
INCAS BULLETIN, Volume 15, Issue 4/ 2023, pp. 229 – 243 (P) ISSN 2066-8201, (E) ISSN 2247-4528

Implementing the Propeller Speed Control of Drone
Designed in Solidworks in CoppeliaSim Robotic Simulator

Environment with Codes Prepared in Matlab

Bülent SİĞERGÖK*,1, Mehmet ÇAVAŞ2

*Corresponding author
1Graduate School of Natural and Applied Sciences, Fırat University, Elazığ, Turkey,

bulentsigergok02010@gmail.com*
2Fırat University, Technology Faculty, Mechatronic Engineering, Elazığ, Turkey,

mcavas@firat.edu.tr
DOI: 10.13111/2066-8201.2023.15.4.20

Received: 08 October 2023/ Accepted: 17 November 2023/ Published: December 2023
Copyright © 2023. Published by INCAS. This is an “open access” article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Abstract: Real-time applications of autonomous systems are simulated in the computer environment to
ensure that they operate error-free or with minimal errors. Coppeliasim, used in this field, is a platform
where several sample models, robots, sensors and actuators are used together, a virtual world is created
and interacted with it throughout the working period. Having a comprehensive toolbox, autonomous
vehicle training and virtual reality, Coppeliasim's compatibility with Solidworks, a very useful design
program for drawing, seems to be a great advantage. Due to these features, CoppeliaSim is very
important in predicting and solving problems that may arise in many different applications. The
propeller movement of the drone, which we designed with the Solidworks 2020 program and transferred
to the Coppeliasim platform using the URDF exporter method, was carried out with the Coppeliasim
simulator. In our work, Coppeliasim is synchronized with the simulator and MATLAB API codes. While
the drone propellers were working on the Coppeliasim platform, angular speed and timing controls
were made using the codes we prepared in the MATLAB program. Additionally, this work shows that
drones or different autonomous systems can be controlled and designed before real-time operation
using the Coppeliasim simulator and the MATLAB program.

Key Words: Robotics, Coppeliasim, Propeller Angular Speed Control, Simulation, Matlab

1. INTRODUCTION
As in many areas of modern industry, a wide variety of applications such as material transfer,
precision assembly, welding and machinery are highly dependent on autonomous systems[1].
An unmanned aerial vehicle (UAV), a vehicle with an autonomous system, is a vehicle that
can fly without a human pilot by using aerodynamic effects.The flight of these aircraft can be
autonomously or remotely controlled by pilots from the ground, with or without load.
Depending on the technological developments, with the development of autonomous systems,
UAVs have entered the life of living things. UAVs, which are in the class of autonomous
systems, have become actively used in many areas, especially in the military, agricultural and
security fields.

Autonomous systems are the design, modeling and production of computer, electronic,
mechanical, control systems, etc. These systems are considered to be the product of

mailto:bulentsigergok02010@gmail.com
mailto:mcavas@firat.edu.tr
http://creativecommons.org/licenses/by-nc-nd/4.0/

Bülent SİĞERGÖK, Mehmet ÇAVAŞ 230

INCAS BULLETIN, Volume 15, Issue 4/ 2023

interdisciplinary studies covering the subjects. In order to make real-time applications error-
free and trouble-free in autonomous systems, the systems must be simulated. Autonomous
simulators, developed to solve the problems that may occur, provide the necessary tests for the
design, modeling and production of autonomous systems in a virtual environment, and also
offer significant benefits and gains for autonomous vehicle training. It is extremely important
to design and simulate using parameters from the kinematics, physics and graphics libraries of
the simulators in question. At the same time, in terms of engineering and control methodology,
the interaction of these parameters and the performance and accuracy of the prepared system
are also important in determining what will happen [2].

In robotics, which is a multidisciplinary field, training at all levels has been provided in
many fields in recent years. It expands into several engineering and scientific fields as
disciplines such as electrical engineering, computer science, control engineering mechanics.
This is why robotics is so interesting and versatile from a pedagogical point of view. The
primary focus of robotic systems is to create a platform that enables rapid prototyping and
validation. Also, the generality of the toolbox makes it valuable in robotics education, human-
robot interaction, or other contexts [3] such as developing, testing and validating different
cognitive approaches, perception, memory, behavior etc. In order to compare the features of
the two simulators, Gazebo and CoppeliaSim, an attempt was made to produce two source-
based solutions. Of these, basic, commercial and educational versions, which are free
(CoppeliaSim) provided by Coppelia Robotics, are offered as solutions. Some authors working
in this field have conducted a survey on the use of robotic simulators. Two of the simulators
in the survey were selected according to the results announced. These authors found that
Gazebo is the best-known simulator and CoppeliaSim is the best-rated simulator[4].

