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Abstract: The article is devoted to the study of the optimal control of propellant consumption during 
vertical lifting of rocket in homogeneous atmosphere using regularized solution of integral equation of 
the first kind. The problem of lifting of a rocket into desired height along optimal trajectory in the view 
of minimal consumption of propellant leads to solving the set of differential and integral equations. 
Problem of optimal control of propellant consumption during lifting of rocket in homogeneous 
atmosphere is solved using regularized solution of integral equation of the first kind which is solution 
of corresponding Euler equation on discrete time net. Influence of the regularization parameter and 
some additional parameters on precision of discreted problem is investigated. Considered algorithm is 
summed up easily to the case of non-homogeneous atmosphere by introducing dependence of the 
ballistic coefficient on altitude of flight and to problem of putting spacecraft into determined orbit and 
suborbital flights by setting desired altitude and velocity and modifying of motion equations. 
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1. INTRODUCTION 
A problem of the trajectory optimization of a rocket or a spacecraft with a rocket engine 
belongs to a class of the dynamic systems optimization problems. Its solution leads to 
searching for the local or global extremum of a beforehand defined functional determined on 
the set of the solutions of the controlled dynamic system satisfying some conditions [1], [2], 
[3]. Applying some restrictions to rocket we have some formulation of the optimization 
problem [4], [5], [6], [7], [8], [9], [10]. It is well known that its solution is found with the 
maximum principle by Pontryagin transferring the optimization problem to the boundary 
problem [9], [10], [11], [12], [13].  

There are two models of a rocket engine performance. The first of them matches the non-
controlled engine when the reactive force and the relative velocity of exhaust gazes are 
considered to be constant [14], [15], [16], [17]. The engine just can be turned on or off. That 
is the most realistic model. The second of them matches the ideal limited power engine when 
the power of the engine is constant. Under this restriction we can vary the reactive force and 
the exhaust velocity [14]. In this work we vary both the reactive force and the power of the 
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rocket engine by varying the consumption of a propellant and keeping the exhaust gases 
velocity. The optimal control problem is to find the trajectory corresponding to the minimal 
consumption of a propellant. 

A problem of vertical lifting of a rocket to desired height with minimal consumption of 
propellant is solved in [18]. Vertical movement of a body with variable mass 𝑚𝑚(𝜏𝜏) in 
homogeneous atmosphere is described by the next equations [18]: 

⎩
⎨

⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏

=
1

𝑚𝑚(𝜏𝜏)
[𝑎𝑎𝑎𝑎(𝜏𝜏) − 𝑐𝑐𝑑𝑑2(𝜏𝜏)]− 𝑔𝑔,

𝑑𝑑𝑚𝑚
𝑑𝑑𝜏𝜏

= −𝑎𝑎(𝜏𝜏) ⎭
⎬

⎫
 (1) 

with the initial conditions 

𝑚𝑚(0) = 𝑚𝑚0, 𝑑𝑑(0) = ϒ0 (2) 

where 𝜇𝜇 ≤ 𝑚𝑚(𝜏𝜏) ≤𝑚𝑚0 is the variable mass of a rocket with propellant, 𝑘𝑘𝑔𝑔; 𝜇𝜇 is the mass of 
construction of a rocket, kg; 𝑑𝑑(𝜏𝜏) is the velocity of a rocket; 𝑎𝑎(𝜏𝜏) is the control function equal 
to the consumption of propellant trough one second, 𝑘𝑘𝑔𝑔/𝑠𝑠; 𝑎𝑎 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 = 2500 𝑚𝑚/𝑠𝑠 is the 
relative velocity of exhaust gases; с = 0.2 ∙ 10−7 𝑘𝑘𝑔𝑔/𝑚𝑚 is the generalized ballistic coefficient 
of air; 𝑔𝑔 = 9.81 𝑚𝑚/𝑠𝑠2 is the free fall acceleration. 

The optimal control function 𝑎𝑎�(𝜏𝜏) must be positive at a time interval 0 ≤ 𝜏𝜏 ≤ T1 and 
equal to zero at an interval 𝜏𝜏 > T1. Gradual decrease of the consumption of propellant begins 
at the time instant 𝜏𝜏 = 0 when the velocity is equal Υ0. 

The optimal control function 𝑎𝑎�(𝜏𝜏) and parameters corresponding to it are desired: T1 =
𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 is the time instant at which burning of propellant is stopped, 𝑠𝑠; Υ1 =𝑑𝑑(T1) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 is 
the velocity of rocket at the instant T1, 𝑚𝑚/𝑠𝑠. 

