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Abstract: The increased number of accidents in general aviation due to loss of aircraft control has 
necessitated the development of accurate aerodynamic airplane models. These models should indicate 
the linear variations of aerodynamic coefficients in steady flight and the highly nonlinear variations of 
the aerodynamic coefficients due to stall and post-stall conditions. This paper presents a detailed 
methodology to model the lift, drag, and pitching moment aerodynamic coefficients in the stall regime, 
using Neural Networks (NN). A system identification technique was used to develop aerodynamic 
coefficients models from flight data. These data were gathered from a level-D Research Aircraft Flight 
Simulator (RAFS) that was used to execute the stall maneuvers. Multilayer Perceptrons and Recurrent 
Neural Networks were used to learn from flight data and find correlations between aerodynamic 
coefficients and flight parameters. This methodology is employed in here to optimize neural network 
structures and find ideal hyperparameters: training algorithms and activation functions used to learn 
the data. The developed stall aerodynamic models were successfully validated by comparing the lift, 
drag, and pitching moment aerodynamic coefficients predicted for given pilot inputs with experimental 
data obtained from the Cessna Citation X RAFS for the same pilot inputs. 
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1. INTRODUCTION 
The need to improve aircraft safety has been one of the major concerns in the aviation industry 
[1]. Over the last few years, the loss of control in-flight, one of the primary causes of flight 
accidents, has been addressed from different perspectives, one of them is using flight 
simulators to teach pilots how to execute stall recovering maneuvers to developing high-
fidelity stall models [2]. 

A high-fidelity stall model would enable the development of new control strategies [3], 
that would extend the operational envelope and capabilities of the next generation of aircraft. 
In fact, flying near-stall conditions could help increase an aircraft's lift capacity, reduce landing 
distances, and enable safe recovery from stall in case of emergency maneuvers. Today, the 
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most commonly used techniques for modeling aerodynamic coefficients in stall conditions can 
be classified into the following groups: semi-empirical methods [4], Computational Fluid 
Dynamics (CFD) methods [5], experimental techniques [6], and system identification 
techniques [7]. 

Semi-empirical methods are based on approximations established based on experimental 
data obtained from flight or wind tunnel tests. 

They have the advantage of allowing the rapid modeling of a wide range of aerodynamic 
coefficients variations with angle of attack. However, in the case of stall modelling, the use of 
semi-empirical methods has some limitations due to the highly non-linear nature of the stall 
phenomenon and the quality of the existing database, which might not be sufficiently 
representative of the system under test [8]. CFD methods are based on solving the fundamental 
equations of fluid dynamics. 

Codes such as Ansys CFX [9] and Ansys Fluent [10], for instance, are based on the 
resolution of the Navier-Stokes equations and represent practical tools for aerodynamic 
modeling. However, the accuracy of CFD methods is limited by the assumptions of the 
mathematical equations used by their algorithms. 

Experimental methods based on wind tunnel tests overcome the weaknesses of CFD 
methods by considering a “real” fluid to reproduce flight conditions over a wide range of the 
envelope of an aircraft. 

Many experimental methods such as pressure measurements [11], Laser Sheet 
Visualization (LSV) [6], and Time-Resolved Particle Image Velocimetry (TR-PIV) technique 
[12] have been used to develop stall models by visualizing and characterizing the airflow 
during wind tunnel experiments. 

However, the results obtained are highly dependent on the scale of the model, and require 
costly and time-consuming experiments [13]. 

The system identification methods we have chosen to use in our study aim at designing a 
mathematical model of the aerodynamic coefficients from flight test, under stall conditions. 

System identification techniques combine the advantages of the previously presented 
methods and overcome their weaknesses. They can provide an accurate model based on real 
flight test data learning. 

These types of methods require a large amount of data and a powerful tool to learn the 
data scheme. 

At our LARCASE laboratory, we have used neural network techniques for the morphing 
wing tip modeling in the CRIAQ MDO 505 project [14], for the wind tunnel calibration [15], 
for the modeling of the Bell-427 helicopter (Ref. 3) [16], F/A-18 [17,18] and Cessna Citation 
X Engine Model [19]. 

The main objective of this paper is to develop a methodology to predict the aerodynamic 
coefficients of the Cessna Citation X aircraft in stall conditions using neural networks. 

The aerodynamic coefficients were estimated from data obtained from flight tests 
performed on a level-D Cessna Citation X Research Aircraft Flight Simulator (RAFS) 
designed and manufactured by CAE Inc. 

According to the Federal Aviation Administration (FAA), level D is the highest 
qualification level for flight dynamics. 

Therefore, it was assumed that the RAFS was accurate enough to be considered as a test 
aircraft. 

All the collected data was similar to the actual data that would be collected during a flight 
test on an actual Cessna Citation X Aircraft. 
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a) Cessna Citation X Aircraft b) Research Aircraft Flight Simulator (RAFS) 

Fig. 1 Cessna Citation X Business Aircraft and its corresponding Level D Research Aircraft Flight Simulator 
(RAFS) 

The rest of this article is organized as follows: Section 2 presents the methodology, 
including the data acquisition procedure from the RAFS and the data preprocessing of flight 
parameters, so that they can be used to compute aerodynamic coefficients. Next, we present 
the method used to select the neural network’s inputs and outputs, and its hyperparameters, 
including the training algorithms and the activation functions. Finally, the numerical results 
and their comparisons with experimental data obtained from the Cessna Citation X RAFS are 
presented in Section 3. 