Today, the CoppeliaSim simulator deserves to be mentioned as one of the most widely
used special programs for pedagogical purposes. Moreover, the generality of the toolbox
provides values such as robot training, human-robot interaction, or reinforcement learning.
CoppeliaSim software is designed to have a low input threshold for moderately complex
applications[5]. CoppeliaSim has an integrated development environment (IDE) based on
flexible and scripted architecture. Among many platforms, the CoppeliaSim (Virtual Robot
Simulation Platform) simulator is designed for the creation of three-dimensional simulation in
a short time, a very large object scene and an embedded script, all of which run simultaneously,
creating a virtual world and interacting at runtime. It has sensors and actuators along with a
large number of sample robotic models, etc. used in this study due to its properties. It provides
support for a set of tools that add VR to the prototyping environment of any powerful robot
system[6]. CoppeliaSim simulator and MATLAB (matrix laboratory) also offer the
opportunity to be used together in real-time applications [7-8]. Scripting algorithm techniques
are used to leverage simulator and hardware capabilities to simulate the behavior of real robot
functions[9]. In the literature, there are studies on CoppeliaSim simulator and MATLAB-
based autonomous systems, but in most of the studies, it is seen that the autonomous vehicles
used are not designed and the ones that are ready on the platform were used.

It is seen that studies on drone design and modeling and studies such as speed control of
propellers have been done very little. Therefore, in this study, a virtual environment was
created for drone speed control by synchronizing with CoppeliaSim and MATLAB and to
show the validity and applicability of the recommended organization with MATLAB and
CoppeliaSim, important parts of CoppeliaSim, plug-in features of the designed drone,
embedded all definitions including types of scripts and remote API (Application Programming
Interface) of CoppeliaSim were made and referenced drone simulation was made.

231 Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator

INCAS BULLETIN, Volume 15, Issue 4/ 2023

2. MATHEMATICAL MODEL OF THE DRONE
The cross-shaped frame of a drone vehicle has four engines, front, rear, right and left, and
these engines generate lift in the direction of the rotation axes by driving the propellers. The
front and rear propellers rotate counterclockwise, while the left and right propellers rotate
clockwise. In this way, when all the propellers rotate at equal speed, the torque applied to the
center of the helicopter is balanced and the orientation angle, which is the rotation angle of the
helicopter around its axis, does not change. The difference between the speeds of the left and
right propellers creates a difference in lift forces and the helicopter's yaw angle changes. By
the same logic, the difference in speed between the front and rear propellers causes the pitch
angle to change. Increasing or decreasing the speeds of all propellers at the same rate enables
the drone vehicle to move in its own z-axis direction. The direction of rotation of the drone
propellers and the lifting forces, rotation angles and movement coordinates due to this rotation
are shown in Fig. 1. The yaw (Φ), pitch (θ) and yaw (ψ) angles around the x, y and z axes of
the drone vehicle, respectively, the main forces F1, F2, F3, F4 and mg, and the rotation
directions of the four propellers are given.

Fig. 1 - Forces acting on the vehicle and earth coordinate axes.

The quadrotor aircraft is modeled using the Newton – Euler equations. The position of B, the
body fixed frame, and A, the position (ζ) in 3-dimensional space with respect to the inertial
frame is expressed as in equation 1.

ζ = [x
y
z
] (1)

In equation 2, the velocity of B with respect to A is given.

v = [ẋ
ẏ
ż
] (2)

In equation 3, the acceleration of the linear motion of the drone vehicle is given.

�̇�𝒗 = [�̈�𝒙�̈�𝒚
�̈�𝒛
] (3)

Ωi is the angular velocities of the propellers and (i: 1, 2, 3, 4), the lifting force resulting from
the rotation of the propellers is expressed in equation 4. The push factor b here is a constant

Bülent SİĞERGÖK, Mehmet ÇAVAŞ 232

INCAS BULLETIN, Volume 15, Issue 4/ 2023

value and I angular momentum. While the total lift force applied to the drone vehicle from
the propellers is calculated by equation 5, the acceleration due to this force is expressed as in
equation 6 The expression of the total acceleration with respect to the A frame is expressed as
R, and the force balance is expressed by equation 7.