2. SOLUTION USING INTEGRAL EQUATION OF THE FIRST KIND 
Approximate solution of this problem has a strong singularity at the initial instant of the time, 
therefore it is unstable and the problem is ill-conditioned [18]. If T2 is the instant of the time 
at which the velocity becomes equal to zero and Υ2 =𝑑𝑑(T2) = 0 then the height into which a 
rocket is lifted is equal [18]: 

ℎ = ℎ[𝑑𝑑(𝑎𝑎)] = � 𝑑𝑑(𝜏𝜏)𝑑𝑑𝜏𝜏
𝛵𝛵2

0
 (3) 

The height ℎ is summarized by two terms [18]: 

ℎ = ℎ1 + 𝛥𝛥ℎ = � 𝑑𝑑(𝜏𝜏)𝑑𝑑𝜏𝜏
𝛵𝛵1

0
+
𝜇𝜇

2𝑐𝑐
𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 (4) 

The functional to minimize is [18]: 

𝑓𝑓[w,ϒ1,Τ1] = 1 −
ℎ[𝑑𝑑(𝑎𝑎)]
ℎ0

 (5) 

where ℎ0 is a number near to desired maximal height, 𝑚𝑚. Minimizing the functional (5) is 
unstable, therefore the regularization method is used. 
The stabilizing functional Ω[𝑎𝑎] is applied to find approximate (regularized) solution [18]: 
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𝛺𝛺[𝑎𝑎] = � 𝜑𝜑(𝑎𝑎)𝑑𝑑𝜏𝜏
𝛵𝛵1

0
 (6) 

Then seeking the optimal control 𝑎𝑎�(𝜏𝜏) leads to minimizing the smoothing functional [18] 

𝑀𝑀�𝑎𝑎γ,ϒ1,Τ1� = 𝑓𝑓�𝑎𝑎γ,ϒ1,Τ1�+ 𝛾𝛾𝛺𝛺[𝑎𝑎] (7) 

under the additional conditions: 

𝑎𝑎(𝜏𝜏) ≥ 0 (8) 

� 𝑎𝑎(𝜏𝜏)𝑑𝑑𝜏𝜏
𝛵𝛵1

0
= 𝑚𝑚0 − 𝜇𝜇 (9) 

To find approximate regularized solution we use the next algorithm. Keeping the 
regularization parameter γ > 0 we define a consequence of couples of the numbers 
�Υ1

(n), T1
(n)�. For each such a couple the function 𝑎𝑎𝛾𝛾

(𝑛𝑛) minimizing the flattening (smoothing) 
functional is found [18]: 

𝑀𝑀 �𝑎𝑎𝛾𝛾
(𝑛𝑛),ϒ1,Τ1� = 𝑖𝑖𝑐𝑐𝑓𝑓

𝑤𝑤(𝑛𝑛)
𝑀𝑀�𝑎𝑎(𝑛𝑛),ϒ1,Τ1� (10) 

Then from the sequence of couples of the numbers �Υ1
(n), T1

(n)� such a couple �Υ1
(m), T1

(m)� 
is found on which the flattening functional reaches its minimum [18]: 

𝑀𝑀 �wγ
(m),ϒ1

(m),ϒ1
(m)� = 𝑖𝑖𝑐𝑐𝑓𝑓

ϒ1
(𝑛𝑛),𝛵𝛵1

(𝑛𝑛)
𝑀𝑀 �wγ

(n),ϒ1
(n),Τ1

(n)� (11) 

As a result we get the functions wγ
(m),Υ1

(m), T1
(m) which are considered to be approximate 

regularized solution of the problem of optimal control. Let us modify the algorithm using 
regularization of solution of integral equation of the first kind. This equation follows from the 
relation (4) and is in the velocity υ(𝜏𝜏) for each couple of the numbers �ϒ1

(n),Τ1
(n)�: 

� 𝑑𝑑(𝜏𝜏)𝑑𝑑𝜏𝜏
𝛵𝛵1

0
≡ ℎ1 = ℎ − 𝛥𝛥ℎ ≈ ℎ0 −

𝜇𝜇
2𝑐𝑐
𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 (12) 

with the boundary conditions υ(0)  =  Υ0, υ(T1) = Υ1. 
From the set of equations (1) we get the differential equation for the varying mass 𝑚𝑚(𝜏𝜏) 

which is connected with the velocity υ(𝜏𝜏): 

𝑑𝑑𝑚𝑚(𝜏𝜏)
𝑑𝑑𝜏𝜏

+
1
𝑎𝑎
�
𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑑𝑑𝜏𝜏

+ 𝑔𝑔�𝑚𝑚(𝜏𝜏) +
𝑐𝑐
𝑎𝑎
𝑑𝑑2(𝜏𝜏) = 0 (13) 

with the initial condition 𝑚𝑚(0) = 𝑚𝑚0. 
The consumption of the mass of propellant is found from the same set of equations as 

𝑎𝑎(𝜏𝜏) = −
𝑑𝑑𝑚𝑚(𝜏𝜏)
𝑑𝑑𝜏𝜏

 (14) 

The procedure to find the optimal consumption of propellant is analogous to the previous 
one. Keeping the height ℎ0 we define a consequence of couples of the numbers �Υ1

(n), T1
(n)�. 
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For each such a couple we solve the integral equation of the first kind (12) for the velocity 
υ(𝜏𝜏) using the regularization method. 