2. METHODOLOGY 
This section presents the methodology developed at the LARCASE for modeling the lift, drag, 
and pitching moment aerodynamic coefficients in stall conditions using system identification 
techniques. The identification was made through neural network optimization using Cessna 
Citation X flight simulator data. 

2.A  Flight test procedure and data gathering 

Several flight tests were conducted with the Cessna Citation X Level D flight simulator to 
collect data and prepare these data for the identification process. As shown in Fig. 2 these flight 
tests were designed to replicate different stall maneuvers, and they included several steps. 

 
Fig. 2 Recovery from stall flight test procedure illustration 

First, the aircraft was trimmed for a stable flight at a given altitude and airspeed (1). For 
this purpose, the altitude was maintained using the autopilot's altitude hold mode, while the 
airspeed was stabilized manually by adjusting the throttle position. Then, to stall the aircraft, 
the pilot disengaged the autopilot and pulled back on the control column to deflect the elevators 
while gradually reducing thrust (2). The aircraft's airspeed decreased, and the angle of attack 
increased until the stall occurred. The aircraft was maintained in stall conditions as long as 
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possible by controlling the elevators in order to better observe the dynamic stall. Finally, a 
stall recovering procedure was initiated. The engine thrust was increased to gain airspeed, and 
the elevators were manually controlled to re-stabilize the aircraft (3), which returned to normal 
level flight conditions (4). 

For each flight test, pilot inputs such as elevator angle deflection 𝛿𝛿𝑒𝑒  and slats angle 
deflection 𝛿𝛿𝑠𝑠, and flight parameters such as altitude ℎ, true airspeed 𝑉𝑉𝑡𝑡, angle of attack 𝛼𝛼 and 
finally aircraft longitudinal and vertical accelerations 𝑎𝑎𝑥𝑥 and  𝑎𝑎𝑧𝑧 were recorded at a sampling 
rate of 25 Hz. Fig. 3 shows an example of recorded data on the RAFS for a flight case carried 
out at an altitude of 7000 ft, a Mach number of 0.2, and with slats fully retracted (Fig 3.g). In 
this example, the aircraft was trimmed with an elevator angle deflection of 𝛿𝛿𝑒𝑒 =  −0.6𝑜𝑜 (Fig 
3.d), and at a true airspeed 𝑉𝑉𝑡𝑡 =  284 𝑓𝑓𝑓𝑓/𝑠𝑠 (Fig 3.e). At about 3 s, the autopilot was 
disengaged, the thrust was reduced (Fig 3.a) by adjusting the throttle command. Then, the 
elevator was deflected (Fig 3.d) to pitch the aircraft up. Consequently, the angle of attack 
immediately increased until reaching its stall value 𝛼𝛼𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (Fig 3.h) at about 17 s, leading to a 
significant reduction of the lift force and, therefore, a drop in vertical acceleration (Fig 3.f). 
We can also observe the drastic change in vertical and horizontal accelerations 𝑎𝑎𝑧𝑧 and 𝑎𝑎𝑥𝑥 (Fig 
3.f and Fig 3.c) at about 17 s, reflecting the significant increase in the drag that happens when 
stall occurs. Finally, these drops in longitudinal accelerations result in a significant loss in 
altitude (Fig 3.b). The procedure described in Fig. 3 was replicated 33 times with the Cessna 
Citation X RAFS for different flight scenarios by varying initial altitudes and slat 
configurations. Fifteen flight tests were conducted for cases with a slat-in (i.e., retracted) 
configuration at altitudes ranging from 5000 to 50,000 ft, while 18 flight tests were conducted 
at altitudes ranging from 15,000 to 50,000 ft for cases with a slat-out (i.e., extended) 
configuration. When slats are out, they increase the wing's camber and, therefore, change the 
wing shape. Consequently, slats may have the effect of delaying the stall phenomenon [20]. 
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Fig. 3 Example of data recorded for a flight test at 7000 ft, Mach 0.20, and slats 𝛿𝛿𝑠𝑠 retracted 
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2.B  Data processing and aerodynamic coefficients’ determination 

The aerodynamic coefficients are not measurable during the flight test. Therefore, once all the 
flight tests were completed, the next step was to process the measurable flight parameters to 
estimate the aerodynamic coefficients of the aircraft and then to create a database to prepare 
for the neural network learning process. 

The lift, drag and pitching moment aerodynamic coefficients, expressed in the stability 
axis, are given by the following equations [21]:  

𝐶𝐶𝐿𝐿𝑠𝑠 =  𝐶𝐶𝐿𝐿𝑏𝑏 cos(𝛼𝛼) −  𝐶𝐶𝐷𝐷𝑏𝑏 sin  (𝛼𝛼) (1) 

𝐶𝐶𝐷𝐷𝑠𝑠 =  𝐶𝐶𝐷𝐷𝑏𝑏 cos(𝛼𝛼) +  𝐶𝐶𝐿𝐿𝑏𝑏 sin(𝛼𝛼) (2) 

𝐶𝐶𝑚𝑚𝑠𝑠 =  𝐶𝐶𝑚𝑚𝑏𝑏 −  𝐶𝐶𝐷𝐷𝑏𝑏𝑧𝑧𝑐𝑐𝑐𝑐 − 𝐶𝐶𝐿𝐿𝑏𝑏𝑥𝑥𝑐𝑐𝑐𝑐 (3) 

where �𝑥𝑥𝑐𝑐𝑐𝑐, 𝑧𝑧𝑐𝑐𝑐𝑐� are the longitudinal and vertical distances, respectively, between the aircraft 
center of gravity and its aerodynamic center. 