Fi=bΩi2 (4)

Fi=b∑ = 𝐼𝐼4
𝑖𝑖 Ωi2 (5)

af=
𝑏𝑏
𝑚𝑚
∑ = 𝐼𝐼4
𝑖𝑖 Ωi2 (6)

𝑣𝑣=-gez+Rezaf�̇�𝑣 = -gez + Rezaf (7)

ez in equation 7 is a [0 0 1]T-shaped vector and is used to express the magnitudes in the z-axis.
R in Equation 8 represents the rotation matrix. C stands for Cosine and S stands for Sine,

R=[𝑪𝑪ᴪ𝑪𝑪𝑪𝑪 𝑪𝑪ᴪ𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺 − 𝑺𝑺ᴪ𝑪𝑪𝑺𝑺 𝑪𝑪ᴪ𝑺𝑺𝑪𝑪𝑪𝑪𝑺𝑺 + 𝑺𝑺ᴪ𝑺𝑺𝑺𝑺
𝑺𝑺ᴪ𝑪𝑪𝑪𝑪 𝑺𝑺ᴪ𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺 + 𝑪𝑪ᴪ𝑪𝑪𝑺𝑺 𝑺𝑺ᴪ𝑺𝑺𝑪𝑪𝑪𝑪𝑺𝑺− 𝑪𝑪ᴪ𝑺𝑺𝑺𝑺
−𝑺𝑺𝑪𝑪 𝑪𝑪𝑪𝑪𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺

] (8)

Regarding the angular velocity of the rigid body, the relationship between the angular
velocities of the rotation matrix and the body frame is defined by equation 9.

�̇�𝑅=RS(𝜔𝜔) (9)

ω in equation 9 represents the angular velocity vector of the body frame and is given as in
equation 10. S(ω) is the 3x3 minus symmetric matrix of ω and is expressed as in equation 11.

ω = [𝛚𝛚𝟏𝟏
𝛚𝛚𝟐𝟐
𝛚𝛚𝟑𝟑

] (10)

S(𝛚𝛚) = [𝟎𝟎 −𝝎𝝎𝟑𝟑 𝝎𝝎𝟐𝟐
 𝝎𝝎𝟑𝟑 𝟎𝟎 −𝝎𝝎𝟏𝟏
−𝝎𝝎𝟐𝟐 𝝎𝝎𝟏𝟏 𝟎𝟎

] (11)

The axis of rotation of rigid bodies rotating rapidly around its own axis rotates around the
vertical axis in the direction of gravity and forms a cone of rotation. A wobble movement
occurs when the rotational moment acting on the rotating object changes the direction of the
rotation axis of the object. This effect, which occurs in all rotational movements of the drone
vehicle, This is called the gyroscopic effect. Since the drone vehicle rotates around its axes
with angular velocities of ω, X, Y, Z angular momentums are formed and are expressed as in
equation 12.

I X,Y,Z = Iω (12)
I, a 3x3 matrix in equation 12, is the inertia in the x, y and z axes of the Drone vehicle body,
expressed as in equation 13.

I = [𝑰𝑰𝑿𝑿 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝑰𝑰𝒀𝒀 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑰𝑰𝒁𝒁

] (13)

233 Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator

INCAS BULLETIN, Volume 15, Issue 4/ 2023

Since torque is the variation of angular momentum with time, the torque due to the angular
velocities of the drone vehicle is expressed as in equation 14.

ƮB = �́�𝐼 (14)

From equations 12 and 14,

ƮB= ω x I ω + 𝐼𝐼�́�𝜔 (15)

The gyroscopic torque resulting from the rotation of the body of the drone and the propellers
around their own axis is expressed as in equation 16. Here J represents the inertia of one rotor.

ƮG = b∑ =4
𝑖𝑖 J(ω x ez) Ωi (-1)i (16)

The lifting forces due to the rotational movement of each propeller, seen in Figure 1, constitute
the torques acting on the drone vehicle. The torque along one axis is equal to the difference
between the torques produced by the propellers on the other axis, and the torques caused by
the propellers along the x, y and z axes are expressed as in equation 17. Here, l is the distance
between the rotor and the center of the quadrocopter, and d is the drag factor. The torque
balance in equations 15 and 16 is expressed as in equation 18.

