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Abstract: Today, the development of the general theory of quasi-static deformation of three-layer 
structural elements, including plates, is not yet complete and is being intensively studied. Mathematical 
models of deformation under complex thermo-force and thermo-irradiation loads are created. The 
problems of strength, stability, and dynamic behaviour are considered. In strength calculations of three-
layer structural elements, it is necessary to take kinematic hypotheses for each layer separately, which 
complicates the mathematical side of the problem but leads to significant refinement of the stress-strain 
state. The reaction of an elastic foundation is described by the Winkler model. The use of variational 
methods allows one to obtain a refined system of three differential equations of equilibrium in internal 
forces. The thermo-force bending of an elastoplastic circular sandwich plate with a light core connected 
to an elastic foundation is considered. The polyline normal hypotheses are used to describe the 
kinematics of a plate package that is not symmetric in thickness. In thin base layers, the Kirchhoff-Love 
hypotheses are accepted. In a light relatively thick core, the Timoshenko hypothesis is true, while the 
normal remains rectilinear, but rotates at some additional angle, the radial displacements change 
linearly in thickness. The differential equations of equilibrium are obtained using the Lagrange 
variation method. The statement of the boundary value problem in displacements is given in a 
cylindrical coordinate system. Numerical results for circular metal-polymer sandwich plates are 
presented. 
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1. INTRODUCTION 

For the first time, three-layer structures were used in construction in the 19th century. In the 
1940s, the first aircraft with sandwich power hull elements began to appear. Nowadays, such 
structures have found their application in aerospace and transport engineering, construction, 
production and transportation of hydrocarbons. All this led to the demand for layered, 
including three-layer, structural elements, which necessitated the development of 
mathematical models and methods for calculating layered structural elements for various types 
of loads. Layered rods, plates, and shells are usually composed of materials with substantially 
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different physical and mechanical properties. The load-bearing layers made of materials of 
high strength and rigidity are designed to absorb the main part of the mechanical load. The 
binding layers that serve to form a monolithic structure are designed to redistribute forces 
between the load-bearing layers. This combination of layers facilitates the reliable operation 
of systems in adverse environmental conditions (temperature, radiation), helps to create 
structures that combine high strength and rigidity with a relatively low weight. 

Numerous studies have been devoted to the dynamics and vibrations of sandwich 
structural elements, including [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. Free oscillations of 
sandwich cylindrical shells are considered in [1]. The solution is written out in the form of an 
expansion into a double trigonometric series, the frequencies of free oscillations are analysed. 
Nonstationary dynamic effects on cylindrical shells and parabolic cylinders are considered in 
[2], [3], [4], [5]. The acoustic effect on layered plates and aerodynamic dumping in the layers 
are investigated in [6], [7]. In papers [8], [9], the dynamic behaviour of three-layer aircraft 
structural elements is considered. Natural and forced oscillations under the influence of 
harmonic, pulsed, and resonant loads are analysed. The kinematics of the deformation is 
assumed to correspond to the kinematic hypotheses of the polyline, the solutions are 
constructed as a series expansion in a system of proper orthonormal functions. The frequencies 
of natural oscillations under various boundary conditions are studied. 

In [10], [11], [12], [13], [14], numerical modelling and software for determining the static 
and kinematic parameters of growing isotropic and anisotropic bodies in the process of 
nonstationary additive heat and mass transfer are presented. A method is proposed for 
modelling the effects of the loss of stability of thin-walled parts manufactured using selective 
laser melting (SLM) technology. The application of composite heat shields in intensive energy 
flows with diffusion is considered. A mathematical model of the energy efficiency of 
mechatronic modules and power supplies for promising mobile objects is being developed. 
Papers [15], [16], [17] are devoted to the study of the fluidity of reinforced plates made of 
unique rigid-plastic materials, taking into account the two-dimensional stress state in the 
fibres. The modelling of flexural deformation of layered plates with a regular structure made 
of nonlinear memory materials is elaborated. The theory of moderately large deflections of 
multilayer shells with a transversely soft core and reinforcement along the contour is proposed. 

Various quasi-static problems are considered in the papers [18], [19], [20]. This is the 
deformation of inhomogeneous wire structures. The mechanical properties and microstructure 
of stainless steel made by laser sintering are investigated, and the assumption of the continuity 
of the energy of interfacial deformation of an orthotropic sandwich plate is analysed using a 
refined layer-by-layer theory. Papers [21], [22], [23] are devoted to the analysis of the 
assumption of the energy continuity of interfacial deformation of an orthotropic sandwich plate 
using the refined layer-by-layer theory, the approximate solution of the problem of plastic 
indentation of circular sandwich panels, and the study of the influence of heat flow on the 
stress state of a sandwich rod. Here the formulation and solution of a boundary value problem 
are presented, including a system of differential equilibrium equations and boundary 
conditions on the deformation of a circular sandwich plate with a hole connected to the 
Winkler foundation. The effect of the temperature field is taken into account. 

2. MATERIALS AND METHODS 

Statement of the boundary value problem. This study considers a sandwich plate with a central 
hole (Figure 1) in the cylindrical coordinate system r, φ, z. The middle plane of the core is 
taken as the coordinate plane, the z-axis is directed perpendicular to it up to the first layer. For 
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isotropic base layers with a thickness of h1, h2, the Kirchhoff-Love hypothesis is accepted. The 
incompressible core (h3 = 2c) is light, i.e., it ignores the work of shear stresses σrz in the 
tangential direction. The deformed normal of the core remains rectilineal but rotates by some 
additional angle ψ. At the boundaries of the layers, the movements are continuous. On the 
outer and inner contours of the plate, it is assumed that there are rigid diaphragms that prevent 
the relative shift of the layers [24], [25], [26]. 