𝐶𝐶𝐿𝐿𝑏𝑏, 𝐶𝐶𝐷𝐷𝑏𝑏 and 𝐶𝐶𝑚𝑚𝑏𝑏 are the lift, drag and pitching moment coefficients, respectively, 
expressed in the aircraft body axis. 

The aerodynamic coefficients expressed in the body axis are given by the following 
expressions: 

𝐶𝐶𝐿𝐿𝑏𝑏 =  
𝑚𝑚𝑎𝑎𝑧𝑧 − 𝑇𝑇𝑧𝑧

1/2𝜌𝜌𝑉𝑉𝑇𝑇2𝑆𝑆𝑤𝑤
 (4) 

𝐶𝐶𝐷𝐷𝑏𝑏 =  
𝑚𝑚𝑎𝑎𝑥𝑥 − 𝑇𝑇𝑥𝑥
1/2𝜌𝜌𝑉𝑉𝑇𝑇2𝑆𝑆𝑤𝑤

 (5) 

𝐶𝐶𝐶𝐶𝑏𝑏 =  
𝐼𝐼𝑦𝑦𝑦𝑦𝑞̇𝑞 − 𝑇𝑇𝑥𝑥𝑧𝑧𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑇𝑇𝑧𝑧𝑥𝑥𝑒𝑒𝑒𝑒𝑒𝑒

1/2𝜌𝜌𝑉𝑉𝑇𝑇2𝑆𝑆𝑤𝑤𝑐𝑐𝑤𝑤
 (6) 

where 𝜌𝜌 is the air density, {𝑇𝑇𝑥𝑥 ,𝑇𝑇𝑧𝑧} are the components of the engine thrust, 𝐼𝐼𝑦𝑦𝑦𝑦 is the aircraft 
moment of inertia about the lateral axis, 𝑆𝑆𝑤𝑤 is the wing reference area, 𝑐𝑐𝑤𝑤 is the mean 
aerodynamic chord of the wing, and 𝑎𝑎𝑥𝑥 and 𝑎𝑎𝑧𝑧 are the longitudinal and vertical accelerations 
of the aircraft, respectively. 

Before neural network training, a good practice is to normalize the data. The objective is 
to ensure that all the neural network’s input and output parameters have the same scale and are 
all centered around zero. 

Consequently, the difference in data magnitude will not affect the training results, as only 
the correlation between the data will be considered during the training process. For this 
purpose, the input and output parameters (defined in section 2.c.a), were normalized using the 
following equation: 

𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑘𝑘 (𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) =
𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑘𝑘 − 𝜇𝜇

𝜎𝜎
 (7) 

where 𝐷𝐷𝐷𝐷𝐷𝐷𝑎𝑎𝑘𝑘  is the 𝑘𝑘th value of the considered training data set, 𝜇𝜇 is the mean of the whole 
data set, and 𝜎𝜎 is the standard deviation of the data set. Fig. 4 and Fig. 5 show the normalized 
aerodynamic coefficients estimated from flight test data for the Cessna Citation X RAFS, with 
slat-in and slat-out configurations, respectively. 
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Fig. 4 Normalized aerodynamic coefficients’ estimation from flight test data  

obtained from the Cessna Citation X RAFS (slat-in) 

 
Fig. 5 Normalized aerodynamic coefficients’ estimation from flight test data  

obtained from the Cessna Citation X RAFS (slat-out) 

2.C  Neural network modeling  

a) Choice of neural networks inputs 

The first step in defining the neural networks was the determination of the parameters that 
correlate significantly with the aerodynamic coefficients. These parameters were then used as 
inputs for the neural network models. Based on the Buckingham Pi's theorem [20] applied to 
the dimensional aerodynamic analysis, the aerodynamic coefficients depend on the following 
variables: the angle attack 𝛼𝛼, its derivative 𝛼̇𝛼, the Mach 𝑀𝑀 and Reynolds numbers 𝑅𝑅𝑒𝑒. 
However, as the Reynolds number is not directly measurable in the flight simulator, it has been 
approximated using to equation (8): 

𝑅𝑅𝑒𝑒 =
𝜌𝜌𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇𝑐𝑐
𝜇𝜇

=
𝑐𝑐
𝜇𝜇
∗ 𝜌𝜌𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 =

2𝑐𝑐
𝜇𝜇
∗

𝑄𝑄
𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇

 (8) 

where 𝜌𝜌 is the density of the air and 𝜇𝜇 is the dynamic viscosity of air. 
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Thus, the variables considered as input parameters are the angle of attack 𝛼𝛼, its derivative 
with respect to the time 𝛼̇𝛼, the Mach number 𝑀𝑀, the True Air Speed 𝑉𝑉𝑇𝑇𝑇𝑇𝑇𝑇 and the dynamic 
pressure 𝑄𝑄, resulting from Buckingham Pi's theorem analysis. 