Ʈa = [𝑰𝑰𝑰𝑰(𝜴𝜴𝟒𝟒
𝟐𝟐 − 𝜴𝜴𝟐𝟐

𝟐𝟐)
𝑰𝑰𝑰𝑰(𝜴𝜴𝟑𝟑

𝟐𝟐 − 𝜴𝜴𝟏𝟏
𝟐𝟐)

𝒅𝒅(−𝜴𝜴𝟏𝟏
𝟐𝟐 + 𝜴𝜴𝟒𝟒

𝟐𝟐 − 𝜴𝜴𝟐𝟐
𝟐𝟐 +𝜴𝜴𝟑𝟑

𝟐𝟐)
] (17)

ƮG + ƮB = Ʈa (18)

From Equation 5.18, ƮB is obtained as in Equation 19.

ƮB = [�̇�𝑺𝑪𝑪 ̇
ᴪ̇
]x[𝑰𝑰𝑿𝑿 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝑰𝑰𝒀𝒀 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑰𝑰𝒁𝒁

][𝑺𝑺
𝑪𝑪 ̇
ᴪ̇
]+[𝑰𝑰𝑿𝑿 𝟎𝟎 𝟎𝟎

𝟎𝟎 𝑰𝑰𝒀𝒀 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑰𝑰𝒁𝒁

][�̈�𝑺𝑪𝑪 ̈
ᴪ̈
] (19)

Torque balance is given as in equation 20.

ƮB =J([�̇�𝑺𝑪𝑪 ̇
ᴪ̇
]x[𝟎𝟎𝟎𝟎

𝟏𝟏
])(- Ω1 + Ω2 - Ω3 + Ω4)+[𝐼𝐼𝑋𝑋 0 0

0 𝐼𝐼𝑌𝑌 0
0 0 𝐼𝐼𝑍𝑍

][𝑺𝑺
𝑪𝑪 ̇
ᴪ̇
]

+[𝑰𝑰𝑿𝑿 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝑰𝑰𝒀𝒀 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝑰𝑰𝒁𝒁

][�̈�𝑺
𝑪𝑪 ̈
ᴪ̈
] = [𝑰𝑰𝑰𝑰(𝜴𝜴𝟒𝟒

𝟐𝟐 − 𝜴𝜴𝟐𝟐
𝟐𝟐)

𝑰𝑰𝑰𝑰(𝜴𝜴𝟑𝟑
𝟐𝟐 − 𝜴𝜴𝟏𝟏

𝟐𝟐)
𝒅𝒅(−𝜴𝜴𝟏𝟏

𝟐𝟐 + 𝜴𝜴𝟐𝟐
𝟐𝟐 − 𝜴𝜴𝟑𝟑

𝟐𝟐 + 𝜴𝜴𝟒𝟒
𝟐𝟐)

]

(20)

In this equation, if (θ,) ̈ ϕ ̈ and ᴪ ̈" are thrown to the left and the equation is solved, the angular
accelerations appear as in equations 21, 22 and 23.

�̈�𝜙 = ᴪ̇ 𝜃𝜃 ̇ (𝐼𝐼𝑌𝑌 − 𝐼𝐼𝑍𝑍
𝐼𝐼𝑋𝑋

) -
𝐽𝐽
𝐼𝐼𝑋𝑋
𝜃𝜃 ̇ (−Ω1 + Ω2 - Ω3 + Ω4) + 𝑙𝑙

𝐼𝐼𝑋𝑋
b(𝛺𝛺4

2 − 𝛺𝛺2
2)) (21)

𝜃𝜃 ̈ = ᴪ̇ �̇�𝜙(𝐼𝐼𝑋𝑋 − 𝐼𝐼𝑍𝑍
𝐼𝐼𝑌𝑌

) + 𝐽𝐽
𝐼𝐼𝑌𝑌
�̇�𝜙(−Ω1 + Ω2 - Ω3 + Ω4) + 𝑙𝑙

𝐼𝐼𝑌𝑌
b(𝛺𝛺3

2 − 𝛺𝛺1
2)) (22)

ᴪ̈ =�̇�𝜃�̇�𝜙(𝐼𝐼𝑋𝑋 − 𝐼𝐼𝑌𝑌
𝐼𝐼𝑍𝑍

) + 𝐼𝐼
𝐼𝐼𝑌𝑌

(−𝛺𝛺12 + 𝛺𝛺22 − 𝛺𝛺32 + 𝛺𝛺4
2)) (23)

