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Abstract: When solving the problems of coupled heat transfer between viscous flows and streamlined 
bodies under the conditions of aerodynamic heating of aircraft, it is necessary to overcome significant 
difficulties. They associated primarily with determining the boundary conditions. The paper investigates 
the joint (coupled) heat transfer between a heat and gas dynamic boundary layer and an anisotropic 
strip under conditions of aerodynamic heating based on the obtained analytical solution of the second 
initial boundary value problem of thermal conductivity in an anisotropic strip with arbitrary boundary 
conditions. Since the system of equations of the gasdynamic boundary layer is essentially nonlinear, 
mainly numerical methods are used to solve it. For an incompressible boundary layer near the critical 
point of a blunt wedge, an analytical solution is obtained to determine the components of the velocity 
vector, density, temperature, and heat fluxes. The closed-form solution to the conjugate problem was 
received in the form of a Fredholm integral equation of second kind. The results of numerical 
experiments are obtained and analyzed. 
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1. INTRODUCTION 
In solving the problems of coupled heat transfer between viscous flows and streamlined bodies 
under the conditions of aerodynamic heating of aircraf, it is necessary to overcome significant 
difficulties associated primarily with determining the boundary conditions at the gas – solid 
object interface [1], [2], [3], [4], [5], [6], because in coupled media, problems of different 
physical nature are solved and are described by various partial differential equations. 

The problem is complicated if the streamlined body has anisotropy of heat transfer 
properties, since the anisotropic thermal conductivity equations contain mixed derivatives for 
the analytical solution of which it is possible to use only integral transformation methods and 
only for domains in which at least one of the boundaries is directed to infinity [7], [8], [9], 
[10], [11], [12]. 

Since the system of equations of the gasdynamic boundary layer is essentially nonlinear, 
numerical methods are mainly used to solve it [6], however, under simplifying assumptions, 
in particular on the incompressibility of the flow occurring in the shock layer on blunt objects, 
an approximate analytical solution can be obtained to determine heat fluxes to the object, 
which are used as boundary conditions in the thermal conductivity problem [13], [14], [15], 
[16], [17], [18], [19]. 

An approximate analytical solution of the system of equations of the thermal boundary 
layer is obtained in order to determine heat fluxes to the object, which are then used as 
boundary conditions for the analytical solution of the thermal conductivity problem in the 
anisotropic strip [20], [21], [22], [23], [24], [25], [26], [27], [28], [29], [30], [31]. As a result, 
the conjugate heat transfer problem in the boundary layer and the thermal conductivity 
problem in the anisotropic strip are solved, and the continuity of heat fluxes and temperatures 
at the gas – solid object interface is used as boundary conditions. 

2. MATERIALS AND METHODS 
Let us consider the problem of coupled heat transfer when flowing around a critical point of a 
blunt anisotropic strip (Fig. 1). According to the characteristics of the approach flow of 
velocity 𝑉𝑉𝑠𝑠, height 𝐻𝐻, Mach number 𝑀𝑀, it is necessary to determine the heat and gas dynamic 
characteristics of the incompressible boundary layer and the heat fluxes to the object, using 
them as the boundary conditions at the gas – solid object interface, the thermal conductivity 
problem in the anisotropic strip can be solved. 

 
Fig. 1 - The computational scheme 
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The origin 𝑂𝑂 of coordinates 𝑂𝑂𝑂𝑂𝑂𝑂 is at the gas – solid object interface, with the 𝑂𝑂𝑂𝑂 axis 
directed along this boundary, the 𝑂𝑂𝑂𝑂 axis is directed inside the boundary layer, the 𝑂𝑂𝑂𝑂𝑠𝑠 axis is 
directed inside the anisotropic strip with thickness 𝑙𝑙, 𝑂𝑂𝝃𝝃, 𝑂𝑂𝜼𝜼 are the main axes of the thermal 
conductivity tensor oriented with respect to the 𝑂𝑂𝑂𝑂 axis by the angle 𝜑𝜑. 