Additional variables, such as the elevator angle deflection 𝛿𝛿𝑒𝑒, the slat angle deflection 𝛿𝛿𝑠𝑠 
and the stabilizer angle 𝛿𝛿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 were also considered as inputs, because these surfaces are used 
for longitudinal dynamic control. The aircraft center of gravity position �𝑥𝑥𝑐𝑐𝑐𝑐, 𝑧𝑧𝑐𝑐𝑐𝑐�, was 
considered, as the pitching moment aerodynamic coefficient is dependent on it. The pitch rate 
𝑞𝑞 may also affect the aerodynamic coefficients in stall conditions [22], and finally the total 
engine thrust 𝑇𝑇 was taken into account because the wing airflow may also be affected by the 
air coming from the engines. 

b) Selection of the Neural Network type 

Two types of Neural Networks (NNs) were evaluated in this research: the Multilayer 
perceptron (MLP) and the Recurrent neural network (RNN). MLPs have been widely used to 
solve regression and function approximation problems in the literature. Therefore, this type of 
neural network is well suited for predicting aerodynamic coefficients from a given data set 
[7,21]. Nevertheless, RNNs have also been considered in this paper as they have been effective 
in designing models from time series data by using information regarding previous states 
during the network learning process [7,23].  

The fundamental element of a neural network, whatever its type, is the artificial neuron 
(or “perceptron”). 

Neural networks are composed of neurons organized in layers and linked together by 
synaptic weights. Fig. 6 presents a typical architecture of a perceptron. 

 
Fig. 6 Architecture of a perceptron 

Therefore, as shown in Fig. 6, operating principle of a neuron is essentially composed of 
two calculation steps. 

First, the input signal of the neuron 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛] is multiplied by its corresponding 
weights 𝑊𝑊 = [𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛], summed up, and then added to a scalar called the bias 𝑏𝑏, which 
is used as a “decision threshold”. 

Secondly, the resulting value is fed into a transfer function called the “activation 
function”, which is used to determine whether the neuron should be activated or not [23, 24]. 
As a result, the output 𝑜𝑜 of a neuron is given by the following equation: 

𝑜𝑜 = 𝜑𝜑��𝑥𝑥𝑖𝑖

𝑛𝑛

𝑖𝑖=1

𝑤𝑤𝑖𝑖 +  𝑏𝑏� (9) 
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MultiLayer Perceptron (MLP) 

The MLP is one of the simplest forms of neural networks and is composed of several layers of 
perceptron’s, called the hidden layers. A representation of a MLP is given in Fig. 7, where 
each hidden layer is associated with a to vector, and the outputs of the neurons in one layer are 
used as inputs for the next layer. All neurons of the same layer share the same input vector. 
The predicted output 𝑜𝑜� of a MLP can be computed according to Eq. (10) [24]: 

𝑜𝑜� = 𝜑𝜑𝑚𝑚 � � 𝑤𝑤𝑚𝑚,𝑘𝑘

𝑘𝑘 = 𝑛𝑛𝑚𝑚

𝑘𝑘 = 1

× … × 𝜑𝜑2 � � 𝑤𝑤2,𝑖𝑖

𝑖𝑖 = 𝑛𝑛2

𝑖𝑖 = 1

× 𝜑𝜑1�𝑥𝑥1,𝑗𝑗𝑤𝑤1,𝑗𝑗 + 𝑏𝑏1,𝑗𝑗�+ 𝑏𝑏2,𝑖𝑖� + 𝑏𝑏𝑚𝑚,𝑘𝑘� (10) 

where 𝑋𝑋 is the input vector and 𝑚𝑚 is the number of network layers, 𝜑𝜑𝑖𝑖 and 𝑛𝑛𝑖𝑖 are the activation 
function and the number of neurons, respectively, in the layer 𝑖𝑖. 𝑊𝑊𝑖𝑖,𝑗𝑗 and 𝑏𝑏𝑖𝑖,𝑗𝑗 are the weights 
and bias, respectively, of the 𝑗𝑗th neuron of the layer 𝑖𝑖. 

 
Fig. 7 Graphical representation of an MLP Neural Network 

Recurrent Neural Networks (RNNs) 

As their name suggests, RNNs are networks that have recurrent interconnections. The idea 
behind this architecture is to preserve the neurons’ information over time. RNNs are often used 
for processing time-series signals, such as voice or semantic analysis of videos or sentences. 
They have also demonstrated their ability to learn the behavior of complex dynamic systems, 
such as the behavior of an aircraft at high angles of attack [7]. Aerodynamic coefficients are 
in some way presented as a time series signal, where previous states determine the behavior 
of a future state. A neural network model predicting aerodynamic coefficient variations over 
time should consider the dynamic nature of the longitudinal behavior of an aircraft. One of the 
best types of network that meet this criterion is the Elman Neural Network (ENN) proposed 
by Elman in [25], and which is defined as a feed-forward network with additional memory 
neurons (called the “context layer”) and local feedback. Fig. 8 shows a graphical representation 
of an Elman Neural Network with one-step delay and a hidden layer ℎ. 

 
Fig. 8 Graphical representation of an Elman Neural Network 
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As shown in Fig. 8, the hidden layer ℎ receives its information from both the input and 
the context layers during the training cycle, which are then combined and analyzed 
simultaneously. Subsequently, the output of each hidden layer is fed back to the context layers 
at every time step 𝑡𝑡 to provide additional input to the same hidden layer at time 𝑡𝑡 + 1. This 
process is repeated for successive training cycles. 

