≤ 𝑟𝑟𝑟𝑟𝑛𝑛𝑘𝑘(𝐀𝐀) (26) 

The number of columns in the base is equal to the rank of the matrix 𝐀𝐀, as explained 
previously in order to ensure the stability of the reduced order scheme whitch will be 
presented. The POD basis, which will be used in the implementation of the reduced order 
scheme, is obtained at the end of the current step, through the procedures discussed. 

At this step, four, considering the properties (7) of the POD_basis matrix and u’s 
decomposition as presented in [2], but also in the previous chapter, we implement the new 
reduced order scheme, specific to each type of equation, with the instructions: 

The reduced order sheme for the parabolic equation becomes: 

𝛂𝛂𝑖𝑖 = 𝛂𝛂𝑖𝑖−1 + 𝐁𝐁1𝛂𝛂𝑖𝑖−1 + 𝐂𝐂1𝛂𝛂𝑖𝑖−1 + 𝑑𝑑𝑡𝑡𝜱𝜱𝑇𝑇𝑇𝑇 (27) 

where 𝐁𝐁1 and 𝐂𝐂1 represent the newly created matrices corresponding to the reduced order 
scheme and 𝑖𝑖 ∈ {𝐿𝐿, 𝐿𝐿 + 1, . . . ,𝑁𝑁}. 

𝐁𝐁1 =
𝑑𝑑𝑡𝑡
𝑑𝑑𝑥𝑥2

𝚽𝚽𝑇𝑇𝐁𝐁𝚽𝚽        𝐂𝐂1 =
𝑑𝑑𝑡𝑡
𝑑𝑑𝑦𝑦2

𝚽𝚽𝑇𝑇𝐂𝐂𝚽𝚽 (28) 

Similarly, for hyperbolic equation we get: 

𝜶𝜶𝑖𝑖 = 2𝜶𝜶𝑖𝑖−1 − 𝜶𝜶𝑖𝑖−2 − 𝐾𝐾1𝜶𝜶𝑖𝑖−1 − 𝑃𝑃1𝜶𝜶𝑖𝑖−1 − 𝐷𝐷1𝜶𝜶𝑖𝑖−1 + 𝑑𝑑𝑡𝑡𝜱𝜱𝑇𝑇𝑇𝑇 (29) 
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where 𝐁𝐁𝟏𝟏 and 𝐂𝐂𝟏𝟏 represent the newly created matrices corresponding to the reduced order 
scheme and 𝑖𝑖 ∈ {𝐿𝐿, 𝐿𝐿 + 1, . . . ,𝑁𝑁}. 

𝐊𝐊1 = 𝜇𝜇
(𝑑𝑑𝑡𝑡)2

(𝑑𝑑𝑥𝑥)4 𝚽𝚽
𝑇𝑇𝐊𝐊𝚽𝚽,   𝐏𝐏1 = 𝜇𝜇

(𝑑𝑑𝑡𝑡)2

(𝑑𝑑𝑦𝑦)4 𝚽𝚽
𝑇𝑇𝐏𝐏𝚽𝚽,   𝐃𝐃1 = 𝜇𝜇

(𝑑𝑑𝑡𝑡)2

(𝑑𝑑𝑥𝑥)2(𝑑𝑑𝑦𝑦)2 𝚽𝚽
𝑇𝑇𝐃𝐃𝚽𝚽 (30) 

By multiplying the alpha vector by the POD_basis matrix, the solution of the reduced 
order system of the FTCS scheme for the parabolic equation is obtained. 

3. NUMERICAL RESULTS AND CONCLUSIONS 
In order to draw valid conclusions, the computation parameters will be selected as follows: 

Table 1. Parabolic/Hyperbolic equation parameters 

Name of the parameter Value 
The number of intervals in the 𝑥𝑥 direction 50 
The number of intervals in the 𝑦𝑦 direction 50 

The domain on 𝑥𝑥 [0,2] 
The domain on 𝑦𝑦 [0,2] 

Exact function 𝑒𝑒−2𝑒𝑒𝑒𝑒𝑁𝑁 
Final time 1 
Final time 3 

Number of snapshots 10 
Other important parameters derived from the above are: 

Table. 2 Derived parameters for parabolic/hiperbolic equation 

Name of the parameter Value 
Time step, 𝑑𝑑𝑡𝑡 0.0002 

Space step on 𝑥𝑥 0.04 
Space step on 𝑦𝑦 0.04 

Number of points in the domain 2601 
For the two selected time moments 𝑡𝑡 = 1𝑠𝑠 and 𝑡𝑡 = 3𝑠𝑠 the numerical solution of the 

equation will be calculated by two methods: the ROFTCS (reduced order forward time central 
space scheme) method and the classic FTCS (forward time central space scheme) method. 