We assume that the boundary layer is quasi-steady (steady at each moment of time), and 
the thermal conductivity problem in the anisotropic strip is nonstationary. 

In addition, the flow is symmetric relative to the 𝑂𝑂𝑂𝑂 axis, but the thermal conductivity in 
the strip is not. 

The system of equations of dynamic and thermal boundary layers relative to components 
𝑢𝑢(𝑂𝑂,𝑂𝑂), 𝑣𝑣(𝑂𝑂, 𝑂𝑂) of the velocity vector, temperature 𝑇𝑇(𝑂𝑂, 𝑂𝑂), density 𝜌𝜌(𝑂𝑂, 𝑂𝑂), pressure 𝑝𝑝(𝑂𝑂) has 
the form (Eqs. 1-9) [3], [5], [6], [10]: 

𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑂𝑂

+
𝜕𝜕(𝜌𝜌𝑢𝑢)
𝜕𝜕𝑂𝑂

= 0, 0 < 𝑂𝑂 < 𝛿𝛿(𝑂𝑂), |𝑂𝑂| < ∞ (1) 

𝜌𝜌𝑢𝑢
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

+ 𝜌𝜌𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

= −
𝜕𝜕𝑝𝑝
𝜕𝜕𝑂𝑂

+
𝜕𝜕
𝜕𝜕𝑂𝑂

�𝜇𝜇(𝑇𝑇)
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂
� , 0 < 𝑂𝑂 < 𝛿𝛿(𝑂𝑂), |𝑂𝑂| < ∞ (2) 

0 = −
𝜕𝜕𝑝𝑝
𝜕𝜕𝑂𝑂

;𝑝𝑝 = 𝑝𝑝𝑒𝑒(𝑂𝑂),
𝜕𝜕𝑝𝑝𝑒𝑒
𝜕𝜕𝑂𝑂

= −𝜌𝜌𝑒𝑒𝑢𝑢𝑒𝑒
𝜕𝜕𝑢𝑢𝑒𝑒
𝜕𝜕𝑂𝑂

,𝑂𝑂 = 𝛿𝛿(𝑂𝑂), |𝑂𝑂| < ∞ (3) 

𝜌𝜌𝑢𝑢
𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂

+ 𝜌𝜌𝑣𝑣
𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂

=
𝜕𝜕
𝜕𝜕𝑂𝑂

�
𝜇𝜇(𝑇𝑇)

Pr
𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂

+
𝜇𝜇(𝑇𝑇)

2 �1 −
1
Pr
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑂𝑂 �
� , 0 < 𝑂𝑂 < 𝛿𝛿(𝑂𝑂), |𝑂𝑂| < ∞ (4) 

𝑝𝑝 = 𝜌𝜌𝜌𝜌𝑇𝑇, 0 < 𝑂𝑂 < 𝛿𝛿(𝑂𝑂), |𝑂𝑂| < ∞ (5) 

𝑂𝑂 = 𝛿𝛿(𝑂𝑂):𝑢𝑢�𝑂𝑂, 𝛿𝛿(𝑂𝑂)� = 𝑢𝑢𝑒𝑒(𝑂𝑂);𝑣𝑣�𝑂𝑂, 𝛿𝛿(𝑂𝑂)� = 𝑣𝑣𝑒𝑒(𝑂𝑂) (6) 

𝑇𝑇�𝑂𝑂, 𝛿𝛿(𝑂𝑂)� = 𝑇𝑇𝑒𝑒(𝑂𝑂);  𝜌𝜌�𝑂𝑂, 𝛿𝛿(𝑂𝑂)� = 𝜌𝜌𝑒𝑒(𝑂𝑂) (7) 

𝑂𝑂 = 0:𝑢𝑢(0,𝑂𝑂) = 0;𝑝𝑝(0,0) = 𝑝𝑝0 (8) 

𝑑𝑑𝑝𝑝𝑒𝑒/𝑑𝑑𝑂𝑂 = 0 at 𝑂𝑂 → ±∞ (9) 

where 𝑝𝑝0 is the stagnation pressure, Pr is the Prandtl number (Eq. 10): 