Three different MLPs and three different RNNs were developed for the prediction of the 
aerodynamic coefficients of the Cessna Citation X (i.e., one MLP and one RNN for each 
aerodynamic coefficient). This strategy was used because it was found that single output NNs 
were more accurate than multiple outputs NNs and did not need a complex architecture to 
learn the correlation between the input data and the target values. Thus, for each neural 
network model, its output was the coefficient we wanted to predict. 

c) Data management: 

Building a neural network model necessitates several phases: the training phase, the test phase, 
and the generalization phase. During the training phase, the neural network weights are 
updated by a training algorithm to find the inherent relationships among the data in the training 
data set. Another data set (called the test data set), that was not used for training, is used to 
calculate the neural network performance. The calculated performance is mainly used to adjust 
the key model parameters, such as the learning function, the activation function, or the number 
of hidden layers and neurons. For a given set of 𝑛𝑛 data points and a given set of values of 
weights 𝑤𝑤𝑖𝑖,𝑗𝑗, the neural network performance is calculated by the Mean Square Error (𝑀𝑀𝑀𝑀𝑀𝑀), 
according to the following equation: 

𝑀𝑀𝑀𝑀𝑀𝑀 (𝑤𝑤) =
1
𝑛𝑛

 ��𝑜𝑜�𝑘𝑘�𝑤𝑤𝑖𝑖,𝑗𝑗� − 𝑜𝑜𝑘𝑘�
2

𝑛𝑛

𝑘𝑘=1

 (11) 

Once the hyperparameters of the neural network are optimized and the neural network has 
been trained, the “generalization” process can be started. It consists of using the final trained 
model to predict the aerodynamic coefficients of new flight cases that were not used for 
training (training set) or hyperparameter tuning (test set). The generalization performance is 
evaluated by means of the Mean Absolute Relative Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀), as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
�� �

𝑜𝑜�𝑘𝑘 − 𝑜𝑜𝑘𝑘
𝑜𝑜�𝑘𝑘

�
𝑛𝑛

𝑘𝑘=1

�× 100 (12) 

where 𝑜𝑜𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ experimental data used for validation, and 𝑜𝑜�𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ value predicted by 
the network. 

In this study, from the 33 flight cases conducted with the Cessna Citation X RAFS, only 
22 were used for identification (training and test phases), while the remaining 11 cases were 
used for validation. The training set and tests set were selected from the 22 identification flight 
cases using cross validation method [26]. 

d) Fine tuning  

When training neural networks, three parameters are essential: the training algorithm, the 
activation function, and the neural network structure (the number of hidden layers and the 
number of neurons per hidden layer). The procedure for selecting these ideal hyperparameters 
is given in this section below for the determination of the lift coefficient using a MLP. 
However, the procedure remains the same for determining other coefficients (𝐶𝐶𝐷𝐷𝑠𝑠 and 
𝐶𝐶𝑚𝑚𝑠𝑠) using both a MLP and a RNN. 
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Training algorithm 

The first analysis consisted of evaluating the performance of the neural network models using 
several training algorithms. The activation function (tansig), the number of hidden layers (2 
layers), and the number of neurons in the networks (5 neurons per hidden layer) were fixed 
and chosen randomly. Only the training function varied. Table 1 presents the list of the tested 
algorithms. 

Table 1: Training Algorithms considered to train the network 

Algorithms Description 
LM Levenberg-Marquardt 
BR Bayesian Regularization 
BFG BFGS Quasi-Newton 
RP Resilient Backpropagation 
SCG Scaled Conjugate Gradient 
CGB Conjugate Gradient Powell/Beale Restarts 
CGF Fletcher-Powell Conjugate Gradient 
CGP Polak-Ribiére Conjugate Gradient 
OSS One Step Secant 
GDX Variable Learning Rate Gradient Descent 
GDM Gradient Descent with Momentum 
GD Gradient Descent 

Both MLP and RNN networks were trained with the twelve training algorithms presented in 
Table 1. During the training, the weights and biases were updated to minimize the network 
performance (𝑀𝑀𝑀𝑀𝑀𝑀). At the end of the training, the performance of each neural network was 
evaluated using the test data. Fig. 9 shows the performance in terms of MSE minimization 
obtained for the prediction of the lift coefficient of the Cessna Citation X using the MLP 
training process. The performances of the GDX, GDM, and GD were removed for scaling 
purposes, as their errors were too high compared to that of the results of the other methods.  

 

 
Fig. 9 MLP performance using different training algorithms for the determination of 𝐶𝐶𝐿𝐿𝑠𝑠 

Fig. 9 shows that the Bayesian Regularization (BR) and the Levenberg-Marquardt (LM) 
algorithms provided the lowest 𝑀𝑀𝑀𝑀𝑀𝑀. This result was actually expected, as the BR and LM 
algorithms are well known for their excellent performance in solving nonlinear regression 
problems. 

Both algorithms operate using the same procedure, except that in the BR algorithm, a 
backpropagation is used to compute the Jacobian of the network performance with respect to 
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the weight and bias variables. However, even if they gave similar results, the BR performed 
slightly better than the LM, with a 𝑀𝑀𝑀𝑀𝑀𝑀 =  5.61 × 10−4 for the BR, and a 𝑀𝑀𝑀𝑀𝑀𝑀 =
6.96 × 10−4 for the LM. 

Based on this analysis, the BR algorithm was considered as the most effective training 
algorithm for the determination of the lift coefficient using the MLP. 

Activation function 

Once the training algorithm was identified, different activation functions were tested to 
find the function associated with the BR algorithm that would give the best performance when 
determining the lift coefficient using the MLP. 

The list of activation functions available in MATLAB, that were tested is presented in 
Table 2. 

