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Abstract: Experimental studies for supersonic airflow in different supersonic nozzle geometries are 
recurrent, and the turbulence of the flow can be reproduced with the CFD tool by applying the RANS 
model and suitable turbulence models. The objective of this investigation is to carry out a comparative 
analysis of 2D numerical simulation curves for viscous flow with averaged data against equation curves 
for quasi-one-dimensional isentropic flow, for three experimental supersonic nozzle geometries that are 
used in the laboratory, for the flow condition without the presence of shock waves in the divergent. For 
the numerical simulations, three computational domains were discretized with structured grids, the 
Spalart-Allmaras turbulence model was used, and the Sutherland's law equation was used for the 
viscosity as a function of temperature. The results of the curve trajectories for Mach number, pressure 
and temperature obtained with averaged data from the 2D simulations are close to the curves of the 
analytical and empirical equations for isentropic flow. It is concluded that the numerical error of the 
total temperature for the planar nozzle with 𝛼𝛼 = 11.01° and NPR = 8.945 reports 0.008%; for the 
conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925 it reports 1%; and, finally, for the conical nozzle with 
𝛼𝛼 = 4.783° and NPR = 7, it reports 0.04%. 

Key Words: comparative analysis, isentropic flow, Mach number, pressure, temperature, supersonic 
nozzles, turbulence model, viscous flow 

1. INTRODUCTION 

The study of the supersonic flow field in experimental nozzles is recurrent, in order to evaluate 
the conditions for the development of the flow regime due to the effect of the geometries of 
the internal walls; where the geometric parameter of the divergent half angle, 𝛼𝛼, is taken into 
account in supersonic conical nozzle designs to increase the flow velocity acceleration. 
Normally, for supersonic conical nozzle designs, the range of 12 ≤ 𝛼𝛼 ≤ 18° is taken into 
account, for 𝛼𝛼 < 12° they are classified as off-design nozzles [1], [2]. 

Supersonic nozzle geometries include planar, conical, bell-shaped, parabolic and other 
types [1]. 

The distribution of the velocity, pressure, temperature and density gradients are different 
for each particular geometry, as well as the shapes of the shock wave structures [3], [4]. 
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One of the techniques for imaging shock waves is the Schlieren technique [3]. Pressure 
data are recorded by arrays of connections distributed at discrete points along the wall, as 
described in [5], [6], [7], [8]. Both experimental data are important and are taken as reference 
data to compare the results obtained by numerical simulations with the computational fluid 
dynamics (CFD) tool [9], [10], [11], generally for 2D and 3D steady-state and transient flow 
models, as well as to determine the magnitudes of thermodynamic parameters that cannot be 
measured in experimental tests. 

The compressible flow is sensitive to the inlet and outlet pressure variations of the nozzle, 
therefore, due to the pressure conditions the flow can be over expanded, adapted or under 
expanded [1], [2]. The supersonic flow exhibits lateral pressure loads on the wall and frictional 
heating with the wall for a certain thickness in the thermal boundary layer [4], [12], [13], [14], 
[15]. In the divergent, product of the expansion, the flow decreases the temperature well below 
the inlet temperature. For an adapted flow, the shock waves do not appear inside the nozzle, 
however, for an over expanded flow and according to the pressure conditions, the shock 
appears in the divergent of the nozzle or at its exit, and the shock structure is conditioned to 
the internal wall curvatures [5], [12], [16], [17]. 

Experimental studies and CFD numerical simulations with the presence of shock waves 
in the compressible flow field were reported for different geometries of supersonic nozzles, 
such as for planar nozzles [5], [7], [8], [18], [19], [20], conical and bell nozzles [6], [13], [16], 
[21], [22], [23]. Also, other studies have reported results for the 1D flow model using 
computational codes [24], [25]. 

For convergent-divergent nozzle geometries, the radius of curvature in the throat section 
has an effect on the flow development, and relevant related studies for radius of curvatures of 
the throat section and straight sections of throat length are reported in [22], [26] [27], [28], 
[29], [30], [31]. 