Pr = 𝜇𝜇 ∙ 𝑐𝑐𝑝𝑝/λ (10) 

𝜕𝜕 – gas enthalpy (Eq. 11): 

𝜕𝜕 = 𝐶𝐶𝑝𝑝𝑇𝑇𝑛𝑛 + 𝑢𝑢2/2 (11) 

The index "𝑤𝑤" refers to the gas – solid object boundary 𝑂𝑂 = 0, "𝑒𝑒" refers to the boundary 
layer edge. 

According to the definition of a function 𝑇𝑇(𝑂𝑂,𝑂𝑂, 𝑡𝑡), the thermal conductivity problem in 
an anisotropic strip is considered with boundary conditions of the second kind, where at the 
boundary 𝑂𝑂𝑠𝑠 = 0 the heat flux (Eq. 12): 

𝑞𝑞𝑤𝑤 = −𝜆𝜆𝜕𝜕𝑇𝑇/𝜕𝜕𝑂𝑂|𝑦𝑦=0 (12) 

is drawn from the boundary layer (Eqs. 13-18): 
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𝜆𝜆11
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑂𝑂2

+ 2𝜆𝜆12
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑂𝑂𝜕𝜕𝑂𝑂

+ 𝜆𝜆22
𝜕𝜕2𝑇𝑇
𝜕𝜕𝑂𝑂2

= 𝑐𝑐𝜌𝜌
𝜕𝜕𝑇𝑇
𝜕𝜕𝑡𝑡

,−∞ < 𝑂𝑂 < ∞,𝑂𝑂𝑠𝑠 = 0, 𝑡𝑡 > 0 (13) 

−𝜆𝜆
𝜕𝜕𝑇𝑇(𝑂𝑂,𝑂𝑂)
𝜕𝜕𝑂𝑂 �

𝑦𝑦=0
= �𝜆𝜆11

𝜕𝜕𝑇𝑇(𝑂𝑂,𝑂𝑂𝑠𝑠, 𝑡𝑡)
𝜕𝜕𝑂𝑂

+ 𝜆𝜆22
𝜕𝜕𝑇𝑇(𝑂𝑂,𝑂𝑂𝑠𝑠, 𝑡𝑡)

𝜕𝜕𝑂𝑂
��
𝑦𝑦𝑠𝑠=0

,−∞ < 𝑂𝑂 < ∞,𝑂𝑂 = 𝑂𝑂𝑠𝑠

= 0, 𝑡𝑡 > 0 
(14) 

𝑇𝑇(𝑂𝑂,𝑂𝑂)|𝑦𝑦=0 = 𝑇𝑇(𝑂𝑂, 𝑂𝑂𝑠𝑠, 𝑡𝑡)|𝑦𝑦𝑠𝑠=0 = 𝑇𝑇𝑤𝑤(𝑂𝑂), −∞ < 𝑂𝑂 < ∞,𝑂𝑂 = 𝑂𝑂𝑠𝑠 = 0, 𝑡𝑡 > 0 (15) 

�𝜆𝜆11
𝜕𝜕𝑇𝑇
𝜕𝜕𝑂𝑂

+ 𝜆𝜆22
𝜕𝜕𝑇𝑇
𝜕𝜕𝑂𝑂
��
𝑦𝑦𝑠𝑠=𝑙𝑙

= 0,−∞ < 𝑂𝑂 < ∞,𝑂𝑂𝑠𝑠 = 𝑙𝑙, 𝑡𝑡 > 0 (16) 

𝑇𝑇(𝑂𝑂,𝑂𝑂𝑠𝑠, 0) = 0,−∞ < 𝑂𝑂 < ∞, 0 ≤ 𝑂𝑂𝑠𝑠 < 𝑙𝑙, 𝑡𝑡 = 0 (17) 