 
Fig. 1 – Design scheme of a sandwich plate 

Let at the initial moment of time on a flat outer surface: 

𝑧𝑧 =  𝑐𝑐 +  ℎ1 (1) 

of a circular sandwich plate with a total relative thickness: 

𝐻𝐻 =  ℎ1 +  ℎ2 +  2с (2) 

Connected with the elastic foundation, asymmetric vertical load q0 (r) and a heat flux of 
intensity qt, directed perpendicular to the bearing layer 1, begin to act. Surface  

𝑧𝑧 = – 𝑐𝑐 –  ℎ2, (3) 

of the outer and inner contours of the plate are considered to be heat-insulated. This allows the 
inhomogeneous temperature field T(z), calculated from a certain initial temperature T0, to be 
calculated with sufficient accuracy according to the equation given in [23]. Based on the 
hypothesis of the core normal rectilinearity 

2𝜀𝜀𝑟𝑟𝑟𝑟
(3) = 𝑢𝑢𝑟𝑟

(3),𝑧𝑧+𝑤𝑤,𝑟𝑟 = 𝜓𝜓 (4) 

after integration, expressions for radial displacements in the layers ur
(k) through the desired 

functions are obtained: 

𝑢𝑢𝑟𝑟
(1) = 𝑢𝑢 + 𝑐𝑐𝑐𝑐 − 𝑧𝑧𝑧𝑧,𝑟𝑟 , 𝑐𝑐 ≤ 𝑧𝑧 ≤ 𝑐𝑐 + ℎ1 (5) 

𝑢𝑢𝑟𝑟
(3) = 𝑢𝑢 + 𝑧𝑧𝑧𝑧 − 𝑧𝑧𝑧𝑧,𝑟𝑟 ,−𝑐𝑐 ≤ 𝑧𝑧 ≤ 𝑐𝑐 (6) 

𝑢𝑢𝑟𝑟
(2) = 𝑢𝑢 − 𝑐𝑐𝑐𝑐 − 𝑧𝑧𝑧𝑧,𝑟𝑟 ,−𝑐𝑐 − ℎ2 ≤ 𝑧𝑧 ≤ −𝑐𝑐 (7) 

where z is the coordinate of the fibre in question, a comma in the lower index denotes the 
differentiation operation by the coordinate following it, and the upper index – the number of a 
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layer. Using the components of the stress tensor 𝜎𝜎𝛼𝛼
(𝑘𝑘) (α = r, φ), 𝜎𝜎𝑟𝑟𝑟𝑟

(3) generalised internal forces 
and moments are introduced: 

𝑇𝑇𝛼𝛼 ≡ ∑ 𝑇𝑇𝛼𝛼
(𝑘𝑘)3

𝑘𝑘=1 = ∑ ∫ 𝜎𝜎𝛼𝛼
(𝑘𝑘) 𝑑𝑑 𝑧𝑧ℎ𝑘𝑘

3
𝑘𝑘=1 , 𝑀𝑀𝛼𝛼 ≡ ∑ 𝑀𝑀𝛼𝛼

(𝑘𝑘)3
𝑘𝑘=1 = ∑ ∫ 𝜎𝜎𝛼𝛼

(𝑘𝑘)𝑧𝑧 𝑑𝑑 𝑧𝑧ℎ𝑘𝑘
3
𝑘𝑘=1 , 𝐻𝐻𝛼𝛼 =

𝑀𝑀𝛼𝛼
(3) + 𝑐𝑐 �𝑇𝑇𝛼𝛼

(1) − 𝑇𝑇𝛼𝛼
(2)�, 𝑄𝑄 = ∫ 𝜎𝜎𝑟𝑟𝑟𝑟

(3) 𝑑𝑑 𝑧𝑧𝑐𝑐
−𝑐𝑐 . 

(8) 

The deformations in the layers follow from (5) and the Cauchy relations. The physical 
equations of state of the theory of small elastoplastic deformations of Ilyushin are used to 
relate stresses and deformations: 

𝑠𝑠𝛼𝛼
(𝑘𝑘) = 2𝐺𝐺𝑘𝑘(1 −𝜔𝜔𝑘𝑘(𝜀𝜀𝑢𝑢

(𝑘𝑘),𝑇𝑇𝑘𝑘))э𝛼𝛼
(𝑘𝑘), 𝜎𝜎(𝑘𝑘) = 3𝐾𝐾𝑘𝑘(𝜀𝜀(𝑘𝑘) − 𝛼𝛼0𝑘𝑘𝑇𝑇𝑘𝑘), 

𝑠𝑠𝑟𝑟𝑟𝑟
(3) = 2𝐺𝐺3(1−𝜔𝜔𝑘𝑘(𝜀𝜀𝑢𝑢

(3),𝑇𝑇𝑘𝑘))э𝑟𝑟𝑟𝑟
(3) (k = 1, 2, 3; α = r, φ), 

(9) 

where: 𝑠𝑠𝛼𝛼
(𝑘𝑘), э𝛼𝛼

(𝑘𝑘) – deviatoric, 𝜎𝜎(𝑘𝑘), 𝜀𝜀(𝑘𝑘) – spherical parts of stress and strain tensors; 
𝐺𝐺𝑘𝑘(𝑇𝑇),  𝐾𝐾𝑘𝑘(𝑇𝑇) – temperature-dependent shear and volume deformation modules; a0k – 
coefficient of linear temperature expansion; 𝜔𝜔𝑘𝑘(𝜀𝜀𝑢𝑢

(𝑘𝑘),𝑇𝑇𝑘𝑘) – functions of plasticity of materials 
of bearing layers and physical nonlinearity of the core, 𝑠𝑠𝑟𝑟𝑟𝑟

(3), э𝑟𝑟𝑟𝑟
(3) – tangential stress and shear 

deformation in the core; 𝜀𝜀𝑢𝑢
(𝑘𝑘) – strain intensity [26], [27]. 

In the components of the stress tensor 𝜎𝜎𝛼𝛼
(𝑘𝑘), 𝜎𝜎𝑟𝑟𝑟𝑟

(3) using the equations (7), the linear and 
nonlinear components are distinguished: 

𝜎𝜎𝛼𝛼
(𝑘𝑘) = 𝜎𝜎𝛼𝛼𝛼𝛼

(𝑘𝑘) − 𝜎𝜎𝛼𝛼𝛼𝛼
(𝑘𝑘), 𝜎𝜎𝑟𝑟𝑟𝑟

(3) = 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
(3) − 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟

(3) , 

𝜎𝜎𝛼𝛼𝛼𝛼
(𝑘𝑘) = 2𝐺𝐺𝑘𝑘э𝛼𝛼

(𝑘𝑘) + 3𝐾𝐾𝑘𝑘(𝜀𝜀(𝑘𝑘) − 𝛼𝛼𝑘𝑘𝑇𝑇), 𝜎𝜎𝛼𝛼𝛼𝛼
(𝑘𝑘) = 2𝐺𝐺𝑘𝑘𝜔𝜔𝑘𝑘(𝜀𝜀𝑢𝑢

(𝑘𝑘),𝑇𝑇)э𝛼𝛼
(𝑘𝑘), 

𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
(3) = 2𝐺𝐺3э𝑟𝑟𝑟𝑟

(3), 𝜎𝜎𝑟𝑟𝑟𝑟𝑟𝑟
(3) = 2𝐺𝐺3𝜔𝜔3(𝜀𝜀𝑢𝑢

(3),𝑇𝑇)э𝑟𝑟𝑟𝑟
(3), (𝛼𝛼 = 𝑟𝑟,𝜑𝜑) 