The equations for quasi-one-dimensional isentropic compressible flow for conditions 
without the presence of shock waves at the divergence allow defining the flow patterns of 
Mach number, pressure, temperature and density, where these curves serve as standard data 
for the curves obtained by numerical simulations with CFD, as well as to determine the 
possible deviations that could have certain sections of the curves of the numerical simulations, 
and the numerical errors that the total temperature presents, being these deviations important 
for future evaluations of the turbulence model used, the structure of the refined mesh, among 
other variables. 

Likewise, numerical solutions of fluid flow always include three types of errors: modeling 
errors, discretization errors and iteration convergence errors [9], [10], [11], [39]. The 
motivation of the study focuses on 2D viscous flow and 1D isentropic flow models for three 
experimental nozzle geometries used in the laboratory. The first is a planar nozzle with 𝛼𝛼 =
11.01° that was studied by Hunter [5] at NASA Langley 16-Foot Transonic Tunnel Complex. 
The second is a conical nozzle with 𝛼𝛼 = 15° that was studied by Back et al. [32] in research 
conducted at the Jet Propulsion Laboratory, California Institute of Technology. The third is a 
conical nozzle with 𝛼𝛼 = 4.783° which was addressed by Carson et al. [33] at the Langley 16-
Foot Transonic. 

In that sense, in the present investigation, computational simulations of the viscous flow 
field for Mach number, pressure and steady-state temperature are performed for three 
computational domains of experimental supersonic nozzle geometries used in the laboratory, 
in order to carry out a comparative analysis of the numerical simulation curves with the 
averaged data with respect to the analytical and empirical equation curves for quasi-one-
dimensional isentropic flow, where the flow used in the nozzles is air. 
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Section 2 presents the methodology used. In section 3 the results are discussed. Next, 
section 4 presents the conclusions. 

2. MATERIALS AND METHODS 

2.1 Experimental nozzles 

The three types of experimental nozzles considered in the investigation are shown in Fig. 1. 
Fig. 1a illustrates the schematic of a planar nozzle with symmetrical geometry reported by 
Hunter [5], who performed experimental tests for airflow entering the nozzle at room 
temperature. Fig. 1b illustrates the schematic of a conical nozzle used by Back et al. [32], in 
which the flow enters at high temperature and the nozzle wall surface is cooled by the 
convective heat transfer mechanism through the arrangement of a pipe network system to 
circulate the water flow. 

The ratio of methanol flow rate to air weight was small enough, even for the highest 
stagnation temperature, so that the combustion products could be treated approximately as air. 
Also shown in Fig. 1c is a schematic of the geometry of a conical nozzle used by Carson et al. 
[33] where the airflow enters the nozzle at room temperature, for an axisymmetric variable-
geometry nozzle which is applicable for use in the design of the engine for a supersonic cruise 
aircraft. 
 

 
Fig. 1 – Illustration of three supersonic nozzle schemes used in laboratories to obtain experimental pressure data. 

2.2 Mathematical fundamentals 

For the compressible flow field, the Mach number, 𝑀𝑀, is the dominant parameter and is 
classified as: 0.3 ≤ 𝑀𝑀 ≤ 0.8 (subsonic flow), 0.8 ≤ 𝑀𝑀 ≤ 1.2 (transonic flow), 1.2 ≤ 𝑀𝑀 ≤
5(supersonic flow), 𝑀𝑀 > 5 (hypersonic flow) and 𝑀𝑀 = 1 (sonic flow) [2]. It should be noted 
that for values of 𝑀𝑀 < 0.3 the flow is considered incompressible. 

For the three experimental nozzles that are treated in this work, the flow of air, which is 
considered as an ideal gas for the compressible flow model, is applied. 

For air, the specific heat ratio 𝑘𝑘 = 1.4, the specific heat at constant pressure 𝐶𝐶𝑝𝑝 =
1006.43 J/(kg · K), the gas constant 𝑅𝑅 = 287 J/(kg · K) and the thermal conductivity 𝑘𝑘 =
0.0242 W/(m · K) [34]. 