Bülent SİĞERGÖK, Mehmet ÇAVAŞ 234

INCAS BULLETIN, Volume 15, Issue 4/ 2023

[�̈�𝑿�̈�𝒀
�̈�𝒁
]=[𝟎𝟎

𝟎𝟎
–𝒈𝒈

]+[𝑪𝑪ᴪ𝑪𝑪𝑪𝑪 𝑪𝑪ᴪ𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺 − 𝑺𝑺ᴪ𝑪𝑪𝑺𝑺 𝑪𝑪ᴪ𝑺𝑺𝑪𝑪𝑪𝑪𝑺𝑺+ 𝑺𝑺ᴪ𝑺𝑺𝑺𝑺
𝑺𝑺ᴪ𝑪𝑪𝑪𝑪 𝑺𝑺ᴪ𝑺𝑺𝑪𝑪𝑺𝑺𝑺𝑺 + 𝑪𝑪ᴪ𝑪𝑪𝑺𝑺 𝑺𝑺ᴪ𝑺𝑺𝑪𝑪𝑪𝑪𝑺𝑺− 𝑪𝑪ᴪ𝑺𝑺𝑺𝑺
−𝑺𝑺𝑪𝑪 𝑪𝑪𝑪𝑪𝑺𝑺𝑺𝑺 𝑪𝑪𝑪𝑪𝑪𝑪𝑺𝑺

]

 [𝟎𝟎
𝟎𝟎
−𝒈𝒈

] 𝐛𝐛
𝐦𝐦

(𝜴𝜴𝟏𝟏
𝟐𝟐 + 𝛀𝛀𝟐𝟐

𝟐𝟐 + 𝛀𝛀𝟑𝟑
𝟐𝟐 +𝛀𝛀𝟒𝟒

𝟐𝟐

(24)

Equations 25, 26 and 27 give the values of x ̈ , y ̈ and z ̈,

�̈�𝑥= (𝐶𝐶ᴪ𝑆𝑆𝜃𝜃𝑆𝑆𝜙𝜙 + 𝑆𝑆ᴪ𝐶𝐶𝜙𝜙) 𝑏𝑏
𝑚𝑚

(𝛺𝛺12 + 𝛺𝛺22 + 𝛺𝛺32 + 𝛺𝛺4
2

) (25)

�̈�𝑦= (𝑆𝑆ᴪ𝑆𝑆𝜃𝜃𝐶𝐶𝜙𝜙 + 𝐶𝐶ᴪ𝑆𝑆𝜙𝜙) 𝑏𝑏
𝑚𝑚

(𝛺𝛺12 + 𝛺𝛺22 + 𝛺𝛺32 + 𝛺𝛺4
2) (26)

�̈�𝑧= -g + (𝐶𝐶𝜃𝜃𝐶𝐶𝜙𝜙) 𝑏𝑏
𝑚𝑚

(𝛺𝛺12 + 𝛺𝛺22 + 𝛺𝛺32 + 𝛺𝛺4
2) (27)

When the inputs of the system are selected as in equations 28, 29, 30 and 31 due to their
convenience and convenience,

U1 = b ((𝛺𝛺12 + 𝛺𝛺22 + 𝛺𝛺32 + 𝛺𝛺4
2) (28)

U2 = b ((𝛺𝛺4
2 − 𝛺𝛺22) (29)

U3 = b ((𝛺𝛺3
2 − 𝛺𝛺12) (30)

U4 = d ((−𝛺𝛺12 + 𝛺𝛺22 − 𝛺𝛺32 + 𝛺𝛺4
2) (31)

The complete mathematical model equations of the modeled drone vehicle are obtained as in
equations 32, 33 and 34 and used in the drone design.

�̈�𝜙 = ᴪ̇ 𝜃𝜃 ̇ (𝐼𝐼𝑌𝑌 − 𝐼𝐼𝑍𝑍
𝐼𝐼𝑋𝑋

) -
𝐽𝐽
𝐼𝐼𝑋𝑋
𝜃𝜃 ̇ (−Ω1 + Ω2 - Ω3 + Ω4) + 𝑙𝑙

𝐼𝐼𝑋𝑋
 U2) (32)

𝜃𝜃 ̈ = ᴪ̇ �̇�𝜙(𝐼𝐼𝑋𝑋 − 𝐼𝐼𝑍𝑍
𝐼𝐼𝑌𝑌

) + 𝐽𝐽
𝐼𝐼𝑌𝑌
�̇�𝜙(−Ω1 + Ω2 - Ω3 + Ω4) + 𝑙𝑙

𝐼𝐼𝑌𝑌
 U3) (33)

ᴪ̈ =�̇�𝜃�̇�𝜙(𝐼𝐼𝑋𝑋 − 𝐼𝐼𝑌𝑌
𝐼𝐼𝑍𝑍

) + 𝐼𝐼
𝐼𝐼𝑌𝑌

 U4 (34)

3. MATERIALS AND METHODS
We applied the necessary processes and algorithms to transfer the drone prepared in the
Solidworks 2020 program with the URDF exporter method. CoppeliaSim is a multi-purpose
robot simulation that provides software that allows integration of control algorithms or links
with external applications to run models[10]. However, we preferred CoppeliaSim, which is
one of the many platforms developed and used for the design and simulation of autonomous
systems, in this study because it is one of the most widely used simulators for the training of
autonomous systems. The scene objects it hosts are embedded in an embedded script that runs
simultaneously, creating a virtual world and interacting at runtime.