(10) 

The generalised internal forces and moments (6) are also represented as the difference 
between the linear and nonlinear parts: 

𝑇𝑇𝛼𝛼 = 𝑇𝑇𝛼𝛼𝛼𝛼 − 𝑇𝑇𝛼𝛼𝛼𝛼 = ∑ 𝑇𝑇𝛼𝛼𝛼𝛼
(𝑘𝑘)3

𝑘𝑘=1 − ∑ 𝑇𝑇𝛼𝛼𝛼𝛼
(𝑘𝑘)3

𝑘𝑘=1 , 𝑀𝑀𝛼𝛼 = 𝑀𝑀𝛼𝛼𝛼𝛼 −𝑀𝑀𝛼𝛼𝛼𝛼 = ∑ 𝑀𝑀𝛼𝛼𝛼𝛼
(𝑘𝑘)3

𝑘𝑘=1 −
∑ 𝑀𝑀𝛼𝛼𝛼𝛼

(𝑘𝑘)3
𝑘𝑘=1 , 

𝐻𝐻𝛼𝛼𝛼𝛼 = 𝑀𝑀𝛼𝛼𝛼𝛼
(3) + 𝑐𝑐 �𝑇𝑇𝛼𝛼𝛼𝛼

(1) − 𝑇𝑇𝛼𝛼𝛼𝛼
(2)�, 𝐻𝐻𝛼𝛼𝛼𝛼 = 𝑀𝑀𝛼𝛼𝛼𝛼

(3) + 𝑐𝑐 �𝑇𝑇𝛼𝛼𝛼𝛼
(1) − 𝑇𝑇𝛼𝛼𝛼𝛼

(2)� 

(11) 

The equations of equilibrium in forces for an elastic circular sandwich plate connected to 
a deformable foundation are obtained in [8] without using the physical relations between 
stresses and deformations, therefore, they will be valid here as well [28], [29], [30].  

Substituting in them the equations for internal forces and moments (7), obtain a system of 
equations of equilibrium in forces describing the physically nonlinear deformation in the 
temperature field of a circular sandwich plate with a light core resting on an elastic foundation: 

𝑇𝑇𝑟𝑟,𝑟𝑟+ 1
𝑟𝑟

(𝑇𝑇𝑟𝑟 − 𝑇𝑇𝜑𝜑) = 𝑝𝑝𝜔𝜔, 𝐻𝐻𝑟𝑟,𝑟𝑟+ 1
𝑟𝑟

(𝐻𝐻𝑟𝑟 − 𝐻𝐻𝜑𝜑) = ℎ𝜔𝜔, 

𝑀𝑀𝑟𝑟,𝑟𝑟𝑟𝑟+ 1
𝑟𝑟

(2𝑀𝑀𝑟𝑟,𝑟𝑟−𝑀𝑀𝜑𝜑,𝑟𝑟 ) = 𝑞𝑞0 − 𝑞𝑞𝑅𝑅 + 𝑞𝑞𝜔𝜔. 
(12) 

where q0 – the intensity of the external distributed load; 𝑞𝑞𝑅𝑅  – the reaction of the base; the 
lower index “e” in the left parts of the equations is omitted for simplicity.  
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The nonlinear additions are carried to the right-hand sides of equations (8) and have the 
following form: 

𝑝𝑝𝜔𝜔 = 𝑇𝑇𝑟𝑟𝑟𝑟 ,𝑟𝑟+ 1
𝑟𝑟

(𝑇𝑇𝑟𝑟𝑟𝑟 − 𝑇𝑇𝜑𝜑𝜑𝜑), ℎ𝜔𝜔 = 𝐻𝐻𝑟𝑟𝑟𝑟,𝑟𝑟+ 1
𝑟𝑟

(𝐻𝐻𝑟𝑟𝑟𝑟 − 𝐻𝐻𝜑𝜑𝜑𝜑), 

𝑞𝑞𝜔𝜔 = 𝑀𝑀𝑟𝑟𝑟𝑟 ,𝑟𝑟𝑟𝑟+ 1
𝑟𝑟

(2𝑀𝑀𝑟𝑟𝑟𝑟,𝑟𝑟− 𝑀𝑀𝜑𝜑𝜑𝜑,𝑟𝑟 ). 
(13) 

Corresponding force boundary conditions on the contours (r = r0, l = 0; r = r1, l = 1): 

𝑇𝑇𝑟𝑟 = 𝑇𝑇𝑟𝑟𝑙𝑙 + 𝑇𝑇𝜔𝜔, 𝐻𝐻𝑟𝑟 = 𝐻𝐻𝑟𝑟𝑙𝑙 + 𝐻𝐻𝜔𝜔,  𝑀𝑀𝑟𝑟 = 𝑀𝑀𝑟𝑟
𝑙𝑙 + 𝑀𝑀𝜔𝜔, 

 𝑀𝑀𝑟𝑟,𝑟𝑟+ 1
𝑟𝑟

(𝑀𝑀𝑟𝑟 −𝑀𝑀𝜑𝜑) = 𝑄𝑄 
𝑙𝑙 +𝑀𝑀𝑟𝑟𝑟𝑟 ,𝑟𝑟+ 1

𝑟𝑟
(𝑀𝑀𝑟𝑟𝑟𝑟 −𝑀𝑀𝜑𝜑𝜑𝜑). 

(14) 

It is assumed that the relationship between the reaction of the base and the deflection of 
the plate w is described by the Winkler model: 

𝑞𝑞𝑅𝑅 = −𝜅𝜅0𝑤𝑤. (15) 

where κ0 is the stiffness coefficient of the elastic foundation (modulus of foundation). 
The linear generalised internal forces in equations (10) and boundary conditions (12) can 

be expressed in terms of the desired displacements using the physical relations (7). 
As a result, the system of nonlinear differential equations of equilibrium (8), taking into 

account (13) in displacements, takes the form: 

𝐿𝐿2(𝑎𝑎1𝑢𝑢 + 𝑎𝑎2𝜓𝜓 − 𝑎𝑎3𝑤𝑤,𝑟𝑟 ) = 𝑝𝑝𝜔𝜔, 𝐿𝐿2(𝑎𝑎2𝑢𝑢 + 𝑎𝑎4𝜓𝜓 − 𝑎𝑎5𝑤𝑤,𝑟𝑟 ) = ℎ𝜔𝜔, 

𝐿𝐿3(𝑎𝑎3𝑢𝑢 + 𝑎𝑎5𝜓𝜓 − 𝑎𝑎6𝑤𝑤,𝑟𝑟 ) − 𝜅𝜅0𝑤𝑤 = 𝑞𝑞0 + 𝑞𝑞𝜔𝜔. 
(16) 

where L2, L3 – second-and third-order differential operators. 