Analytical and empirical equations for isentropic flow. For supersonic nozzle designs for 
the quasi-one-dimensional isentropic flow model, the analytical equation (1) [2] is used to 
determine the Mach number as a function of the area ratio 𝐴𝐴 𝐴𝐴∗⁄ , which is expressed as: 



San Luis TOLENTINO 114 
 

INCAS BULLETIN, Volume 15, Issue 3/ 2023 

𝐴𝐴
𝐴𝐴∗

=
1
𝑀𝑀 ��

2
𝑘𝑘 + 1

� + �
𝑘𝑘 − 1
𝑘𝑘 + 1

�𝑀𝑀2�
� 𝑘𝑘+12𝑘𝑘−2�

 (1) 

Equation (1) is very important; it is called the area–Mach number ratio, where 𝑘𝑘 is in the range 
of 1 < 𝑘𝑘 ≤ 1.67. 

In convergent-divergent nozzles for the adapted flow case, the flow passage in the 
convergent one is accelerated from subsonic to sonic velocity, and in the divergent one from 
sonic to supersonic. In the throat section the area is defined as critical area 𝐴𝐴∗, and in this 
section the flow is throttled down to sonic velocity 𝑀𝑀 = 1. At the exit of the nozzle, the exhaust 
area 𝐴𝐴 = 𝐴𝐴𝑒𝑒, the flow reaches a higher supersonic velocity. Downstream of the nozzle exit, 
the flow continues to increase in acceleration as a function of the pressure conditions at the 
nozzle inlet and the pressure conditions of the flow discharge into the ambient atmosphere. 

The analytical equation (1) has two solutions, one for supersonic flow and one for 
subsonic flow; and the said equation is impossible to invert by algebraic procedures, therefore, 
the calculations of the Mach number are determined by iterative methods. For the solution of 
the analytical equation (1) for airflow (𝑘𝑘 = 1.4) and Mach number range 1 ≤ 𝑀𝑀 ≤ 5, the 
empirical equation (2) is proposed for supersonic flow, which presents percentage errors lower 
than 0.0081%, and the empirical equation (3) is proposed for subsonic flow which presents 
percentage errors lower than 0.0078%. The coefficients and exponents of the empirical 
equations (2) and (3) were calibrated with Excel 2019 Solver, based on the same methodology 
reported in [35]. Table 1 presents the coefficients and exponents of equations (2) and (3). 
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Table 1 – Coefficients and exponents of two empirical equations. 

  Supersonic flow: empirical equation (2)  
Coefficient: 𝑎𝑎1 𝑎𝑎2     
 1.297455 3.420083     
Exponent: 𝑛𝑛1 𝑛𝑛2 𝑛𝑛3 𝑛𝑛4 𝑛𝑛5 𝑛𝑛6 
 0.02677 0.499652 0.841298 0.082388 0.113979 0.983151 
  Subsonic flow: empirical equation (3)  
Coefficient: 𝑎𝑎1      
 0.918866      
Exponent: 𝑛𝑛1 𝑛𝑛2 𝑛𝑛3 𝑛𝑛4 𝑛𝑛5  
 2.007116 0.499844 0.969257 0.840641 0.985639  

 

The calculation of the pressure ratio 𝑃𝑃 𝑃𝑃𝑜𝑜⁄  as a function of Mach number for supersonic 
and subsonic flow is determined by equation (4) [2], and for the temperature ratio 𝑇𝑇 𝑇𝑇𝑜𝑜⁄  by 
equation (5) [2]: 
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where 𝑃𝑃 is the static pressure and 𝑇𝑇 is the static temperature, 𝑃𝑃𝑜𝑜 is the total pressure and 𝑇𝑇𝑜𝑜 is 
the total temperature. 

Government equations for viscous flow. The flow field was simulated at a steady state in 
ANSYS Fluent R16.2 code and the Reynolds-averaged Navier-Stokes equations (RANS) were 
used. 