Table 2: Implemented Activation Function: 𝑎𝑎 is the Neuron’s Activation, 𝑦𝑦 is the Neuron’s Output 

Activation Function Mathematical Equation 

Log Sigmoid (Logsig) 𝑦𝑦(𝑎𝑎) =
1

1 + exp (−𝑎𝑎) 

Hyperbolic Tangent Sigmoid (Tansig) 𝑦𝑦(𝑎𝑎) =
2

(1 + exp(−2 ∗ 𝑎𝑎)) − 1 

Elliot Symmetric Sigmoid (Elliotsig) 𝑦𝑦(𝑎𝑎) =
𝑎𝑎

(1 + |𝑎𝑎|) 

Radial basis (Radbas) 𝑦𝑦(𝑎𝑎) = exp (−𝑎𝑎2) 

Normalized radial basis (Radbasn) 
𝑦𝑦(𝑎𝑎)𝑖𝑖 =

exp(−𝑎𝑎𝑖𝑖2)
∑ exp�−𝑎𝑎𝑗𝑗2�𝑛𝑛
𝑗𝑗=1

 

where 𝑎𝑎 is the input vector to a Radbasn function that consists of 
𝑛𝑛 elements of 𝑛𝑛 classes, and 𝑎𝑎𝑖𝑖 is the i-th element of the input vector. 

Soft max (Softmax) 
𝑦𝑦(𝑎𝑎)𝑖𝑖 =

exp(𝑎𝑎𝑖𝑖)
∑ exp (𝑎𝑎𝑗𝑗)𝑛𝑛
𝑗𝑗=1

 

where 𝑎𝑎 is the input vector to a soft max function that consists of 
𝑛𝑛 elements of 𝑛𝑛 classes, and 𝑎𝑎𝑖𝑖 is the i-th element of the input vector. 

Saturating linear (Satlin) 𝑦𝑦(𝑎𝑎) = �
0, if 𝑎𝑎 ≤  0

        𝑎𝑎, if 0 ≤ 𝑎𝑎 ≤ 1
1, if 1 ≤ 𝑎𝑎

 

Symmetric saturating linear (Satlins) 𝑦𝑦(𝑎𝑎) = �
−1, if 𝑎𝑎 ≤  −1

           𝑎𝑎, if − 1 ≤ 𝑎𝑎 ≤ 1
1, if 1 ≤ 𝑎𝑎

 

Triangular basis (Tribas) 𝑦𝑦(𝑎𝑎) =  �1 − |𝑎𝑎|, if − 1 ≤ 𝑎𝑎 ≤ 1
0, otherwise  

Positive linear (Poslin) 𝑦𝑦(𝑎𝑎) =  �𝑎𝑎, if 𝑎𝑎 ≥ 0
0,         if 𝑎𝑎 ≤ 0 

Fig. 10 shows the 𝑀𝑀𝑀𝑀𝑀𝑀 error obtained for each activation function when a MLP was 
trained for predicting the lift coefficient of a Cessna Citation X with the BR algorithm. It can 
be clearly seen that the Sigmoid-Type activation functions performed better than others. In fact, 
the Log-Sigmoid, the Hyperbolic-Tangent-Sigmoid, and the Elliot-Symmetric-Sigmoid gave 
lower errors than the other functions, with a 𝑀𝑀𝑀𝑀𝑀𝑀 of the order of 10−4. The best performance 
was achieved with Log-Sigmoid function, for a 𝑀𝑀𝑀𝑀𝑀𝑀 of 5.14 × 10−4 as seen on Fig. 10. 
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Fig. 10 MLP performance using different activation function for the determination 𝐶𝐶𝐿𝐿𝑠𝑠 using BR algorithm 

Neural Network structure optimization 

The final step in the neural network design process was the selection of the structure that 
provides the minimum 𝑀𝑀𝑀𝑀𝑀𝑀 in an appropriate learning time. The structure of the neural 
network is defined as a combination (𝑚𝑚,𝑛𝑛), where 𝑚𝑚 is the number of hidden layers of the 
network, and 𝑛𝑛 is the number of neurons per hidden layer. Similar studies were explored and 
have demonstrated that the aerodynamic coefficients of a Bombardier CRJ700 in dynamic stall 
condition can be identified with a MLP model of a maximum of 5 hidden layers and a 
maximum of 15 neurons per hidden layer [7]. Based on this observation, a minimum number 
of hidden layers 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  = 1, and a maximum number of hidden layers 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚  =  5 was 
assumed. Similarly, the minimum number of neurons per layer was set to 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  =  1, and the 
maximum number was set to 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  =  15. 

Once the range of these two parameters was defined, the analysis consisted of training 
several structures with hidden layers ranging from 1 to 5 and a number of neurons ranging 
from 1 to 15, and then the resulting MSEs were compared. Thus, the number of structures to 
be trained would be equivalent to 155, which is clearly a very large number. To reduce the 
number of possible structures, it was assumed that all hidden layers should have the same 
number of neurons. Such an assumption was considered because it was found that varying the 
number of neurons from one hidden layer to another did not significantly improve the network 
performance. This assumption reduces the number of possible structures from 155 to 75. The 
MSEs of different structures trained to predict the lift coefficient of the Cessna Citation X 
airplane are shown in Fig. 11. 