Table 3. Computation result for parabolic equation after 1s 

 ROFTCS ROFTCS(+step 5) FTCS 
Computation time (seconds) 17 33 256 

Norm of the poinwise relative error (%) 0.0122 0.0115 0.2314 
In tab. 3 are presented the computational times and the errors corresponding to the results. 

 
Fig. 1 The ROFTCS solution of the parabolic equation at time t = 1s 
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Table 4. Computation result for parabolic equation after 3s 

 ROFTCS ROFTCS(+step5) FTCS 
Computation time (seconds) 23 45 760 

Norm of the pointwise relative error divided by 
the number of points in the grid 0.01216 0.0102 0.2464 

 
Fig. 2 The ROFTCS solution of the parabolic equation in time t = 3s 

For the hyperbolic equation, as it is described in [1] and [5], we will consider the same 
input parameters as were taken in the case of the parabolic equation, minus the exact function 
which is equal to: 

Table 5. Hiperbolic equation parameters 

Numele parametrului Valoarea 
Exact function 2𝑒𝑒−𝜋𝜋𝑒𝑒 𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋𝑥𝑥) 𝑠𝑠𝑖𝑖𝑛𝑛(𝜋𝜋𝑦𝑦) 

Coefficient of space derivatives(𝜇𝜇) 0.01 
For testing the application consider the same two time points (1s, 3s). 

Table 6. Computation result for hiperbolic equation after 1s 

 ROFTCS ROFTCS(+step5) FTCS 
Computation time (seconds) 10 34 210 

Norm of the pointwise relative error divided 
by the number of points in the grid 0.0091 0.0083 0.0088 

 
Fig. 3 The ROFTCS solution of the hiperbolic equation in time t = 1s 
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Table 7. Computation result for hiperbolic equation after 3s 

 ROFTCS ROFTCS(+step5) FTCS 
Computation time (seconds) 52 74 1451 

Norm of the pointwise relative error divided by 
the number of points in the grid 0.01216 0.0118 0.02464 

 

Fig. 4 The ROFTCS solution of the hiperbolic equation in time t = 3s 
In conclusion, the current paper presents the steps of implementing a reduced order 

scheme for solving partial differential equations and applying them to a concrete example. 
Within the application, the way of solving a 2D parabolic equation was exemplified, and the 
results were compared with those obtained by implementing the classic FTCS scheme. As 
shown in the previous illustrations (Fig. 1, 2, 3, 4), the results obtained by implementing the 
reduced order scheme are significantly closer to the exact value than those obtained by 
implementing the FTCS scheme. At the same time, an essential thing is that the running time 
of the ROFTCS algorithm is very short compared to that for FTCS, and the discrepancy 
between the two programs increases as the number of discretization points increases. This is 
due to the fact that the number of unknowns reached by implementing ROFTCS depends only 
on the number of snapshots chosen, which is of the order of tens and, compared to the FTCS 
scheme, does not depend on the number of points chosen to discretize the spatial dimensions. 
To illustrate this with an extreme case, we chose Nx = Ny = 100, Tfinal = 2s and 𝑑𝑑𝑡𝑡 = 5 ⋅
10−5𝑠𝑠: the ROFTCS program ran in 830s (<14 min), while FTCS ran in about 32400s (9h), 
ROFTCS having a much smaller error than FTCS for t = 2s. 

Our improvement for the aleardy existing reduced order shemes is the removal of step 5, 
and we demosntrate how this thing is possible for these types of schemes. If we remove step 
5, presented in the literature, there is a significant decrease in computation time, while the 
error has only an insignificant increase. 

In terms of future plans, these reduced order schemes can be implemented to solve various 
types of equations, starting from classical numerical schemes. FTCS (4th order 2D parabolic 
and hyperbolic equations), Crank-Nickolson and ADI are the schemes we have implemented. 
The literature on these schemes is very new, so there are certainly ways to improve it. 
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