The function 𝑚𝑚(𝜏𝜏) is found for the function 𝑑𝑑(𝜏𝜏) from the equation (13) and the 
consumption of the propellant 𝑎𝑎(𝜏𝜏) from the equation (14). Then from couples of the numbers 
�Υ1

(n), T1
(n)� such a couple �Υ1

(m), T1
(m)� is found on which the propellant consumption (14) 

reaches its minimum: 

𝑎𝑎(𝑚𝑚) �ϒ1
(m),Τ1

(m)� = 𝑖𝑖𝑐𝑐𝑓𝑓
ϒ1

(n),Τ1
(n)
𝑎𝑎(𝑛𝑛) �ϒ1

(n),Τ1
(n)� (15) 

As a result we get the functions wγ
(m),Υ1

(m), T1
(m) which are considered to be approximate 

regularized solution of the problem of optimal control. 
For each couple of the numbers �Υ1

(𝑛𝑛),Τ1
(n)� the right-hand side of the equation (12) is put 

approximately, and ϒ1
(n) ∈ �ϒ1

(0),ϒ1
(N)�, where 𝑁𝑁 = 𝑚𝑚 + 𝑟𝑟, 𝑟𝑟 ≥ 0. The integral equation: 

𝑑𝑑 ≡ � 𝐾𝐾(Υ1, 𝜏𝜏)𝑑𝑑(𝜏𝜏)𝑑𝑑𝜏𝜏
𝛵𝛵1

0
= 𝑢𝑢𝛿𝛿(ϒ1),ϒ1 ∈ �ϒ1

(0),ϒ1
(𝑁𝑁)� (16) 

has the kernel 𝐾𝐾(ϒ1, 𝜏𝜏) = 1 and the function 

𝑢𝑢𝛿𝛿(ϒ1) = ℎ0 −
𝜇𝜇

2𝑐𝑐
𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 (17) 

The required approximate (regularized) solution of the equation (16), 𝐴𝐴𝐴𝐴 = 𝑢𝑢𝛿𝛿, is the 
function υγ(𝜏𝜏) which is the solution of the integro-differential equation of Euler [18]. If 𝐹𝐹1 is 
a set of the functions υ(𝜏𝜏) continuous on the interval [0, T1] and having the first order 
derivatives 𝑑𝑑υ(𝜏𝜏)/𝑑𝑑𝜏𝜏 square integrable on [0, T1], then for the functions υ(𝜏𝜏) ∈ 𝐹𝐹1 the 
stabilizing functional is determined as [18]: 

𝛺𝛺[𝑑𝑑] = � �𝑞𝑞(𝜏𝜏)𝑑𝑑2(𝜏𝜏) + 𝑝𝑝(𝜏𝜏) �
𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏
�
2

�𝑑𝑑𝜏𝜏
𝛵𝛵1

0
 (18) 

where 𝑞𝑞(𝜏𝜏), 𝑝𝑝(𝜏𝜏) are defined nonnegative functions such that for every 𝜏𝜏 ∈ [0, T1] we have 
𝑞𝑞2(𝜏𝜏) + 𝑝𝑝2(𝜏𝜏) ≠ 0 and 𝑝𝑝(𝜏𝜏) ≥ 𝑝𝑝0 > 0 where 𝑝𝑝0 is a number. 

Let us choose one of these functionals. Minimizing the functional (18) is a conditional 
extremum problem. 

Let us solve it by the method of undetermined Lagrange multipliers; that is let us find the 
function υγ(𝜏𝜏) minimizing the smoothing functional [18]: 

𝑀𝑀𝛾𝛾[𝑑𝑑,𝑢𝑢𝛿𝛿] = 𝜌𝜌𝐿𝐿2
2 (𝐴𝐴𝑑𝑑,𝑢𝑢𝛿𝛿) + 𝛾𝛾𝛺𝛺[𝑧𝑧] (19) 

where [18] 

𝜌𝜌𝐿𝐿2(𝑢𝑢1,𝑢𝑢2) = �� [𝑢𝑢1(𝑥𝑥)− 𝑢𝑢2(𝑥𝑥)]2𝑑𝑑𝑥𝑥
𝑑𝑑

𝑐𝑐
�

1
2

 (20) 

This is an unconditional extremum problem, in which the regularization parameter is 
determined from the equation 
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𝜌𝜌𝐿𝐿2(𝐴𝐴𝑑𝑑,𝑢𝑢𝛿𝛿) = 𝛿𝛿 (21) 

with the solution γ = γ(𝛿𝛿) depending on the discrepancy 𝛿𝛿. 
The parameter γ may be determined both by the discrepancy (21) and other ways. 