235 Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator

INCAS BULLETIN, Volume 15, Issue 4/ 2023

Fig. 2 - General view of the CoppeliSim simulator, some models of built-in mobile and non-mobile vehicles

A sufficient number of examples have autonomous models, sensors and actuators on its
platform.In this simulation study, with CoppeliaSim program tools, drone-path planning, path
tracking, tracking-control and speed control of propellers with the necessary commands over
the MATLAB program are performed. Below, Figure 2 shows the general view of the
CoppeliaSim simulator, and some of its internal mobile and non-mobile models.
To synchronize the CoppeliaSim simulator and MATLAB, a working folder is created to
connect MATLAB to CoppeliaSim. This folder view is shown in Figure 3.

Fig. 3 - Work folder prepared to connect MATLAB to CoppeliaSim

In this folder; In the CoppeliaSim program files and the VrepMatlab folders we prepared;
*SimpleTest.m *remoteApi.m *remoteApi.dll
*remoteApiProto.m *dronnn.m *1307-orj_kopya.ttt
*.m-file files and our CoppeliaSim simulation file.
The command 'simRemoteApi.start(19999)' found in the simpleTest.m-file in the folder
opened in the MATLAB environment allows the connection or communication of the
CoppeliaSim program and the MATLAB program to support API function calls that are
exactly the same as in the CoppeliaSim script, after running the 1307-orj_urdfdrone301 -
Copy.ttt file in the CoppeliaSim virtual environment that was prepared before making the
MATLAB Connection with the CoppeliaSim Program (Figure 4).

Bülent SİĞERGÖK, Mehmet ÇAVAŞ 236

INCAS BULLETIN, Volume 15, Issue 4/ 2023

Fig. 4 - 1307-orj_urdfdrone301 - Executing copy.ttt in CoppeliaSim environment

The simpleTest.m file is run through the VrepMatlab folder defined in the MATLAB
environment. Thus, a successful connection is made between the CoppeliaSim program and
MATLAB. The image showing successful connection is shown in Figure 5. The graph in the
Figure presents the data during the simulation run of the CoppeliaSim file without running the
propeller speed control file in the MATLAB environment. The SimpleTest.m file is shown in
Figure 6.

Fig. 5 - Connection of MATLAB-CoppeliaSim with simpleTest.m file

The graph in the Figure presents the data during the simulation run of the CoppeliaSim
file without running the propeller speed control file in the MATLAB environment.

3. CONTROL OF THE ANGLE SPEED OF DRON PROPELLERS IN
COPPELIASIM SIMULATION ENVIRONMENT THROUGH MATLAB

PROGRAM
• In this study, MATLAB and CoppeliaSim robot simulator are controlled by providing

synchronization. Before the control process, instead of the Quadcopter tool in Figure
6 in the CoppeliaSim program, the drone that we designed in the Solidworks program
was placed in the CoppeliaSim environment using the necessary processes and

237 Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator

INCAS BULLETIN, Volume 15, Issue 4/ 2023

algorithms. In step 1, the 1307-orj_urdfdrone301 - Copy – Copy.ttt file designed and
prepared in CoppeliaSim environment is run. In the next step, the dronnn.m file in the
VrepMatlab folder that has been prepared is run in the MATLAB environment. The
dronn.m file codes that we prepared in the third step are starting to compile. With the
compilation of the codes, the angular velocity of the 2th propeller in the CoppeliaSim
virtual environment is reduced to 2 rad/sec. In accordance with the 9th line of the
Program Code fragment, the 2th propeller continues at this speed for 5 seconds (timing
control). At the end of this period, the angular velocity of the 2th propeller is 12
rad/sec. Propeller 2 continues to rotate at this speed until the end of the simulation. It
goes out. An image of these process steps is shown in Figure 7.