Fig. 11 shows the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 obtained for each tested structure. Structures with a different 
number of layers are displayed in different colors. For example, the 𝑀𝑀𝑀𝑀𝑀𝑀 obtained with a 
structure with 𝑚𝑚 = 2 layers are displayed in “orange”, while the 𝑀𝑀𝑀𝑀𝑀𝑀 obtained with a 
structure with 𝑚𝑚 = 3 layers are displayed in “blue”. Performances obtained for the structure 
with 𝑚𝑚 = 1 hidden layer and structures with less than 𝑛𝑛 = 7 neurons per hidden layer have 
been removed for scaling purposes as the 𝑀𝑀𝑀𝑀𝑀𝑀 was too high. We can clearly see a convergence 
of the 𝑀𝑀𝑀𝑀𝑀𝑀 value, which decreases and tends to zero when the number of neurons increases. 
The convergence is faster for structures with a higher number of layers. For example, structure 
with 3 layers converge faster than structure with 2 layers). However, it is challenging to 
determine which is the optimal network structure, as there is no significant improvement on 
the network’s performance after 11 neurons for networks with 𝑚𝑚 = 2, 𝑚𝑚 = 3, 𝑚𝑚 = 4, and 
𝑚𝑚 = 5. Any of these structures could be used to identify the lift coefficient and would give 
satisfactory results. 
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However, as a structure with 𝑚𝑚 = 5 hidden layers converges even faster than others, a 
convergence threshold of 𝑀𝑀𝑀𝑀𝑀𝑀 = 1.19−5 is reached even earlier (before 𝑛𝑛 = 11) for 𝑛𝑛 =
9 neurons. The network structure with (𝑚𝑚 = 5,𝑛𝑛 = 9) was therefore considered for the 
determination of the lift coefficient 𝐶𝐶𝐿𝐿𝑠𝑠 of the Cessna Citation X. 

 
Fig. 11 Performances for various MLP structures for the estimation of the 𝐶𝐶𝐿𝐿𝑠𝑠 of the Cessna Citation X 

3. RESULTS 
This section presents the validation results of the proposed methodology. An evaluation of the 
accuracy of the two types of neural networks (i.e., MLP and RNN) in terms of the prediction 
of aerodynamic coefficients is presented. For this purpose, the outputs of both the MLP and 
the RNN models were compared with experimental aerodynamic coefficients’ data obtained 
from the Cessna Citation X RAFS. 
The best performances in terms of 𝑀𝑀𝑀𝑀𝑀𝑀 obtained for the estimation of the three longitudinal 
aerodynamic coefficients (𝐶𝐶𝐿𝐿𝑠𝑠,𝐶𝐶𝐷𝐷𝑠𝑠 and 𝐶𝐶𝑚𝑚𝑠𝑠) were obtained with the BR algorithms, 
combined with the tansig and logsig activation functions. RNN models performed as well as 
MLP models, but with smaller structures, as the total number of neurons of the hidden layers 
(𝑚𝑚 × 𝑛𝑛) on RNN structures were smaller than with the MLP structures for the identification 
of the same coefficient. For example, the identification of the lift coefficient using an MLP 
model required a structure of 45 (9 × 5) hidden neurons, while an RNN required only 30 
(3 × 10) hidden neurons. The two models performed similarly (𝑀𝑀𝑀𝑀𝑀𝑀 =  1.2 × 10−5 for MLP 
and 𝑀𝑀𝑀𝑀𝐸𝐸 =  1.1 × 10−5 for RNN). This faster convergence of RNN models could be 
explained by the ability of their algorithm to take into account the dynamic behavior of 
complex systems during the identification process. 

Table 3: Optimal parameters obtained for the MLP and the RNN using the BR algorithm 

 𝑪𝑪𝑪𝑪𝒔𝒔 𝑪𝑪𝑫𝑫𝒔𝒔 𝑪𝑪𝒎𝒎𝒔𝒔 
Type of neural network MLP RNN MLP RNN MLP RNN 
Activation function Logsig Tansig Logsig Tansig Logsig Tansig 
Number of hidden layers 5 3 2 3 4 3 
Number of nodes per 
hidden layer 

9 10 14 6 12 12 

𝑴𝑴𝑴𝑴𝑴𝑴 value 1.2×10-5 1.1×10-5 4.5×10-6 5.4×10-6 1.9×10-4 1.0×10-5 
Once the hyperparameter were fixed and the neural networks trained, the accuracy of each 

model (MLP and RNN) was evaluated using validation cases that were not used for training. 
For this purpose, the outputs of the MLP and RNN models were compared in terms of the 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀, with experimental aerodynamic coefficients obtained from the Cessna Citation X 
RAFS. Fig. 12 and Fig. 13 show two examples of the results obtained at respectively 32,500 
ft with slats-in and 27,500 ft with slats-out. 

In general, the results show good agreement between the experimental data obtained by 
the RAFS (in “blue”), the data predicted by the MLP (in “red”), and the data predicted by the 
RNN (in “yellow”). The results showed that the lift and drag coefficients of the two cases were 
predicted with a Mean Absolute Relative Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) smaller than 1%. For the pitching 
moment coefficient, the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 was smaller than 5 %. These very small errors allow us to 
conclude that both models (RNN and MLP) were able to successfully predict the aerodynamic 
coefficients for these two flight cases presented on Fig. 12 and Fig. 13. The comparisons 
presented in these examples were repeated for all the other validation flight cases. Table 4 
presents the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 and the Mean Absolute Residual errors obtained for the prediction of each 
coefficient with MLP models. 