𝑇𝑇�±∞,𝑂𝑂𝑠𝑠,𝑡𝑡� = 0,
𝜕𝜕𝑇𝑇�±∞,𝑂𝑂𝑠𝑠,𝑡𝑡�

𝜕𝜕𝑂𝑂
= 0,

𝜕𝜕𝑇𝑇�±∞,𝑂𝑂𝑠𝑠,𝑡𝑡�
𝜕𝜕𝑂𝑂

= 0,−∞ < 𝑂𝑂 < ∞, 0 ≤ 𝑂𝑂𝑠𝑠 < 𝑙𝑙, 𝑡𝑡

> 0 
(18) 

We assume that the gas is perfect, the equation of state of which satisfies the Mendeleev's-
Clapeyron equation (5), the thicknesses of the dynamic 𝛿𝛿(𝑂𝑂) and thermal 𝛿𝛿𝐵𝐵(𝑂𝑂) boundary 
layers are equal (ie, the number Pr = 1), and thermal conductivity of the gas are determined 
by the Sutherland’s formula [15]. 

We express the derivative 𝜕𝜕𝑢𝑢/𝜕𝜕𝑂𝑂 on the left side of the momentum conservation equation 
(2) from the continuity equation (1) for an incompressible gas (𝜌𝜌 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡), we obtain the (Eq. 
19): 

−𝜌𝜌
𝜕𝜕(𝑢𝑢 ∙ 𝑣𝑣)
𝜕𝜕𝑂𝑂

+ 2𝜌𝜌𝑣𝑣
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

= −
𝑑𝑑𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂

+
𝜕𝜕
𝜕𝜕𝑂𝑂

�𝜇𝜇
𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂
� (19) 

integrating it twice in a variable 𝑂𝑂 under the assumptions made, and also setting (Eq. 20): 

𝜇𝜇(𝑇𝑇) ≈ 𝜇𝜇(𝑇𝑇𝑤𝑤) = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑡𝑡 (20) 

we come to the expression (the index "𝑚𝑚" means averaging over the thickness of the boundary 
layer) (Eq. 21): 

−(𝜌𝜌𝑢𝑢𝑣𝑣)𝑚𝑚 𝑂𝑂 + 2 − (𝜌𝜌𝑣𝑣𝑢𝑢)𝑚𝑚 𝑂𝑂 = −
𝑑𝑑𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂

𝑂𝑂2

2
+ 𝜇𝜇𝑤𝑤𝑢𝑢 + 𝐶𝐶1(𝑂𝑂)𝑂𝑂 + 𝐶𝐶2(𝑂𝑂) (21) 

in which 𝐶𝐶1(𝑂𝑂) and 𝐶𝐶2(𝑂𝑂) are determined from the boundary conditions (Eqs. 22-24): 

𝑂𝑂 = 0:𝑢𝑢(𝑂𝑂, 0) = 0 ∙ 𝐶𝐶2(𝑂𝑂) = 0 (22) 

𝑂𝑂 = 𝛿𝛿𝑒𝑒:𝑢𝑢(𝑂𝑂, 𝛿𝛿) = 𝑢𝑢𝑒𝑒(𝑂𝑂) (23) 

𝐶𝐶1(𝑂𝑂) = (𝜌𝜌𝑢𝑢𝑣𝑣)𝑐𝑐𝑝𝑝 +
𝑑𝑑𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂

𝛿𝛿
2
− 𝜇𝜇𝑤𝑤

𝑢𝑢𝑒𝑒
𝛿𝛿

 (24) 

Given these relations from (21) we obtain the longitudinal component of speed 𝑢𝑢(𝑂𝑂,𝑂𝑂) 
(Eq. 25): 
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𝑢𝑢(𝑂𝑂,𝑂𝑂) =
1

2𝜇𝜇𝑤𝑤
𝑑𝑑𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂

(𝑂𝑂2 − 𝛿𝛿𝑂𝑂) +
𝑢𝑢𝑒𝑒
𝛿𝛿
𝑂𝑂 (25) 

The transverse component of the velocity vector can be found from the continuity 
equation (1) for an incompressible flow (Eq. 26): 