Fig. 6 - SimpleTest.m file Matlab and Vrep connection codes

Fig. 7 - MATLAB code for controlling and changing the angular speed of the 2th propeller

Bülent SİĞERGÖK, Mehmet ÇAVAŞ 238

INCAS BULLETIN, Volume 15, Issue 4/ 2023

The operations for the speed control of the 2nd propeller are also done for the speed control of
the 4th propeller with different speed changes. With the compilation of the codes, the angular
velocity of the 4th propeller in the CoppeliaSim virtual environment is reduced to 20 rad/sec.
In accordance with the 9th line of the Program Code, the 4th propeller continues at this speed
for 8 seconds (timing control). At the end of this period, the angular velocity of the 4th
propeller is 2 rad/sec. Propeller 4 continues to rotate at this speed until the end of the
simulation. An image of these process steps is shown in Figure 8. These speed changes were
made for the 1st and 3rd propellers for different speeds. The code body prepared for the 1st
propeller is shown in Figure 9 for the 3rd propeller in Figure 10.

Fig. 8 – Angular speed control of the 4th propeller and the MATLAB code that determines the running time at
this speed

Fig. 9 – MATLAB code for controlling and changing the angular speed of the 1st propeller

239 Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator

INCAS BULLETIN, Volume 15, Issue 4/ 2023

Fig. 10 – MATLAB code for controlling and changing the angular speed of the 3rd propeller

vrep=remApi('remoteApi');
vrep.simxFinish(-1);
clientID=vrep.simxStart('127.0.0.1',19999,true,true,5000,5);
 if (clientID>-1)
 disp('Connected')
[returnCode,propeller_4]=vrep.simxGetObjectHandle(clientID,'propeller_4',vrep.simx_opm
ode_blocking)
[returnCode]=vrep.simxSetJointTargetVelocity(clientID,propeller_4,20,vrep.simx_opmode_
blocking)
 pause(10)
[returnCode]=vrep.simxSetJointTargetVelocity(clientID,propeller_4,2,vrep.simx_opmode_b
locking)
 %code here
 vrep.simxFinish(-1);
end
 vrep.delete();

The usage and functioning of some of the codes used;
[returnCode number handle]=simxGetObjectHandle(number clientID,string
objectName,vrep.simx_number operationMode) in the code line;
number handle: The name used by the plugin to be evaluated in the simulation is defined.
simxGetObjectHandle: Since CoppeliaSim has its own function, it is used as
vrep.simxGetObjectHandle in MATLAB.
Number operationMode : It is the function used according to the feature and purpose of the
plugin to be used.
vrep.simxSetJointTargetVelocity: It is the code that contains the ID information of the
evaluated plugin, the plugin name, the targeted speed of the plugin and the usage function
values. In the usage format, it is used as 'Targetvelocity' for the 'number jointHandle' code.
‘The code 'number targetVelocity' is used as the code where the target speed of the plugin is
determined.

Bülent SİĞERGÖK, Mehmet ÇAVAŞ 240

INCAS BULLETIN, Volume 15, Issue 4/ 2023

4. RESULTS
In this study, the graphical information obtained from the MATLAB environment according
to the drone simulation with the communication between the CoppeliaSim simulator and
MATLAB according to the propeller number, first angular velocity, next angular velocity and
the running time of the last active state are shown in Figures 11, 12 and 13.

Fig. 11 - General view of CoppeliaSim simulator and designed drone view
From the information given in Figures 11, 12 and 13 we can notice the following: Figure

11 shows only the data of the CoppeliaSim file during the simulation run.
Then upon execution of the file “dronnn.m” in MATLAB, it is reduced to its speed in this

file (100 deg/s) and then rotates at reduced speed during the waiting time in the code.
At the end of the waiting period, the propeller continues to rotate at this speed by reaching

the increase speed in the code.

Fig. 12 - Graphic information obtained when the control file is not active for 2nd propeller

241 Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator

INCAS BULLETIN, Volume 15, Issue 4/ 2023

Fig. 13 - Graphic information obtained while the Control file in MATLAB is active for 2nd propeller

Again, from the information given in Figures 14 and 15 below we can state the following:
Figure 14 only has the simulation data of the CoppeliaSim file during the simulation run.
In Figure 12, while the 1307_drone_kopya.ttt file in CoppeliaSim is running (0), the speed of
the 2 propeller, which reaches its operating speed very soon after takeoff, is reduced to the
speed in this file with the execution of the “dronnn.m” file in MATLAB, then the waiting time
in the code rotates at reduced speed for the duration.
At the end of the waiting period, the propeller continues to rotate at this speed by reaching
the increase speed in the code