𝐿𝐿3(𝑔𝑔) ≡ 𝑔𝑔,𝑟𝑟𝑟𝑟𝑟𝑟+ 2𝑔𝑔,𝑟𝑟𝑟𝑟
𝑟𝑟

− 𝑔𝑔,𝑟𝑟
𝑟𝑟2

+ 𝑔𝑔
𝑟𝑟3

, 𝐿𝐿2(𝑔𝑔) ≡ 𝑔𝑔,𝑟𝑟𝑟𝑟+ 𝑔𝑔,𝑟𝑟
𝑟𝑟
− 𝑔𝑔

𝑟𝑟2
 (17) 

the coefficients ai are determined by integral relations, since the elastic modulus of the 
materials in the layers changes in thickness along with the temperature 

𝑎𝑎1 = ∑ 𝐾𝐾𝑘𝑘03
𝑘𝑘=1 , 𝑎𝑎2 = 𝑐𝑐(𝐾𝐾10 − 𝐾𝐾20), 𝑎𝑎3 = ∑ 𝐾𝐾𝑘𝑘13

𝑘𝑘=1 , 𝑎𝑎4 = 𝐾𝐾32 + 𝑐𝑐2(𝐾𝐾10 + 𝐾𝐾20), 
𝑎𝑎5 = 𝐾𝐾32 + 𝑐𝑐(𝐾𝐾11 − 𝐾𝐾21), 𝑎𝑎6 = ∑ 𝐾𝐾𝑘𝑘23

𝑘𝑘=1 , 𝐾𝐾𝑘𝑘𝑘𝑘 = ∫ �𝐾𝐾𝑘𝑘(𝑇𝑇𝑘𝑘) + 4
3
𝐺𝐺𝑘𝑘(𝑇𝑇𝑘𝑘)� 𝑧𝑧𝑚𝑚𝑑𝑑𝑑𝑑ℎ𝑘𝑘

, 
(m = 0, 1, 2 

(18) 

The problem of finding the functions u®, ψ®, w® is closed by adding force (12) or 
kinematic boundary conditions to equations (14). 

In the latter case, when the contour of the plate is firmly sealed, the requirements must be 
met on it: 

𝑢𝑢 = 𝜓𝜓 = 𝑤𝑤 = 𝑤𝑤,𝑟𝑟 = 0 (19) 

With a hinged support: 

𝑢𝑢 = 𝜓𝜓 = 𝑤𝑤 = 𝑀𝑀𝑟𝑟 = 0. (20) 

In the case of a free contour of the plate: 

ψ =  0,𝑇𝑇𝑟𝑟 =  𝑀𝑀𝑟𝑟 =  𝑀𝑀𝑟𝑟, 𝑟𝑟 =  0. (21) 
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3. RESULTS AND DISCUSSIONS 

The formulated boundary value problem is nonlinear, so it is not necessary to find its exact 
solution. Next, the study considers the procedure for applying the Ilyushin method of a linear 
approximation to the problem under consideration. To do this, the system (10) is written in 
iterative form: 

𝐿𝐿2(𝑎𝑎1𝑢𝑢𝑛𝑛 + 𝑎𝑎2𝜓𝜓𝑛𝑛 − 𝑎𝑎3𝑤𝑤,𝑟𝑟𝑛𝑛 ) = 𝑝𝑝𝜔𝜔𝑛𝑛−1, 𝐿𝐿2(𝑎𝑎2𝑢𝑢𝑛𝑛 + 𝑎𝑎4𝜓𝜓𝑛𝑛 − 𝑎𝑎5𝑤𝑤,𝑟𝑟𝑛𝑛 ) = ℎ𝜔𝜔𝑛𝑛−1, 

𝐿𝐿3(𝑎𝑎3𝑢𝑢𝑛𝑛 + 𝑎𝑎5𝜓𝜓𝑛𝑛 − 𝑎𝑎6𝑤𝑤,𝑟𝑟𝑛𝑛 ) − 𝜅𝜅0𝑤𝑤𝑛𝑛 = 𝑞𝑞0 + 𝑞𝑞𝜔𝜔𝑛𝑛−1 
(22) 

here n – the number of the approximation, the values 𝑝𝑝𝜔𝜔𝑛𝑛−1, ℎ𝜔𝜔𝑛𝑛−1, 𝑞𝑞𝜔𝜔𝑛𝑛−1 are called “additional” 
external loads and are assumed to be zero at the first step, and then calculated based on the 
results of the previous approximation. In this case, equations of the type (11) are used, in which 
all the terms have the index “n -1” at the top:  

𝑝𝑝𝜔𝜔𝑛𝑛−1 = 𝑇𝑇𝑟𝑟𝑟𝑟𝑛𝑛−1,𝑟𝑟+ 1
𝑟𝑟

(𝑇𝑇𝑟𝑟𝑟𝑟𝑛𝑛−1 − 𝑇𝑇𝜑𝜑𝜑𝜑𝑛𝑛−1), ℎ𝜔𝜔𝑛𝑛−1 = 𝐻𝐻𝑟𝑟𝑟𝑟𝑛𝑛−1,𝑟𝑟+ 1
𝑟𝑟

(𝐻𝐻𝑟𝑟𝑟𝑟𝑛𝑛−1 − 𝐻𝐻𝜑𝜑𝜑𝜑𝑛𝑛−1), 

𝑞𝑞𝜔𝜔𝑛𝑛-1 = 𝑀𝑀𝑟𝑟𝑟𝑟
𝑛𝑛-1,𝑟𝑟𝑟𝑟+ 1

𝑟𝑟
(2𝑀𝑀𝑟𝑟𝑟𝑟

𝑛𝑛-1,𝑟𝑟−𝑀𝑀𝜑𝜑𝜑𝜑
𝑛𝑛-1,𝑟𝑟 ), 

(23) 

where: 