Minimizing the stabilizer (18) we have the next Euler equation [18]: 

� �̄�𝐾(𝜏𝜏, 𝑐𝑐)𝑑𝑑(𝑐𝑐)𝑑𝑑𝑐𝑐
𝛵𝛵1

0
+ 𝛾𝛾 �𝑞𝑞(𝜏𝜏)𝑑𝑑(𝜏𝜏) −

𝑑𝑑
𝑑𝑑𝜏𝜏
�𝑝𝑝(𝜏𝜏)

𝑑𝑑𝑑𝑑
𝑑𝑑𝜏𝜏
�� = � 𝐾𝐾(ϒ1, 𝜏𝜏)𝑢𝑢𝛿𝛿(ϒ1) 𝑑𝑑ϒ1

ϒ1
(𝑁𝑁)

ϒ1
(0)

 (22) 

where 𝐾𝐾(Υ1, 𝜏𝜏) = 1, 

�̄�𝐾(𝜏𝜏, 𝑐𝑐) = � 𝐾𝐾(ϒ1, 𝜏𝜏)𝐾𝐾(ϒ1, 𝑐𝑐) 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

= � 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

= ϒ1
(𝑁𝑁) − ϒ1

(0) (23) 

� 𝐾𝐾(ϒ1, 𝜏𝜏)𝑢𝑢𝛿𝛿(ϒ1) 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

= � �ℎ0 −
𝜇𝜇

2𝑐𝑐
𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

�  𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

=

= ℎ0 �ϒ1
(𝑁𝑁) − ϒ1

(0)� −
𝜇𝜇

2𝑐𝑐
� 𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

 

(24) 

�ϒ1
(𝑁𝑁) − ϒ1

(0)�� 𝑑𝑑(𝑐𝑐)𝑑𝑑𝑐𝑐
𝛵𝛵1

0
+ 𝛾𝛾 �𝑞𝑞(𝜏𝜏)𝑑𝑑(𝜏𝜏) −

𝑑𝑑
𝑑𝑑𝜏𝜏 �

𝑝𝑝(𝜏𝜏)
𝑑𝑑𝑑𝑑(𝜏𝜏)
𝑑𝑑𝜏𝜏 �� =

= ℎ0 �ϒ1
(𝑁𝑁) − ϒ1

(0)� −
𝜇𝜇

2𝑐𝑐
� 𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

 
(25) 

This equation is solved with one of the boundary conditions following from the equality 
to zero of the solution or its first derivative on the bounds of the interval [0, T1]: 

𝑑𝑑(0) = 0, 𝑑𝑑(T1) = 0 (26) 

𝑑𝑑(0) = 0, 𝑑𝑑′(T1) = 0 (27) 

𝑑𝑑 ′(0) = 0, 𝑑𝑑 (T1) = 0 (28) 

𝑑𝑑 ′(0) = 0, 𝑑𝑑′ (T1) = 0 (29) 

If 𝑑𝑑(0) = Υ0, 𝑑𝑑(𝑇𝑇1) = Υ1, where Υ0, Υ1 are known numbers, then passing on to the 
function 𝑑𝑑�(𝜏𝜏) by the formula [18] 

𝑑𝑑(𝜏𝜏) = 𝑑𝑑�(𝜏𝜏) +
ϒ0
𝛵𝛵1

(𝛵𝛵1 − 𝜏𝜏) +
ϒ1
𝛵𝛵1
𝜏𝜏 = 𝑑𝑑�(𝜏𝜏) + ϒ0 −

ϒ0
𝛵𝛵1
𝜏𝜏 +

ϒ1
𝛵𝛵1

τ=

= 𝑑𝑑�(𝜏𝜏) + ϒ0 +
1
𝛵𝛵1

(ϒ1 − ϒ0)𝜏𝜏 
(30) 

we get the equation for 𝑑𝑑�(τ) with the same kernel but other right-hand side the solution of 
which (with corresponding right-hand part) satisfies the boundary conditions 𝑑𝑑�(0) = 0, 
𝑑𝑑�(T1) = 0. 

We can find approximate solution for 𝑑𝑑�(τ) from the Euler equation [1], [2] (with 
transformed right-hand side) satisfying to the boundary conditions 𝑑𝑑�(0) = 0, 𝑑𝑑�(T1) = 0: 
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�ϒ1
(𝑁𝑁) − ϒ1

(0)�� �𝑑𝑑�(𝑐𝑐) + ϒ0 +
1
𝛵𝛵1

(ϒ1 − ϒ0)𝑐𝑐� 𝑑𝑑𝑐𝑐
𝛵𝛵1

0
+ 𝛾𝛾 ×

× �𝑞𝑞(𝜏𝜏) �𝑑𝑑�(𝜏𝜏) + ϒ0 +
1
𝛵𝛵1

(ϒ1 − ϒ0)𝜏𝜏�

−
𝑑𝑑
𝑑𝑑𝜏𝜏
�𝑝𝑝(𝜏𝜏)

𝑑𝑑
𝑑𝑑𝜏𝜏 �

𝑑𝑑�(𝜏𝜏) + ϒ0 +
1
𝛵𝛵1

(ϒ1 − ϒ0)𝜏𝜏���

= ℎ0 �ϒ1
(𝑁𝑁) − ϒ1

(0)� −
𝜇𝜇

2𝑐𝑐
� 𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

 

(31) 

We have 

�ϒ1
(𝑁𝑁) − ϒ1

(0)� �� 𝑑𝑑�(𝑐𝑐)𝑑𝑑𝑐𝑐
𝛵𝛵1

0
+ ϒ0𝛵𝛵1 + (ϒ1 − ϒ0)