The governing equations are: the equation of conservation of mass (6), the equation of 
momentum (7), the equation of energy (8), and the ideal gas equation (9) [34]; in a compact 
form they are expressed as: 

∇. (𝜌𝜌𝑢𝑢𝑖𝑖) = 0 (6) 

∇. �𝜌𝜌𝑢𝑢𝑖𝑖𝑢𝑢𝑗𝑗� = −∇𝑝𝑝 + ∇. (𝜏̿𝜏) + ∇. �−𝜌𝜌𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������� (7) 

∇. �𝑢𝑢𝑖𝑖(𝜌𝜌𝜌𝜌 + 𝑝𝑝)� = ∇. �𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒∇𝑇𝑇 + �𝜏̿𝜏𝑒𝑒𝑒𝑒𝑒𝑒 .𝑢𝑢𝑖𝑖�� (8) 

 𝑝𝑝 = 𝜌𝜌𝜌𝜌𝜌𝜌 (9) 

being 𝜌𝜌 the density, 𝑢𝑢 the velocity, 𝑝𝑝 the pressure, 𝜏̿𝜏 the stress tensor, −𝜌𝜌𝑢𝑢𝚤𝚤′𝑢𝑢𝚥𝚥′������ the Reynolds 
stresses, 𝐸𝐸 the total energy, 𝑇𝑇 the temperature, 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 the effective thermal conductivity, 𝜏̿𝜏𝑒𝑒𝑒𝑒𝑒𝑒 is 
the effective stress tensor and 𝑅𝑅 is the ideal gas constant. 

For the modeling of the turbulence of the flow field, the Spalart-Allmaras equation [36] 
was applied; and for the viscosity as a function of temperature, the Sutherland's law equation 
[34] was used. 

2.3 Structured grids and boundary conditions 

Due to the symmetries that the three supersonic nozzles have, the simulation of the flow field 
in 2D computational domains was considered. 

The geometry, the boundary conditions, as well as the structured grids with quadrilateral 
cells are shown in Fig. 2. 

The advantage of using 2D domains is to reduce the computational cost and iteration time 
of data processing, while for 3D domains the opposite is true. Fig. 2a illustrates the domain 
for the planar nozzle from Hunter's work [5], where the throat height ℎ𝑔𝑔 = 27.478 mm and 
the total length of the nozzle section is 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 115.57 mm; a section of the atmosphere with 
a length of 254 mm is not shown in the domain. 

For the conical nozzle from the work of Back et al. [32], the domain is shown in Fig. 2b, 
with a throat diameter 𝐷𝐷𝑔𝑔 = 45.816 mm and a total length 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 150.495 mm. Likewise, 
Fig. 2c shows the domain for the conical nozzle from the work of Carson et al. [33], with throat 
diameter 𝐷𝐷𝑔𝑔 = 90.2208 mm and total length 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 168.552 mm. 

It should be noted that the detailed dimensions for each supersonic nozzle geometry 
shown in Fig. 2 are reported individually by each author mentioned. 
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Fig. 2 – Geometry, boundary conditions and structured grids for the three experimental nozzles:  

(a) and (d) Planar nozzle with 𝛼𝛼 = 11.01° [5], (b) and (e) Conical nozzle with 𝛼𝛼 = 15° [32]  
and (c) and (f) Conical nozzle with 𝛼𝛼 = 4.783° [33] 

Table 2 presents the pressure and temperature data for the application of the boundary 
conditions for the three computational domains shown in Fig. 1a, Fig. 1b and Fig. 1c. 

It should be noted that for the computational domains of the two conical nozzles in axial 
symmetry the flow velocity in the radial direction is zero, and in the vertical direction it is zero 
for the planar nozzle. 

On the walls of the three nozzles the flow velocity is zero due to the no-slip condition. 
For the planar nozzle wall with 𝛼𝛼 = 11.01° (Fig. 2a) is considered to be adiabatic, 𝑄̇𝑄 = 0, as 
well as for the conical nozzle with 𝛼𝛼 = 4.783° (Fig. 2c); whereas, for the conical nozzle with 
𝛼𝛼 = 15° (Fig. 2b) the wall is not adiabatic, 𝑄̇𝑄 ≠ 0. Where, 𝑄̇𝑄 is the heat flux. 

The effect of gravity is not taken into account for all three computational domains, since 
the flow behavior is modelled in 2D. 

Table 2 – Boundary conditions for the three experimental nozzle geometries shown in Fig. 2. 