𝑇𝑇𝛼𝛼𝛼𝛼𝑛𝑛−1 ≡ ∑ ∫ 𝜎𝜎𝛼𝛼𝛼𝛼
(𝑘𝑘)𝑛𝑛−1𝑑𝑑𝑑𝑑ℎ𝑘𝑘

3
𝑘𝑘=1 = ∑ ∫ 2𝐺𝐺𝑘𝑘𝜔𝜔𝑘𝑘(𝜀𝜀𝛼𝛼

(𝑘𝑘)𝑛𝑛−1)э𝛼𝛼
(𝑘𝑘)𝑛𝑛−1𝑑𝑑𝑑𝑑ℎ𝑘𝑘

3
𝑘𝑘=1 , 

𝑀𝑀𝛼𝛼𝛼𝛼
𝑛𝑛−1 ≡ ∑ ∫ 𝜎𝜎𝛼𝛼𝛼𝛼

(𝑘𝑘)𝑛𝑛−1𝑧𝑧𝑧𝑧𝑧𝑧ℎ𝑘𝑘
3
𝑘𝑘=1 = ∑ ∫ 2𝐺𝐺𝑘𝑘𝜔𝜔𝑘𝑘(𝜀𝜀𝛼𝛼

(𝑘𝑘)𝑛𝑛−1)э𝛼𝛼
(𝑘𝑘)𝑛𝑛−1𝑧𝑧𝑧𝑧𝑧𝑧ℎ𝑘𝑘

3
𝑘𝑘=1 , 

𝐻𝐻𝛼𝛼𝛼𝛼𝑛𝑛-1 = 𝑀𝑀𝛼𝛼𝛼𝛼
(3)𝑛𝑛−1 + 𝑐𝑐 �𝑇𝑇𝛼𝛼𝛼𝛼

(1)𝑛𝑛−1 − 𝑇𝑇𝛼𝛼𝛼𝛼
(2)𝑛𝑛-1� (𝛼𝛼 = 𝑟𝑟,𝜑𝜑), 

(24) 

With the boundary conditions, it is necessary to do the same. Then, at each step of the 
approximation, a linear problem of the theory of elasticity with known additional “external” 
loads is obtained, the loads are calculated by equations (21), (22) [31], [32], [33]. Using the 
first two in the third equation of the system (20), the coefficients are zeroed before the desired 
functions un and ψn. After two-fold integration of these equations, the system is reduced to the 
form 

𝑢𝑢𝑛𝑛 = 𝑏𝑏1𝑤𝑤,𝑟𝑟𝑛𝑛−
1

𝑎𝑎1𝑎𝑎4−𝑎𝑎22
1
𝑟𝑟 ∫ 𝑟𝑟 ∫(𝑎𝑎2ℎ𝜔𝜔𝑛𝑛−1 − 𝑎𝑎4𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐶𝐶1𝑛𝑛𝑟𝑟 + 𝐶𝐶2𝑛𝑛

𝑟𝑟
, 

𝜓𝜓𝑛𝑛 = 𝑏𝑏2𝑤𝑤,𝑟𝑟𝑛𝑛+ 1
𝑎𝑎1𝑎𝑎4−𝑎𝑎22

1
𝑟𝑟 ∫ 𝑟𝑟 ∫(𝑎𝑎1ℎ𝜔𝜔𝑛𝑛−1 − 𝑎𝑎2𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐶𝐶3𝑛𝑛𝑟𝑟 + 𝐶𝐶4𝑛𝑛

𝑟𝑟
, 

𝐿𝐿3(𝑤𝑤,𝑟𝑟𝑛𝑛 ) + 𝜅𝜅4𝑤𝑤𝑟𝑟𝑛𝑛 = −𝑞𝑞 + 𝑓𝑓𝜔𝜔𝑛𝑛−1, 

(25) 

where 𝐶𝐶1𝑛𝑛, 𝐶𝐶2𝑛𝑛, 𝐶𝐶3𝑛𝑛, 𝐶𝐶4𝑛𝑛 – the integration constants at the n-th step, 

𝜅𝜅4 = 𝜅𝜅0𝐷𝐷, 𝑞𝑞 = 𝑞𝑞0𝐷𝐷, 𝑏𝑏1 = 𝑎𝑎3𝑎𝑎4−𝑎𝑎2𝑎𝑎5
𝑎𝑎1𝑎𝑎4−𝑎𝑎22

, 𝑏𝑏2 = 𝑎𝑎1𝑎𝑎5−𝑎𝑎2𝑎𝑎3
𝑎𝑎1𝑎𝑎4−𝑎𝑎22

, 

𝑓𝑓𝜔𝜔𝑛𝑛−1 = −𝐷𝐷𝑞𝑞𝜔𝜔𝑛𝑛−1 + 𝐷𝐷1
1
𝑟𝑟

(𝑟𝑟𝑝𝑝𝜔𝜔𝑛𝑛−1),𝑟𝑟+ 𝐷𝐷2
1
𝑟𝑟

(𝑟𝑟ℎ𝜔𝜔𝑛𝑛−1),𝑟𝑟, 

𝐷𝐷 = 𝑎𝑎1(𝑎𝑎1𝑎𝑎4−𝑎𝑎22)
(𝑎𝑎1𝑎𝑎6−𝑎𝑎32)(𝑎𝑎1𝑎𝑎4−𝑎𝑎22)−(𝑎𝑎1𝑎𝑎5−𝑎𝑎2𝑎𝑎3)2

 , 

𝐷𝐷1 = 𝑎𝑎1(𝑎𝑎3𝑎𝑎4−𝑎𝑎2𝑎𝑎5)
(𝑎𝑎1𝑎𝑎6−𝑎𝑎32)(𝑎𝑎1𝑎𝑎4−𝑎𝑎22)−(𝑎𝑎1𝑎𝑎5−𝑎𝑎2𝑎𝑎3)2

, 

𝐷𝐷2 = 𝑎𝑎1(𝑎𝑎1𝑎𝑎5−𝑎𝑎2𝑎𝑎3)
(𝑎𝑎1𝑎𝑎6−𝑎𝑎32)(𝑎𝑎1𝑎𝑎4−𝑎𝑎22)−(𝑎𝑎1𝑎𝑎5−𝑎𝑎2𝑎𝑎3)2

, 

(26) 
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The third equation in (23) in the expanded form is the following: 
the index “n -1” at the top:  

𝑤𝑤,𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 + 2
𝑟𝑟
𝑤𝑤,𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 − 1

𝑟𝑟2
𝑤𝑤,𝑟𝑟𝑟𝑟𝑛𝑛 + 1

𝑟𝑟3
𝑤𝑤,𝑟𝑟𝑛𝑛+ 𝜅𝜅4𝑤𝑤𝑛𝑛 = −𝑞𝑞 + 𝑓𝑓𝜔𝜔𝑛𝑛−1, (27) 