𝛵𝛵1
2
�

+ +𝛾𝛾 �𝑞𝑞(𝜏𝜏) �𝑑𝑑�(𝜏𝜏) + ϒ0 +
1
𝛵𝛵1

(ϒ1 − ϒ0)𝜏𝜏�

−
𝑑𝑑
𝑑𝑑𝜏𝜏 �

𝑝𝑝(𝜏𝜏) �
𝑑𝑑𝑑𝑑�(𝜏𝜏)
𝑑𝑑𝜏𝜏

+
1
𝛵𝛵1

(ϒ1 − ϒ0)��� =

= ℎ0 �ϒ1
(𝑁𝑁) − ϒ1

(0)� −
𝜇𝜇

2𝑐𝑐
� 𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

 

(32) 

We put 𝑞𝑞(𝜏𝜏) = 𝑞𝑞 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 > 0,𝑚𝑚; 𝑝𝑝(𝜏𝜏) = 𝑝𝑝 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑐𝑐 > 0,𝑚𝑚 ∙ 𝑠𝑠2. Then: 

�ϒ1
(𝑁𝑁) − ϒ1

(0)� �� 𝑑𝑑�(𝑐𝑐)𝑑𝑑𝑐𝑐
𝛵𝛵1

0
+ ϒ0𝛵𝛵1 + (ϒ1 − ϒ0)

𝛵𝛵1
2
�

+ 𝛾𝛾 �𝑞𝑞 �𝑑𝑑�(𝜏𝜏) + ϒ0 +
1
𝛵𝛵1

(ϒ1 − ϒ0)𝜏𝜏� − 𝑝𝑝
𝑑𝑑2𝑑𝑑�(𝜏𝜏)
𝑑𝑑𝜏𝜏2 � =

= ℎ0 �ϒ1
(𝑁𝑁) − ϒ1

(0)� −
𝜇𝜇

2𝑐𝑐
� 𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

 

(33) 

and having been left in the left-hand side the terms including the desired function 𝑑𝑑�(τ) we got 
the equation 

�ϒ1
(𝑁𝑁) − ϒ1

(0)�� 𝑑𝑑�(𝑐𝑐)𝑑𝑑𝑐𝑐
𝛵𝛵1

0
+ 𝛾𝛾𝑞𝑞𝑑𝑑�(𝜏𝜏) − 𝛾𝛾𝑝𝑝

𝑑𝑑2𝑑𝑑�(𝜏𝜏)
𝑑𝑑𝜏𝜏2

=

= �ϒ1
(𝑁𝑁) − ϒ1

(0)� �ℎ0 −
𝛵𝛵1
2

(ϒ0 + ϒ1)� − 𝛾𝛾𝑞𝑞 �ϒ0 +
𝜏𝜏
𝛵𝛵1

(ϒ1 − ϒ0)�

−
𝜇𝜇

2𝑐𝑐
� 𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

 

(34) 

where γ > 0 is the dimensionless regularization parameter; 𝑞𝑞 > 0,𝑚𝑚; 𝑝𝑝 > 0,𝑚𝑚 ∙ 𝑠𝑠2 are 
positive dimension quantities. 

Let us write down a difference analogue of the equation (34) on a uniform net with the 
increment ∆𝜏𝜏. We divide the interval [0,𝑇𝑇1] into 𝑀𝑀 equal parts and set the ends of got intervals 
as nodes of the net [18]: 
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𝜏𝜏𝑖𝑖 = 𝑖𝑖∆𝜏𝜏, 𝑖𝑖 = 1,2 … ,𝑀𝑀,∆τ =
T1
𝑀𝑀

 (35) 

Replacing the integral in the left-hand side of the equation (34) by the integral sum 
corresponding to it according to the formula of rectangles, for example, and υ′′(𝜏𝜏) by 
corresponding difference expression, we have [18] 

�Υ1
(𝑁𝑁) − ϒ1

(0)�𝛥𝛥𝜏𝜏�𝑑𝑑�𝑗𝑗

𝑀𝑀

𝑗𝑗=1

+ 𝛾𝛾𝑞𝑞𝑑𝑑�𝑖𝑖 + 𝛾𝛾𝑝𝑝
2𝑑𝑑�𝑖𝑖 − 𝑑𝑑�𝑖𝑖−1 − 𝑑𝑑�𝑖𝑖+1

𝛥𝛥𝜏𝜏2
= 𝑓𝑓𝑖𝑖, 𝑖𝑖 = 1,2, … ,𝑀𝑀 (36) 

𝑓𝑓𝑖𝑖 = 𝑓𝑓(𝜏𝜏𝑖𝑖) = �ϒ1
(𝑁𝑁) − ϒ1

(0)� �ℎ0 −
𝛵𝛵1
2

(ϒ0 + ϒ1)� − 𝛾𝛾𝑞𝑞 �ϒ0 +
𝜏𝜏𝑖𝑖
𝛵𝛵1

(ϒ1 − ϒ0)�

−
𝜇𝜇

2𝑐𝑐
� 𝑙𝑙𝑐𝑐 �1 +

ϒ12𝑐𝑐
𝜇𝜇𝑔𝑔 �

 𝑑𝑑ϒ1
ϒ1

(𝑁𝑁)