Fig. 14 - Graphic information obtained when the control file is not active for 4th propeller

Bülent SİĞERGÖK, Mehmet ÇAVAŞ 242

INCAS BULLETIN, Volume 15, Issue 4/ 2023

Fig. 15 - Graphic information obtained while the Control file in MATLAB is active for 4th propeller

Fig. 16 - Graphic information obtained when the control file is not active for 1st propeller

Fig. 17 - Graphic information obtained when the control file in MATLAB is active for 1st propeller

243 Implementing the Propeller Speed Control of Drone Designed in Solidworks in CoppeliaSim Robotic Simulator

INCAS BULLETIN, Volume 15, Issue 4/ 2023

5. CONCLUSIONS
In this study, the drone we designed with SolidWorks 2020 was transferred to the CoppeliaSim
simulation environment using the URDF exporter method. Afterwards, a successful
connection was established between MATLAB and CoppeliaSim simulator. The angular
velocity change is shown in Figures 12, 13, 14, 15, 16, , and 17 respectively, by running and
without running the CoppeliaSim simulation file and the propeller speed control file in
MATLAB at the same time. The MATLAB code body that provides the drone propeller
angular speed control and speed change timing is shown in Figure 9. The working
compatibility and efficiency between MATLAB and CoppeliaSim, which is another aim of
the study, is shown in Figure 5.

When the data obtained as a result of the simulation are evaluated, it has been shown that
the communication between the CoppeliaSim simulator and MATLAB is done successfully.
At the same time, the drone we designed in the CoppeliaSim simulator environment, which is
another aim of our study, was run and it was shown that the propeller angular velocity control
of the code prepared in the MATLAB environment was done as desired.

ACKNOWLEDGEMENT
The whole responsibility for the accuracy of calculations, experimental data and scientific
interpretation belongs entirely to the authors.

The authors declare on their own responsibility that the paper has not been previously
published elsewhere.

REFERENCES
[1] Y. Chen & F. Dong, Robot machining: recent development and future research issues, Int J Adv Manuf Technol,

vol. 66, pp.1489–1497, 2013.
[2] E. Peralta, E. Fabregas, G. Farias, H. Vargas, S. Dormido, Development of a Khepera IV Library for the V-

REP Simulator, IFAC-PapersOnLine, vol, 49, no. 6, pp. 081–086, 2016.
[3] G. Farias, E. Fabregas, E. Peralta, E. Torres, S. Dormido, A Khepera IV library for robotic control education

using V-REP, IFAC PapersOnLine, vol. 50, no.1, pp. 9150–9155, 2017.
[4] L. Nogueira, Comparative Analysis Between Gazebo and V-REP Robotic Simulators, School of Electrical and

Computer Engineering Universidade de Campinas, December 2014, DOI:10.13140/RG.2.2.18282.36808
[5] B. Bogaerts, S. Sels, S. Vanlanduit, R. Penne, Connecting the CoppeliaSim robotics simulator to virtual reality,

2020, https://doi.org/10.1016/j.softx.2020.100426.
[6] M. Casini, A. Garulli, MARS: a Matlab simulator for mobile robotics experiments,. IFAC-PapersOnLine vol.

49, no. 6, pp. 069–074, 2016.
[7] E. Rohmer, P. Surya, N. Singh and M. Freese, V-REP: a Versatile and Scalable Robot Simulation Framework.

International Conference on Intelligent Robots and Systems (IROS) IEEE, pp. 1321-1326, 2013.
[8] N. Koenig, A. Howard, Design and Use Paradigms for Gazebo, An Open-Source Multi-Robot Simulator,

International Conference on Intelligent Robots and Systems (IROS) IEEE, pp. 2149-2154, 2004.
[9] S. Rooban, Shaik Dilawar Suraj, Shaik Babji Vali, Nagandla Dhanush, CoppeliaSim: Adaptable modular robot

and its different locomotions simulation framework, https://doi.org/10.1016/j.matpr.2021.01.055.
[10] M. Ciszewski, T. Buratowski, M. Ciszewski, T. Buratowski, Modeling, Simulation and Control of a Pipe

Inspection Mobile Robot. with an Active Adaptation System. IFAC PapersOnLine, vol. 51 no. 22, pp.132–
137, 2018.

http://dx.doi.org/10.13140/RG.2.2.18282.36808
https://doi.org/10.1016/j.softx.2020.100426
https://doi.org/10.1016/j.matpr.2021.01.055