Nozzle Inlet Outlet Wall NPR 
 𝑃𝑃𝑜𝑜 [kPa] 𝑇𝑇𝑜𝑜 [K] P [kPa] T [K]   

Planar [5] 915.874 294.444 102.3895 294.444 𝑄̇𝑄 = 0 8.945 
Conical [32] 1038.35 824.4445 69.56948 412.2222 412.222 K 14.925 
Conical [33] 700 300 100 300 𝑄̇𝑄 = 0 7 

 

For numerical convergence, a sensitivity study of the mesh with quadrilateral cells was 
carried out on the ANSYS-Meshing platform, where the domains were discretized by the finite 
volume method (FVM); for which three turbulence models were used: S-A of Spalart-
Allmaras [36], SST 𝑘𝑘 − 𝜔𝜔 of Menter [37] and 𝑘𝑘 − 𝜔𝜔 of Wilcox [38]. Each domain was refined 
three times and the optimal mesh was obtained for the third structured grids and are shown in 
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Fig. 2d, Fig. 2e and 2f. For the optimal meshes, the S-A turbulence model [36] presented better 
results with respect to the SST 𝑘𝑘 − 𝜔𝜔 [37] and 𝑘𝑘 − 𝜔𝜔 [38] turbulence models, where these 
three turbulence models were compared with experimental data from pressure evaluated on 
the walls;  As well as for variations of 𝑦𝑦+ in the shear stress value for the flow region adjacent 
to the nozzle wall. 

The pressure for the planar nozzle with 𝛼𝛼 = 11.01° and NPR = 8.945 is shown in Fig. 3a, 
and for 𝑦𝑦+ it is shown in Fig. 3d which shows 𝑦𝑦+ < 100; the throat is located at position 
𝑥𝑥 𝑥𝑥𝑡𝑡⁄ = 1 and the nozzle outlet at position 𝑥𝑥 𝑥𝑥𝑡𝑡⁄ = 2, where 𝑥𝑥𝑡𝑡 = 57.785 mm. 

The pressure for the conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925 is shown in Fig. 3b, 
and for 𝑦𝑦+ it is shown in Fig. 3e to have 𝑦𝑦+ < 40; the throat is located at 𝑥𝑥 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.6025⁄  
and the nozzle outlet at 𝑥𝑥 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1⁄ , with 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 150.495 mm. 

Likewise, the pressure for the conical nozzle with 𝛼𝛼 = 4.783 and NPR = 7 is shown in 
Fig. 3c, and for 𝑦𝑦+ it is shown in Fig. 3f where 𝑦𝑦+ < 250; the throat is located at 
𝑥𝑥 𝐷𝐷𝑚𝑚 = 0.203⁄   and the nozzle outlet at 𝑥𝑥 𝐷𝐷𝑚𝑚 = 1⁄ , where 𝐷𝐷𝑚𝑚 = 152.4 mm. 
 

 
Fig. 3 – Experimental data curves of pressure and 𝑦𝑦+ at the walls of the three experimental nozzles for three 

turbulence models. (a) and (d) Planar nozzle, for 𝛼𝛼 = 11.01° and NPR = 8.945. (b) and (e) Conical nozzle, for 
𝛼𝛼 = 15° and NPR = 14.925. (c) and (f) Conical nozzle, for 𝛼𝛼 = 4.783 and NPR = 7 

2.4 Computational solution method 

In ANSYS-Fluent R16.2 the following considerations were taken into account: 
In Solver: Type: density -based; Velocity formulation: absolute; Time: steady; 2D space: 

planar and axisymmetric. In models: Energy and Spalart-Allmaras turbulence model. In 
Materials: air, and Sutherland's law was used for flow viscosity as a function of temperature. 
In Solution methods: Formulation: implicit; Flux type: Roe-FDS; Spatial discretization: 
Gradient: Least Squares Cell Based; Flow: Second Order Upwind; and, Modified turbulent 
viscosity: Second Order Upwind. For the mass balance control, the mass flow rate was taken 
into account, for an error in the range of 1x10-5 to 1x10-6. The hybrid initialization method was 
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applied. Run calculation: from 13350 to 35000 iterations were performed to obtain the final 
results of the Mach number, pressure and temperature flow field. 