 
Fig. 12 Validation of predicted aerodynamic coefficients (with MLP and RNN) for a flight test at 32,500 ft 

with slats-in 

 
Fig. 13 Validation of predicted aerodynamic coefficients (with MLP and RNN) for a flight test at 27,500 ft 

with slats-out 

Table 4: Mean Absolute Relative Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) and Mean Absolute Residual error 
obtained between experimental data and values predicted with MLP models 

Flight Case 𝑪𝑪𝑪𝑪𝒔𝒔 𝑪𝑪𝑫𝑫𝒔𝒔 𝑪𝑪𝒎𝒎𝒔𝒔 
Altitude 

[ft] 
Slat angle 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 

[in %] 
Mean 

Residual 
[× 10-3] 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 
[in %] 

Mean 
Residual 
[× 10-3] 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 
[in %] 

Mean 
Residual 
[× 10-3] 

7,000 In 0.998 8.40 0.561 0.68 7.689 2.61 
15,000 In 0.325 2.60 0.329 0.60 5.207 1.67 
17,500 Out 0.712 6.06 0.535 0.87 5.253 3.80 
22,500 In 0.807 7.29 0.390 0.69 14.257 5.49 
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27,500 Out 0.153 1.52 0.113 0.16 3.011 1.02 
32,500 In 0.149 1.27 0.104 0.09 3.625 0.98 
37,500 Out 0.386 3.31 0.181 0.16 1.421 1.18 
40,000 In 0.540 4.88 0.308 0.63 5.770 2.26 
42,500 Out 0.378 4.12 0.263 0.33 8.065 3.42 
47,500 In 0.284 2..98 0.203 0.33 3.340 1.51 
47,500 Out 0.469 4.79 0.351 0.64 4.529 1.42 

Table 5: Mean Absolute Relative Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) and Mean Absolute Residual error 
obtained between experimental data and values predicted with RNN models 

Flight Case 𝑪𝑪𝑪𝑪𝒔𝒔 𝑪𝑪𝑫𝑫𝒔𝒔 𝑪𝑪𝒎𝒎𝒔𝒔 
Altitude 

[ft] 
Slat angle 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 

[in %] 
Mean 

Residual 
[× 10-3] 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 
[in %] 

Mean 
Residual 
[× 10-3] 

𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 
[in %] 

Mean 
Residual 
[× 10-3] 

7,000 In 0.340 3.00 0.702 0.15 11.203 3.82 
15,000 In 0.351 2.90 0.457 0.86 5.573 1.55 
17,500 Out 0.620 5.85 0.570 0.74 7.482 4.65 
22,500 In 0.686 6.74 0.392 0.57 14.842 4.22 
27,500 Out 0.109 1.09 0.206 0.19 2.921 9.4 
32,500 In 0.168 1.57 0.176 0.16 4.250 8.61 
37,500 Out 0.478 4.70 0.228 0.27 0.933 7.49 
40,000 In 0.413 3.95 0.273 0.41 7.041 1.39 
42,500 Out 0.224 2.38 0.396 0.67 6.593 1.15 
47,500 In 0.248 2.63 0.170 0.26 3.714 9.85 
47,500 Out 0.593 6.42 0.226 0.28 2.318 7.94 

We can see that both MLP and RNN methodologies can globally estimate the 
aerodynamic coefficients quite well, as the obtained errors are verry small. For all 11 flight 
cases used for validation, the lift and drag coefficients were estimated with a 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 of less 
than 1 %. For the pitching moment, 9 flight cases were estimated with a 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 of less than 
10 %, and only 2 flight cases were estimated with errors between 10% and 15%. The slats 
position did not affect the models’ precision. Aerodynamic coefficients of slat-in and slat-out 
flight cases were estimated with the same range of precision. The higher error in percentage 
obtained for the determination of the pitching moment coefficient could be explained by the 
fact that for most of the flight cases (in both validation and identification cases), the pitching 
moment changes its sign when varying (as shown on Fig. 4 and Fig. 5). Consequently, at some 
flight test points, the 𝐶𝐶𝑚𝑚𝑠𝑠 has relatively low values, around zero, which leads to large relative 
errors (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀). Therefore, even if the 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 errors of the 𝐶𝐶𝑚𝑚𝑠𝑠 seem relatively large (above 
10%) for some flight cases, the precision of the estimation remains very good, as the residual 
errors are very low, even negligible (of the order of 10-3). In summary, the lift coefficient was 
estimated with an average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 of 0.5% for MLP and 0.4 % for RNN. For the estimation of 
the drag coefficient, the average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 was 0.3% for MLP and 0.35 % for RNN. Finally, the 
MLP performed better than the RNN for the prediction of the pitching moment coefficient, 
with an average 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 of 5.6 % comparatively to 6.1% for the RNN. We can also conclude 
that the RNN models performed similar to the MLP models. 

4. CONCLUSIONS 
This paper presents a detailed methodology for the lift, drag, and pitching moment 

aerodynamic coefficients modeling in stall regime using Neural Networks. The linear and 
nonlinear variations of lift and drag aerodynamic coefficients are estimated along the stall 
hysteresis curve. This presented methodology was applied to the Cessna Citation X airplane 
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developed by CAE Inc and it gave successful results. A stall recovery procedure was 
developed and executed on the Cessna Citation X RAFS to obtain flight data. A total of 33 
flight cases were conducted for different altitudes ranging from 5000 to 50,000 ft and for the 
“in” and “out” slat configurations. The obtained data were then processed to obtain the lift, 
drag, and pitching moment aerodynamic coefficients. Data from 22 (67%) flight cases were 
used to train the following two types of Neural Network models: Multilayer Perceptron (MLP) 
and Recurrent Neural Network (RNN). The procedure to select the Neural Network parameters 
(training algorithms, activation function) was detailed, and the process to optimize the models’ 
structures was also developed. Both the MLP and RNN models predicted the aerodynamic 
coefficients with an average Mean Absolute Relative Error (𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀) smaller than 0.5% for the 
lift and drag coefficients and smaller than 6.2 % for the pitching moment coefficients. These 
minor errors allowed us to conclude that the developed models performed very well. 
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