ϒ1
(0)

 
(37) 

The values of the right-hand side 𝑓𝑓𝑖𝑖 are calculated analytically or numerically. At the same 
time the numbers 𝑁𝑁,𝑀𝑀 of the net points on the coordinates ϒ1, 𝜏𝜏 are independent. If 𝑖𝑖 = 1, 𝑖𝑖 =
𝑀𝑀 then there undefined values 𝑑𝑑�0 and 𝑑𝑑�𝑀𝑀+1 are in the set of linear algebraic equations (37) for 
the vector 𝝊𝝊� = ( 𝑑𝑑�1, 𝑑𝑑�2, … , 𝑑𝑑�𝑀𝑀). To satisfy to the boundary conditions we put 𝑑𝑑�0 = 𝑑𝑑�1 = 0  and 
𝑑𝑑�𝑀𝑀+1 = 𝑑𝑑�𝑀𝑀 = 0. Thus the problem of searching for approximate (regularized) solution of the 
equation (16), 𝐴𝐴𝑑𝑑 = 𝑢𝑢𝛿𝛿, leads to solving the set of linear algebraic equations (37) for the vector 
𝝊𝝊� = (𝑑𝑑�1, 𝑑𝑑�2, . . . , 𝑑𝑑�𝑀𝑀) and further passing on to the vector 𝝊𝝊 = (𝑑𝑑1, 𝑑𝑑2, . . . , 𝑑𝑑𝑀𝑀) by the formula 
(30). It is possible to use, for example, the method of square root or Voevodin’s method to 
solve it [18]. 

3. CALCULATION OF THE REGULARIZATION PARAMETER 
Calculations have been carried out to solve a problem of searching for the optimal 
consumption of propellant during lifting of a rocket to the height ℎ0 = 10 𝑘𝑘𝑚𝑚 for the couple 
of the numbers {Υ1 = 100 𝑚𝑚/𝑠𝑠, T1 = 100 𝑠𝑠} when the numbers are able to vary in the limits 
±10%. If the regularization parameter γ = 1 then a rocket reaches the predetermined height 
ℎ0 at which the velocity becomes equal to zero within an accuracy of solution of the set of 
algebraic equations in a wide range of the quantities 𝑞𝑞,𝑝𝑝. The regularization parameter varies, 
the height of lifting of a rocket deviates from ℎ0 keeping values of couple of the numbers 
{Υ1,𝑇𝑇1}. For example, a vector of the regularization parameters 𝛄𝛄 = ( γ1, γ2, … , γ𝑀𝑀) 
corresponding to the exponential distribution of the velocity according to the law υ0(τ) =
Υ1[1 − exp (−τ/τ0.63)], where τ0.63 = T1/5τ is the time constant, 𝑠𝑠, leads to the velocity of 
lifting of a rocket ℎ = 8573 𝑚𝑚 instead of ℎ ≈ ℎ0 = 104𝑚𝑚 (Fig. 1a). 

The quantities 𝑞𝑞,𝑝𝑝 vary keeping the regularization parameter γ = 1, the distribution of 
the velocity in the time deviates for predetermined couple of the numbers {Υ1, T1} leading to 
the desired velocity profile (Fig. 1a). Simultaneously, the consumption of propellant necessary 
to lift a rocket into the required height ℎ ≈ ℎ0 = 104𝑚𝑚 varies a little about 1% of the 
consumption when 𝑞𝑞 = 1 𝑚𝑚, 𝑝𝑝 = 1 𝑚𝑚 ∙  𝑠𝑠2. Comparison of the consumption of propellant for 
different profiles of the velocity shows the exponential distribution of the velocity to be not 
optimal for the couple of the numbers {Υ1,𝑇𝑇1} as we reach the least consumption when γ = 1; 
𝑞𝑞 = 0.1 𝑚𝑚, 𝑝𝑝 = 10 𝑚𝑚 ∙  𝑠𝑠2 (Figs. 1b, 1c). 
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  a) b) 

 
c) 

Fig. 1 – Distribution of the velocity (a), the mass of a rocket with propellant (b) and the consumption of 
propellant (c) in the time (the mass of an empty rocket 𝜇𝜇= 103𝑘𝑘𝑔𝑔, the mass of propellant ∆𝑚𝑚 = 103𝑘𝑘𝑔𝑔,Υ1 =

100 𝑚𝑚/𝑠𝑠, T1 = 100 𝑠𝑠): υ0(τ) is by the exponent, γ = γ(𝜏𝜏)(ℎ = 8473 𝑚𝑚,𝑚𝑚(0) −𝑚𝑚(T1) = 703.3 𝑘𝑘𝑔𝑔); υ1(τ) is 
by γ = 1, 𝑞𝑞 = 0.1, 𝑝𝑝 = 10 (ℎ = 10060 m,𝑚𝑚(0) −𝑚𝑚(T1) = 705.6 𝑘𝑘𝑔𝑔); υ2(τ) is by γ = 1,𝑞𝑞 = 0.1, 𝑝𝑝 = 50 (ℎ =