A computer with the following characteristics was used for data processing: OptiPlex 
7010 model, i5 3470 (Dell CPU), two 3.2 GHz processors, and 8 GB of RAM memory. 

2.5 Procedure to obtain trajectories of curves 

In the case of the trajectories of the curves of the isentropic flow model for the three 
experimental nozzle geometries studied, we proceeded as follows: to obtain the Mach number 
curves, the cross-sectional areas of the nozzles in the convergent and divergent sections were 
taken as reference, and with equation (1) the Mach number per iteration was determined. 

To obtain the static pressure and static temperature curves, the previously calculated Mach 
number was substituted into equation (4) and equation (5). 

Then, to obtain the approximate solution curves obtained with the empirical equations, 
equation (4) was used for the subsonic flow and equation (3) for the supersonic flow. And to 
obtain the static pressure and static temperature curves, the empirical equations (2) and (3) 
were substituted into the analytical equations (4) and (5). 

For the case of the viscous flow model that was simulated in 2D in ANSYS-Fluent R16.2, 
the curves (2D avg.) of the Mach number, static pressure and static temperature were 
constructed with 2D average values. 

The 2D average values were obtained by discretizing the flow into several cross sections 
in the radial direction for the conical nozzles, and transverse for the planar nozzle, from the 
inlet to the outlet of the nozzle, then, for each cross section that is normal to the flow direction 
the average was calculated by the numerical integration method with the option: area-weighted 
average in ANSYS-Fluent. 

Subsequently, for the analysis, the curves of the simulations (2D avg.) and the curves of 
the isentropic flow (1D), as well as the experimental pressure data, were grouped together. It 
should be noted that the static pressure and Mach number curves for the non-averaged data are 
included in the graphs; where, all curves were edited in an Excel 2019 spreadsheet. 

3. RESULTS AND DISCUSSIONS 
The Mach number, static pressure and static temperature flow fields are illustrated in Fig. 4a, 
4b and 4c, the red region is of higher magnitude and the blue region is of lower magnitude; 
and the curve trajectories and experimental pressure data are shown in Fig. 5, 6 and 7. For the 
conical nozzle and NPR = 7 (Fig. 4c), the flow presents internal shock with greater intensity 
in the divergent, and it is observed how the oblique and reflected wave is distributed. In the 
central region of the flow, where the waves intersect, there is a strong fluctuation that causes 
the flow to decelerate. For the flat nozzle with y NPR = 8.945 (Fig. 4a), the fluctuation is 
smooth. Whereas, for the conical nozzle with y NPR = 14.925 (Fig. 4b), the flow does not 
fluctuate. 

For the planar nozzle with 𝛼𝛼 = 11.01° and NPR = 8.945 (Fig. 4a) the fluctuation is 
smooth, and for the conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925 (Fig. 4b) the flow does 
not fluctuate. 

With respect to the flow patterns of curved paths and experimental data of pressure on the 
walls of the planar nozzle with 𝛼𝛼 = 11.01° and NPR = 8.945 shown in Fig. 5a, the throat is 
located at the position 𝑥𝑥 𝑥𝑥𝑡𝑡⁄ = 1 and the nozzle outlet at position 𝑥𝑥 𝑥𝑥𝑡𝑡⁄ = 2. 

For the conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925 shown in Fig. 6a, the throat is 
located at 𝑥𝑥 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0.6025⁄  and the nozzle outlet at 𝑥𝑥 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 1⁄ , thus as, for the conical 
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nozzle Fig. 7a shows a nozzle with 𝛼𝛼 = 4.783° and NPR = 7, the throat is located at 
𝑥𝑥 𝐷𝐷𝑚𝑚 = 0.203⁄   and the nozzle outlet at 𝑥𝑥 𝐷𝐷𝑚𝑚 = 1⁄ . 

With respect to the static pressure 𝑃𝑃 𝑃𝑃𝑜𝑜⁄ , in Fig. 5a, 6a and 7a the trajectories of the curves 
of the 2D numerical simulations at the wall are close and superimposed to the experimental 
pressure data, whereas, the curves of the simulations in the symmetry have stretches away 
from the experimental data. 