Its general solution can be written as: 

𝑤𝑤𝑛𝑛 = 𝐶𝐶5𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏(𝜅𝜅𝜅𝜅) + 𝐶𝐶6𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏( 𝜅𝜅𝜅𝜅) + 𝐶𝐶7𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘( 𝜅𝜅𝜅𝜅) + 𝐶𝐶8𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘(𝜅𝜅𝜅𝜅) +𝑤𝑤0𝑛𝑛(𝑟𝑟), (28) 

where: 𝑏𝑏𝑏𝑏𝑏𝑏(𝜅𝜅𝜅𝜅),  𝑏𝑏𝑏𝑏𝑏𝑏(𝜅𝜅𝜅𝜅),  𝑘𝑘𝑘𝑘𝑘𝑘(𝜅𝜅𝜅𝜅), 𝑘𝑘𝑘𝑘𝑘𝑘(𝜅𝜅𝜅𝜅) – zero-order Kelvin functions; 𝑤𝑤0𝑛𝑛(𝑟𝑟) – a 
particular solution of equation (25), to find which, in the general case, the Cauchy kernel is 
used. 

The recurrent solution of the problem of thermo-force bending of a physically nonlinear 
circular sandwich plate on an elastic foundation takes the form 

𝑢𝑢𝑛𝑛 = 𝑏𝑏1𝑤𝑤,𝑟𝑟𝑛𝑛−
1

𝑎𝑎1𝑎𝑎4−𝑎𝑎22
1
𝑟𝑟 ∫ 𝑟𝑟 ∫(𝑎𝑎2ℎ𝜔𝜔𝑛𝑛−1 − 𝑎𝑎4𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐶𝐶1𝑛𝑛𝑟𝑟 + 𝐶𝐶2𝑛𝑛

𝑟𝑟
, 

𝜓𝜓𝑛𝑛 = 𝑏𝑏2𝑤𝑤,𝑟𝑟𝑛𝑛+ 1
𝑎𝑎1𝑎𝑎4−𝑎𝑎22

1
𝑟𝑟 ∫ 𝑟𝑟 ∫(𝑎𝑎1ℎ𝜔𝜔𝑛𝑛−1 − 𝑎𝑎2𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝐶𝐶3𝑛𝑛𝑟𝑟 + 𝐶𝐶4𝑛𝑛

𝑟𝑟
, 

𝑤𝑤𝑛𝑛 = 𝐶𝐶5𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏(𝜅𝜅𝜅𝜅) + 𝐶𝐶6𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏( 𝜅𝜅𝜅𝜅) + 𝐶𝐶7𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘( 𝜅𝜅𝜅𝜅) + 𝐶𝐶8𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘(𝜅𝜅𝜅𝜅) +𝑤𝑤0𝑛𝑛(𝑟𝑟), 

(29) 

where the integration constants 𝐶𝐶1𝑛𝑛, 𝐶𝐶2𝑛𝑛,  . . . , 𝐶𝐶8𝑛𝑛 at each iteration step are determined from the 
boundary conditions. 

When the boundary contours of the annular plate are tightly sealed, the solution (27) must 
be substituted for the boundary conditions (17). As a result, at each step of the approximation, 
a linear system of eight algebraic equations for determining the integration constants is 
obtained 𝐶𝐶1𝑛𝑛, 𝐶𝐶2𝑛𝑛,  . . . , 𝐶𝐶8𝑛𝑛. The first four equations that meet the requirements u = 0, ψ = 0 for 
r = r0 and r = r1 will be 

𝐶𝐶1𝑛𝑛𝑟𝑟1 + 𝐶𝐶2𝑛𝑛

𝑟𝑟1
= 𝑞𝑞1𝑛𝑛−1, 𝐶𝐶1𝑛𝑛𝑟𝑟0 + 𝐶𝐶2𝑛𝑛

𝑟𝑟0
= 𝑞𝑞2𝑛𝑛−1, 𝐶𝐶3𝑛𝑛𝑟𝑟1 + 𝐶𝐶4𝑛𝑛

𝑟𝑟1
= 𝑞𝑞3𝑛𝑛−1, 𝐶𝐶3𝑛𝑛𝑟𝑟0 + 𝐶𝐶4𝑛𝑛

𝑟𝑟0
= 𝑞𝑞4𝑛𝑛−1, (30) 

where: 

𝑞𝑞1𝑛𝑛−1 = 1
𝑎𝑎1𝑎𝑎4−𝑎𝑎22

∫ 𝑟𝑟 ∫(𝑎𝑎2ℎ𝜔𝜔𝑛𝑛−1 − 𝑎𝑎4𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
𝑟𝑟=𝑟𝑟1

, 𝑞𝑞2𝑛𝑛−1 =
1

𝑎𝑎1𝑎𝑎4−𝑎𝑎22
1
𝑟𝑟0
∫ 𝑟𝑟 ∫(𝑎𝑎2ℎ𝜔𝜔𝑛𝑛−1 − 𝑎𝑎4𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

𝑟𝑟=𝑟𝑟0
,𝑞𝑞3𝑛𝑛−1 = − 1

𝑎𝑎1𝑎𝑎4−𝑎𝑎22
∫ 𝑟𝑟 ∫(𝑎𝑎1ℎ𝜔𝜔𝑛𝑛−1 −

𝑎𝑎2𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�
𝑟𝑟=𝑟𝑟1

,𝑞𝑞4𝑛𝑛−1 = − 1
𝑎𝑎1𝑎𝑎4−𝑎𝑎22

1
𝑟𝑟0
∫ 𝑟𝑟 ∫(𝑎𝑎1ℎ𝜔𝜔𝑛𝑛−1 − 𝑎𝑎2𝑝𝑝𝜔𝜔𝑛𝑛−1)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑�

𝑟𝑟=𝑟𝑟0
, 

(31) 

They allow to obtain constants 𝐶𝐶1𝑛𝑛, 𝐶𝐶2𝑛𝑛, 𝐶𝐶3𝑛𝑛,𝐶𝐶4𝑛𝑛 explicitly: 

𝐶𝐶1𝑛𝑛 = 𝑞𝑞1𝑛𝑛−1−𝑟𝑟0𝑞𝑞2𝑛𝑛−1

1−𝑟𝑟02
, 𝐶𝐶2𝑛𝑛 = 𝑟𝑟0(𝑞𝑞2𝑛𝑛−1−𝑟𝑟0𝑞𝑞1𝑛𝑛−1)