10070 m,𝑚𝑚(0) −𝑚𝑚(𝑇𝑇1) = 704.9 𝑘𝑘𝑔𝑔); υ3(τ) is by γ = 1,𝑞𝑞 = 1, 𝑝𝑝 = 1 (ℎ = 10020 m,𝑚𝑚(0) −𝑚𝑚(𝑇𝑇1) =
716.0 𝑘𝑘𝑔𝑔) 

Let us set a sequence of couples of the numbers {Υ1,𝑇𝑇1} on the intervals Υ1 ∈
[90, 110]𝑚𝑚/𝑠𝑠; T1 ∈ [90, 110]𝑚𝑚/𝑠𝑠 and find the least of the propellant consumptions which 
are calculated for each pair keeping 𝛾𝛾 = 1; 𝑞𝑞 = 0.1 𝑚𝑚; 𝑝𝑝 = 10 𝑚𝑚 ∙  𝑠𝑠2. The least propellant 
consumption 650.2 𝑘𝑘𝑔𝑔 is reached for the couple of the numbers {Υ1 = 90 𝑚𝑚/𝑠𝑠, T1 = 90 𝑠𝑠} 
and supplies lifting of a rocket into the height 9975 𝑚𝑚 for the start mass 2000 𝑘𝑘𝑔𝑔 (Table 1). 
Table 1. – The integral propellant consumption equal to the difference 𝑚𝑚(0) −𝑚𝑚(T1) and the height reached for 
couples of the numbers {Υ1, T1} (the mass of an empty rocket 𝜇𝜇 = 103𝑘𝑘𝑔𝑔, the mass of propellant ∆𝑚𝑚 = 103𝑘𝑘𝑔𝑔) 

Υ1, 𝑚𝑚/𝑠𝑠; T1, 𝑠𝑠 90 95 100 105 110 
90 650.2 kg 

9975 m 
675.9 kg 
9972 m 

701.2 kg 
9969 m 

726.0 kg 
9966 m 

750.3 kg 
9963 m 

95 652.2 kg 
10020 m 

678.2 kg 
10020 m 

703.4 kg 
10010 m 

728.1 kg 
10010 m 

752.4 kg 
10010 m 

100 654.8 kg 680.4 kg 705.6 kg 730.3 kg 754.5 kg 
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10070 m 10070 m 10060 m 10060 m 10060 m 
105 657.2 kg 

10120 m 
682.7 kg 
10120 m 

707.8 kg 
10110 m 

732.4 kg 
10110 m 

756.6 kg 
10110 m 

110 659.5 kg 
10170 m 

685.0 kg 
10170 m 

710.0 kg 
10170 m 

734.5 kg 
10160 m 

758.7 kg 
10160 m 

For the conditions of the problem having been solved the desired height is reached when 
the regularization parameter is equal to 𝛾𝛾 = 1. The acceleration has maximum at the instant 
of time 𝜏𝜏 = 0 and as a rule it is less than 10 𝑚𝑚/𝑠𝑠 that is admissible for a manned flight as the 
resulting acceleration is less than 2 𝑔𝑔. Nevertheless, in the case of lifting of a rocket into 
greater height the start acceleration should magnify. Then we have to supply some desired 
distribution of the velocity in time: 

𝑑𝑑0
(0) = 𝑑𝑑(0)(𝜏𝜏0) = ϒ0 (38) 

𝑑𝑑𝑖𝑖
(0) = 𝑑𝑑(0)(𝜏𝜏𝑖𝑖), (i =1,2,..., M-1) (39) 

𝑑𝑑𝑀𝑀
(0) = 𝑑𝑑(0)(𝜏𝜏𝑀𝑀) = ϒ1 (40) 

As according to (26) 

𝑑𝑑�(𝜏𝜏) = 𝑑𝑑(𝜏𝜏) − ϒ0 −
1
𝛵𝛵1

(ϒ1 − ϒ0)𝜏𝜏 (41) 

Then 

𝑑𝑑�𝑖𝑖
(0) = 𝑑𝑑𝑖𝑖

(0) − ϒ0 −
1
𝛵𝛵1

(ϒ1 − ϒ0)𝜏𝜏𝑖𝑖 (42) 

with 𝑑𝑑�0
(0) = 0, 𝑑𝑑�𝑀𝑀

(0) = 0. We have to take into consideration that distribution of the 
regularization parameter in time affects the height ℎ reached by a rocket: if γ ≠ 1 then ℎ ≠
ℎ0. 