The trajectories of the curves obtained with the analytical equations and the empirical 
equations also show that certain sections of the curves are superimposed on the experimental 
data. The one with the largest pressure fluctuation in symmetry within the estimated positions 
from 𝑥𝑥 𝐷𝐷𝑚𝑚 = 0.65⁄  to 𝑥𝑥 𝐷𝐷𝑚𝑚 = 0.72⁄ , is for the conical nozzle with 𝛼𝛼 = 4.783° and NPR = 7 
shown in Fig. 7a. 

While, with respect to the curves of the 2D numerical simulations obtained in the 
symmetry, the Mach number for the planar nozzle, illustrated in Fig. 5b, shows a fluctuation 
close to the estimated position 𝑥𝑥 𝑥𝑥𝑡𝑡 = 1.5⁄ ; for the conical nozzle shown in Fig. 6b it shows 
no fluctuation, so the flow is continuously accelerated up to the nozzle exit. 

While for the conical nozzle shown in Fig. 7b, the Mach number shows a deceleration of 
the flow within the estimated positions from 𝑥𝑥 𝐷𝐷𝑚𝑚 = 0.65⁄  to 𝑥𝑥 𝐷𝐷𝑚𝑚 = 0.72⁄ , which is evident 
in the flow field for the Mach number distribution shown in Fig. 4c. 

 
Fig. 4 – Flow field: (a) Mach number, (b) static pressure and (c) static temperature for three types of experimental 

supersonic nozzles. The red region is of higher magnitude and the blue region is of lower magnitude 

The trajectories of the numerical curves (2D avg.) obtained with the average data of static 
pressure (Fig. 5c, 6c and 7c), Mach number (Fig. 5d, 6d and 7d) and static temperature (5e, 6e 
and 7e) show how they are distributed over the curves of the analytical and empirical equations 
for the isentropic flow. 
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Fig. 5 – Trajectories of curves of Mach number, static pressure, static temperature and total temperature for the 

geometry of a planar nozzle [5], 𝛼𝛼 = 11,01° and NPR = 8.945. Throat position 𝑥𝑥 𝑥𝑥𝑡𝑡⁄ = 1 
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Fig. 6 – Trajectories of curves of Mach number, static pressure, static temperature and total temperature for 
the geometry of a conical nozzle [32], 𝛼𝛼 = 15° and NPR = 14.925. Throat position 𝑥𝑥 𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 0,6025⁄  
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Fig. 7 – Trajectories of curves of Mach number, static pressure, static temperature and total temperature for 

the geometry of a conical nozzle [33], 𝛼𝛼 = 4.783° and NPR = 7. Throat position 𝑥𝑥 𝐷𝐷𝑚𝑚 = 0.203⁄  
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The simulation data (2D avg.) with the best fit to the analytical and empirical equation 
curves are for the planar nozzle with 𝛼𝛼 = 11.01° and NPR = 8.945 (Fig. 5) which was 
simulated with adiabatic walls, where the flow at the nozzle outlet for Mach number gives an 
percentage error of 0.666%, for static pressure an error of 0.534% and for static temperature 
an error of 0.797%. While, for the conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925 (Fig. 6) 
with non-adiabatic wall, the flow at the nozzle outlet for the Mach number gives the percentage 
error of 2.323%, for the static pressure an error of 4.567% and for the static temperature an 
error of 0.328%. For the conical nozzle with 𝛼𝛼 = 4.783° and NPR = 7 (Fig. 7), the numerical 
results of static pressure (Fig. 7c), Mach number (Fig. 7d) and static temperature (Fig. 7e) 
fluctuate around from the curves of the analytical and empirical equations in the estimated 
range of 0,4 < 𝑥𝑥 𝐷𝐷𝑚𝑚 < 0,75⁄ ; where the flow at the nozzle outlet for the Mach number gives 
a percentage error of 2.265%, for the static pressure an error of 1.324% and for the static 
temperature an error of 1.995%. Based on these results in the mentioned range, this fluctuation 
could be affected by the conditions of the internal shock for 𝛼𝛼 = 4.783°, which lead to 
variations in the magnitudes of the thermodynamic parameters of the flow in the central region 
and adjacent to the wall of the nozzle, as well as by the non-inclusion of the flow outside the 
nozzle. Therefore, it is considered that a more exhaustive study should be carried out and take 
into account all the variables and parameters involved in the internal flow and external flow 
in order to reduce the error, since in operating conditions of the experimental data collections 
a flow out of the nozzle is present according to the experiments of Carson et al. [33]. 