1−𝑟𝑟02
, 

𝐶𝐶3𝑛𝑛 = 𝑞𝑞3𝑛𝑛−1−𝑟𝑟0𝑞𝑞4𝑛𝑛−1

1−𝑟𝑟02
, 𝐶𝐶4𝑛𝑛 = 𝑟𝑟0(𝑞𝑞4𝑛𝑛−1−𝑟𝑟0𝑞𝑞3𝑛𝑛−1)

1−𝑟𝑟02
 

(32) 

From the conditions w = w, r = 0 for r = r0 and r = r1, it follows: 

𝐶𝐶5𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏 𝜅𝜅 + 𝐶𝐶6𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏 𝜅𝜅 + 𝐶𝐶7𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘 𝜅𝜅 + 𝐶𝐶8𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘 𝜅𝜅 = −𝑤𝑤0𝑛𝑛(𝑟𝑟1), 
𝐶𝐶5𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏(𝜅𝜅𝑟𝑟0) + 𝐶𝐶6𝑛𝑛 𝑏𝑏𝑏𝑏𝑏𝑏(𝜅𝜅𝑟𝑟0) + 𝐶𝐶7𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘(𝜅𝜅𝑟𝑟0) + 𝐶𝐶8𝑛𝑛 𝑘𝑘𝑘𝑘𝑘𝑘(𝜅𝜅𝑟𝑟0) = 0, 

𝑏𝑏3𝐶𝐶5𝑛𝑛 + 𝑏𝑏4𝐶𝐶6𝑛𝑛 + 𝑏𝑏30𝐶𝐶7𝑛𝑛 + 𝑏𝑏40𝐶𝐶8𝑛𝑛 = −𝑤𝑤0𝑛𝑛,𝑟𝑟 (𝑟𝑟1), 𝑏𝑏31𝐶𝐶5𝑛𝑛 + 𝑏𝑏41𝐶𝐶6𝑛𝑛 + 𝑏𝑏32𝐶𝐶7𝑛𝑛 + 𝑏𝑏42𝐶𝐶8𝑛𝑛 =
0, 

(33) 
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where: 

𝑏𝑏30 = 𝜅𝜅√2
2

[𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝑟𝑟1) + 𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝑟𝑟1)], 𝑏𝑏40 = 𝜅𝜅√2
2

[−𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝑟𝑟1) + 𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝑟𝑟1)],  

𝑏𝑏31 = 𝜅𝜅√2
2

[𝑏𝑏𝑏𝑏𝑏𝑏1(𝜅𝜅𝑟𝑟0) + 𝑏𝑏𝑏𝑏𝑏𝑏1(𝜅𝜅𝑟𝑟0)], 𝑏𝑏41 = 𝜅𝜅√2
2

[−𝑏𝑏𝑏𝑏𝑏𝑏1(𝜅𝜅𝑟𝑟0) + 𝑏𝑏𝑏𝑏𝑏𝑏1( 𝜅𝜅𝑟𝑟0)], 

𝑏𝑏32 = 𝜅𝜅√2
2

[𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝑟𝑟0) + 𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝑟𝑟0)], 𝑏𝑏42 = 𝜅𝜅√2
2

[−𝑘𝑘𝑘𝑘𝑘𝑘1( 𝜅𝜅𝑟𝑟0) + 𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝑟𝑟0)], 

(34) 

 

Here the relations are used: 

𝑤𝑤,𝑟𝑟𝑛𝑛 =
𝜅𝜅√2

2
{𝐶𝐶5𝑛𝑛[𝑏𝑏𝑏𝑏𝑏𝑏1(𝜅𝜅𝜅𝜅) + 𝑏𝑏𝑏𝑏𝑏𝑏1(𝜅𝜅𝜅𝜅)] + 𝐶𝐶5𝑛𝑛[−𝑏𝑏𝑏𝑏𝑏𝑏1(𝜅𝜅𝜅𝜅) + 𝑏𝑏𝑏𝑏𝑏𝑏1(𝜅𝜅𝜅𝜅)] + 

+𝐶𝐶7𝑛𝑛[𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝜅𝜅) + 𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝜅𝜅)] + 𝐶𝐶8𝑛𝑛[−𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝜅𝜅) + 𝑘𝑘𝑘𝑘𝑘𝑘1(𝜅𝜅𝜅𝜅)]} + 𝑤𝑤0𝑛𝑛,𝑟𝑟 (𝑟𝑟), 

𝑤𝑤,𝑟𝑟𝑛𝑛 (𝑟𝑟1) = 𝑏𝑏3𝐶𝐶5𝑛𝑛 + 𝑏𝑏4𝐶𝐶6𝑛𝑛 + 𝑏𝑏30𝐶𝐶7𝑛𝑛 + 𝑏𝑏40𝐶𝐶8𝑛𝑛 + 𝑤𝑤0𝑛𝑛,𝑟𝑟 (𝑟𝑟1), 𝑤𝑤0𝑛𝑛(𝑟𝑟0) = 0, 𝑤𝑤0𝑛𝑛,𝑟𝑟 (𝑟𝑟0) = 0 

(35) 

As a result, the solution of the system of linear algebraic equations (20) can be written in 
the determinants:  

𝐶𝐶5𝑛𝑛 = 𝛥𝛥5
𝑛𝑛

𝛥𝛥
, 𝐶𝐶6𝑛𝑛 = 𝛥𝛥6𝑛𝑛

𝛥𝛥
, 𝐶𝐶7𝑛𝑛 = 𝛥𝛥7𝑛𝑛

𝛥𝛥
, 𝐶𝐶8𝑛𝑛 = 𝛥𝛥8𝑛𝑛

𝛥𝛥
 (36) 

where: Δ – determinant of the system (31); the remaining determinants are obtained from it by 
replacing the column with the number (n-4), n – the lower index of the determinant, with the 
column of free members of the system (30) [34], [35]. 