Considering the difference between desired and determined distributions of the velocity 
in time to be known (a vector 𝛅𝛅) we write down 

�𝝊𝝊 − 𝝊𝝊(0)� = 𝛿𝛿 ⇒ 𝑑𝑑𝑖𝑖 − 𝑑𝑑𝑖𝑖
(0) = 𝛿𝛿𝑖𝑖(𝑖𝑖 = 1, 2, … ,𝑀𝑀) (43) 

or according to (26) 

�𝝊𝝊� − 𝝊𝝊�(0)� = 𝛿𝛿 ⇒ 𝑑𝑑�𝑖𝑖 − 𝑑𝑑�𝑖𝑖
(0) = 𝛿𝛿𝑖𝑖(𝑖𝑖 = 1, 2, … ,𝑀𝑀) (44) 

In problems of control it is natural to suppose 𝛿𝛿 = 0 leading desired distribution of the 
velocity to determined one, if it is supplied by smoothness of defined function. Then on the 
basis of (30) a vector of the regularization parameters is able to be calculated analytically or 
numerically (Fig. 2). Such a vector of the regularization parameters supplies the velocity 
distribution equivalent predetermined one (40) that is substituted into the ordinary differential 
equation (13) for the mass 𝑚𝑚(𝜏𝜏) of a rocket. But predetermined function is possible not smooth 
enough and has not mathematically correct equivalent calculated on the equation (30). In that 
case we have to find a vector of the regularization parameters supplying stable solution of the 
equation (30) and minimizing the discrepancy of the velocities (43). To do it we can calculate 
analytically, use the simple iteration method or the iteration-variation method [19], [20], [21] 
(Fig. 2). 
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Fig. 2 – Distribution of the regularization parameter γ = γ(𝜏𝜏) in the time for the exponential distribution of the 
velocity in the time υ0(𝜏𝜏)(ℎ = 8573 𝑚𝑚): γ0(𝜏𝜏) is by direct calculation; γ1(𝜏𝜏) is calculated by the method of 

simple iteration; γ2(𝜏𝜏) is calculated by the iteration-variation method 

4. CONCLUSIONS 
The problem of lifting of a rocket into desired height along optimal trajectory in the view of 
minimal consumption of propellant leads to solving the set of differential and integral 
equations. The ordinary differential equation is in the mass of a rocket from the time keeping 
the free fall acceleration, the ballistic coefficient of atmosphere, the velocity of exhaust gases 
from a rocket engine and the velocity of a rocket in the time. The integral equation of the first 
kind is got from mechanics, υ(𝜏𝜏) = 𝑑𝑑ℎ(𝜏𝜏)/𝑑𝑑ℎ, => υ(𝜏𝜏)𝑑𝑑𝜏𝜏 = 𝑑𝑑ℎ(𝜏𝜏), connecting the velocity 
of a rocket with the height of lifting. This equation is solved by the regularization method 
transforming it into the Euler equation which is discredited on the time net as the set of linear 
algebraic equations in the velocity dependent on the time. 

In the right-hand part of the integral equation there is the height corresponding to the 
velocity of a rocket at the instant when burning of propellant is stopped or the height when the 
velocity is equal to zero after movement along ballistic trajectory. In the second case there is 
the second term in the right-hand part of the integral equation. If the desired height is known 
(with some inaccuracy) then to solve the integral equation in the velocity we have to define 
couples of the variables: the time of propellant burning and the velocity desired at the time 
instant when burning is stopped. Also we have to know admissible interval of varying of the 
velocity at the time instant when a rocket engine is turned off. 

In the Euler equation there are regularization parameter which is constant or another 
function of the time γ = γ(𝜏𝜏) > 0, the functions 𝑞𝑞 =𝑞𝑞(𝜏𝜏) > 0 𝑚𝑚; 𝑝𝑝 =𝑝𝑝(𝜏𝜏) > 0 𝑚𝑚 ∙ 𝑠𝑠2. 
Keeping γ = 1 (or a constant) and varying the functions 𝑞𝑞, 𝑝𝑝 we control the velocity 
distribution in the time to supply the desired height of lifting of a rocket with accuracy of the 
solution of the approximate Euler equation. If γ ≠ 1 (or a constant) then the height of lifting 
of a rocket deviates from the predetermined one. Particularly the regularization parameter is 
able to be found from predetermined distribution of the velocity as a function of the time. A 
problem of lifting of a rocket along optimal trajectory is important both to calculate a flight of 
multi-stage rocket, when we put the height corresponding to the velocity of a rocket at the time 
instant when propellant burning is stopped, and for suborbital flights, when we put the height 
corresponding to stopping of lifting after movement along ballistic trajectory. If the heights 



231 Control of propellant consumption during vertical of rocket in homogeneous atmosphere 
 

INCAS BULLETIN, Volume 12, Special Issue/ 2020 

are great then we have to set the function of the ballistic coefficient of air resistance depending 
on the height dividing a trajectory into intervals on which the coefficient is to be constant 
approximately. Putting the ballistic coefficient of atmosphere and the free fall acceleration of 
another planet we can use this algorithm to calculate optimal trajectory of takeoff of a rocket 
from them. Also we can modify the algorithm using different coordinate set to write down the 
equation of the motion. 
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