The ratio of the total temperature taking into account the total temperature 𝑇𝑇𝑜𝑜,2𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 from 
the numerical results (2D avg.) over the total temperature 𝑇𝑇𝑜𝑜,𝑖𝑖 from the analytical or empirical 
equation for isentropic flow should be equal or very close to unity 𝑇𝑇𝑜𝑜,2𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇0,𝑖𝑖 ≅ 1⁄ . This is 
because in certain regions of the flow field, the computational simulations present numerical 
errors due to the density of the mesh, the numerical precision in the number of exact decimal 
digits, the turbulence model used, the thermal energy loss of the flow through the walls, among 
other variables. In addition, numerical solutions of fluid flow and heat transfer problems 
always include three types of errors, which are listed below: a) modeling errors, b) 
discretization errors, and c) iteration convergence errors. The ratio of the total temperature 
𝑇𝑇𝑜𝑜,2𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇0,𝑖𝑖⁄  shown in Fig. 5f, 6f and 7f, evidences the increase of the numerical errors as the 
flow moves towards the nozzle outlet. For the case of the planar nozzle (Fig. 5f), for the 
average total temperature (2D avg.) along the nozzle the percentage error is less than 0.008%, 
where 0.99992 ≤ 𝑇𝑇𝑜𝑜,2𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ≤ 1. For the case of the conical nozzle (Fig. 7f) the error is 
less than 0.04%, where 0.9996 ≤ 𝑇𝑇𝑜𝑜,2𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ≤ 1. Where both nozzles that were simulated 
with adiabatic walls, therefore the percentage errors are very small. 

While for the case of the conical nozzle (Fig. 6f) where the flow was simulated for non-
adiabatic walls, the error is less than 1% for the total temperature ratio, where 0.99 ≤
𝑇𝑇𝑜𝑜,2𝐷𝐷 𝑎𝑎𝑎𝑎𝑎𝑎 𝑇𝑇𝑜𝑜𝑜𝑜⁄ ≤ 1. This 1% error is larger with respect to the planar nozzle with 𝛼𝛼 = 11.01° 
which has 0.008% and the conical nozzle with 𝛼𝛼 = 4.783 which has 0.04%. The constant 
temperature set at the wall affects the flow development in the thermal boundary layer region 
as well as the temperature rise at the divergent wall due to flow friction. Therefore, it is 
considered that another study should be addressed by evaluating along the nozzle wall for a 
temperature gradient and taking into account the amount of heat extracted by convection, as 
indicated in the experiment of Back et al. [32]. However, according to the results obtained for 
the Mach number, static pressure and static temperature for the numerical simulations with 
averaged data (2D avg.) are satisfactory as they follow the trajectory of the curves of the 
analytical and empirical equations used for the quasi-one-dimensional isentropic flow model. 
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4. CONCLUSIONS 

The simulations of the viscous flow field for the three experimental nozzles present different 
wall pressure patterns, which reproduce the decays and increases of the experimental pressure 
data. 

The trajectories of the curves (2D avg.) of the Mach number, static pressure, static 
temperature and total temperature parameters approximate the solutions of the analytical and 
empirical equations used for quasi-one-dimensional isentropic flow. 

The flow at the nozzle outlet, for the planar nozzle with 𝛼𝛼 = 11,01° and NPR = 8.945, 
the Mach number has an error of 0.666%, and the total temperature has an error of 0.008%. 

For the conical nozzle with 𝛼𝛼 = 15° and NPR = 14.925, the Mach number has an error of 
2.323%, and the total temperature has an error of 1%. 

Finally, for the conical nozzle with 𝛼𝛼 = 4,783° and NPR = 7, the Mach number gives an 
error of 2.265%, and the total temperature an error of 0.04%. 
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