Thus, the solution (27) with the integration constants (30), (34) describes the elastoplastic 
displacements of circular sandwich plates with a light core and sealed boundary contours, bent 
on an elastic foundation by an arbitrary symmetric load q(r) and a heat flow qt. Numerical 
studies were carried out for plates fixed along the contours, the layers of which were composed 
from D16T-fluoroplastic-D16T materials. Relative layer thicknesses h1 = h2 = 0.04, h3 = 0.4, 
inner radius r0 = 0.2, outer radius r1 = 1. The intensity of the thermal load qt = 5000 J/(m2*s). 
Time of its action t0 = 60 min.  For the plates under consideration, the heat spent on heating 
the outer metal layer is neglected (due to the low heat capacity). Its temperature is assumed to 
be equal to the temperature of the aggregate at the bonding site: T(1) = T(3) (c, t). At a heat flow 
of qt = 5000 J/(m2*s), the temperature in the outer layer reaches a value of T1 = 597 K (at t0 = 
60 min.), which corresponds to sufficient heating of duralumin, but less than the melting point 
of the filler – fluoroplastic. In the second layer in contact with the base, the temperature is 
constant. To describe the dependence of the elastic modulus of materials on temperature, the 
equation proposed by Bell is used: 

{𝐺𝐺(𝑇𝑇),  𝐾𝐾(𝑇𝑇),  𝐸𝐸(𝑇𝑇)} = {𝐺𝐺(0),  𝐾𝐾(0),  𝐸𝐸(0)}𝜙𝜙(𝑇𝑇), 

𝜙𝜙(𝑇𝑇) = �
1,        

1,03(1− 𝑇𝑇/(2𝑇𝑇pl)), 
 0 < 𝑇𝑇/𝑇𝑇𝑝𝑝𝑝𝑝 ≤ 0,06,

  0,06 <
𝑇𝑇
𝑇𝑇𝑝𝑝𝑝𝑝

≤ 0,57,  
(37) 

where: Tpl – the melting point of the material; G (0), K(0), E(0) are the module values at the 
so-called zero temperature. For example, knowing the magnitude of the shear modulus G0 at 
a certain temperature T0, obtain 𝐺𝐺(0) = 𝐺𝐺0

𝜑𝜑(𝑇𝑇0)
. At higher temperatures T/Tpl > 0.57, a small 

deviation of the material behaviour from the linear law (22) is possible. The functions of the 
plasticity of the materials of the bearing layers and the physical nonlinearity of the aggregate, 
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depending on the strain intensity eu (k), the temperature Tk and the hydrostatic stress σ (3), are 
taken as 

𝜔𝜔𝑘𝑘(𝜀𝜀𝑢𝑢𝑘𝑘 ,𝑇𝑇𝑘𝑘) = �
0,        

𝐴𝐴1𝑘𝑘 �1 − 𝜀𝜀𝑇𝑇0
𝑘𝑘

𝜀𝜀𝑢𝑢𝑘𝑘+𝜀𝜀𝑇𝑇0
𝑘𝑘 −𝜀𝜀𝑇𝑇

𝑘𝑘�
𝛼𝛼1𝑘𝑘

,
𝜀𝜀𝑢𝑢𝑘𝑘 ≤ 𝜀𝜀𝑇𝑇0𝑘𝑘 ,
𝜀𝜀𝑢𝑢𝑘𝑘 > 𝜀𝜀𝑇𝑇0𝑘𝑘 .

 𝜀𝜀𝑇𝑇𝑘𝑘(𝑇𝑇) = 𝜎𝜎𝑇𝑇
𝑘𝑘(𝑇𝑇𝑘𝑘)

𝐸𝐸𝑘𝑘(𝑇𝑇𝑘𝑘)
, 

𝜎𝜎𝑦𝑦𝑘𝑘 = 𝜎𝜎𝑇𝑇0𝑘𝑘 𝑒𝑒𝑒𝑒𝑒𝑒 �𝜅𝜅𝑘𝑘 �
1
𝑇𝑇𝑘𝑘
− 1

𝑇𝑇𝑘𝑘0
��, 

(38) 

where A1k, a1k, Ek, kk, A2, a2, A3, a3 – the constants of the layer materials obtained 
experimentally; eT

(k) – the yield strength of the material under deformations at the temperature 
Tk, eT0 (k) – the yield strength at the initial temperature; p0 – the minimum pressure covering 
all internal defects in the core material.  

The displacements (27) for an annular plate with integration constants (34) at a base with 
stiffness (κ0 = 1000 MPa/m) are shown in Figure 2 (a-c): 1 – isothermal bending of the elastic 
plate; 2 – thermoelastic bending; 3 – thermoplastic. The intensity of the power load q0=-40 
MPa. The plasticity of the layer materials significantly affects the radial displacements in the 
plate. Here, the weak influence of the physical nonlinearity of the materials on the deflection 
and relative shear is conditioned by the sufficiently high rigidity of the foundation and plate. 

 
Fig. 2 – Change along the radius of the plate: a – deflection w, b – displacement in the core ψ, c – radial 

displacement u 

The changes in the corresponding radial and tangential deformations on the outer surface 
of the first layer are shown in Figure 3. Plasticity causes an increase in the maximum radial 
deformations in the inner contour by 30%. 

 
Fig. 3 – Variation of radial and angular deformations along the plate radius 
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Figure 4 shows the change in radial stresses along the thickness of the plate on its outer 
and inner contours. Due to heating, the first layer and part of the core expand and experience 
compression due to this. 

 
Fig. 4 – Variation of radial stresses along the plate thickness on: a – outer boundary, b – inner boundary 

This causes them to shift the stress to the negative area. In the first layer, their increase in 
modulus is observed. In the second layer, the stress change is insignificant. 

4. CONCLUSIONS 
The description of the nonlinear deformation of layer materials is carried out using the 
relations of the theory of small elastoplastic deformations. The application of the method of 
linear approximation allows reducing the solution of a nonlinear system of equilibrium 
equations to the corresponding equations of the linear theory of elasticity with additional 
"external" forces determined by the results of the previous approximation. The resulting 
system of equilibrium equations is reduced to a single inhomogeneous fourth-order differential 
equation with respect to the deflection of the plate. The general solution of the corresponding 
inhomogeneous differential equation can be written out in Kelvin functions. The partial 
solution of an inhomogeneous equation with a uniformly distributed load is determined by a 
constant, in the case of a load of a more complex type – using the Cauchy kernel. The 
integration constants follow from the boundary conditions on the outer and inner plate 
contours at each step of the approximation. 

Numerical studies were carried out for a plate with layers made of duralumin – 
fluoroplastic-4 – duralumin materials. It was found that with increasing base stiffness, the 
maximum deflection and relative shear significantly decrease. The stresses reach a maximum 
on the inner contour, where they are 1.5 times greater than the stresses on the outer contour. 
When the stiffness of the foundation increases to high, the maximum stresses decrease in 
modulus by 2.6 times. Thus, the proposed mathematical model allows studying the stress-
strain state of physically nonlinear circular sandwich plates with a central hole connected to 
an elastic foundation of arbitrary rigidity, with different methods of fixing its external and 
internal contours under any axisymmetric loads. The resulting analytical solution can be used 
for conducting appropriate numerical experiments when performing calculations of composite 
structural elements in construction and mechanical engineering. 
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