𝜕𝜕𝑢𝑢
𝜕𝜕𝑂𝑂

= −
𝜕𝜕𝑣𝑣
𝜕𝜕𝑂𝑂

 (26) 

with the boundary condition (Eq. 27): 

𝑣𝑣(𝑂𝑂, 0) = 0 (27) 

Substituting the distribution of the longitudinal velocity (25) in (26) and integrating the 
obtained expression over the variable taking into account condition (27), we obtain (Eq. 28): 

𝑣𝑣(𝑂𝑂,𝑂𝑂) = −
1

2𝜇𝜇𝑤𝑤
𝑑𝑑2𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂2 �

𝑂𝑂3

3
−
𝛿𝛿
2
𝑂𝑂2� −

𝑑𝑑𝑢𝑢𝑒𝑒
𝑑𝑑𝑂𝑂

𝑂𝑂2

2𝛿𝛿
 (28) 

where the derivative 𝑑𝑑𝑢𝑢𝑒𝑒/𝑑𝑑𝑂𝑂 is determined from the Bernoullis equation in the form (3) and 
in the form (Eqs. 29-30): 

𝑝𝑝𝑒𝑒 + 𝜌𝜌𝑒𝑒𝑢𝑢𝑒𝑒2/2 = 𝑝𝑝0 (29) 

𝑑𝑑𝑢𝑢𝑒𝑒
𝑑𝑑𝑂𝑂

= −
1

�2𝜌𝜌𝑒𝑒(𝑝𝑝0 − 𝑝𝑝𝑒𝑒)
𝑑𝑑𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂

 (30) 

so that (Eq. 31): 

𝑣𝑣(𝑂𝑂,𝑂𝑂) = −
1

2𝜇𝜇𝑤𝑤
𝑑𝑑2𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂2 �

𝑂𝑂3

3
−
𝛿𝛿
2
𝑂𝑂2�+

1
�2𝜌𝜌𝑒𝑒(𝑝𝑝0 − 𝑝𝑝𝑒𝑒)

𝑑𝑑𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂

𝑂𝑂2

2𝛿𝛿
 (31) 

To clarify the longitudinal 𝑢𝑢(𝑂𝑂,𝑂𝑂) and transverse 𝑣𝑣(𝑂𝑂, 𝑂𝑂) components of the velocity 
vector, expressions (25), (31) can again be substituted into the left side of equation (2) and into 
the derivative 𝜕𝜕𝑢𝑢/𝜕𝜕𝑂𝑂 of equation (1). 

Under these assumptions, we integrate the energy conservation equation (4) with respect 
to the variable 𝑂𝑂, assuming that the derivative 𝜕𝜕𝜕𝜕/𝜕𝜕𝑂𝑂 weakly depends on the variable 𝑂𝑂, we 
obtain (Eq. 32): 

(𝜌𝜌𝑢𝑢)𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂

𝑂𝑂 + (𝜌𝜌𝑣𝑣)𝑐𝑐𝑝𝑝𝜕𝜕 =
𝜇𝜇𝑤𝑤
Pr

𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂

+
𝜇𝜇𝑤𝑤
2
�1 −

1
Pr
�
𝜕𝜕𝑢𝑢2

𝜕𝜕𝑂𝑂
+ 𝐷𝐷1(𝑂𝑂) (32) 

We integrate the resulting expression one more time with respect to the variable 𝑂𝑂 (Eq. 33): 

(𝜌𝜌𝑢𝑢)𝑐𝑐𝑝𝑝
𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂

𝑂𝑂2

2
+ (𝜌𝜌𝑣𝑣)𝑐𝑐𝑝𝑝 � 𝜕𝜕𝑑𝑑𝑂𝑂

𝑦𝑦

0
=
𝜇𝜇𝑤𝑤
Pr

𝜕𝜕 +
𝜇𝜇𝑤𝑤
2
∙ 𝑘𝑘 ∙ 𝑢𝑢2 + 𝐷𝐷1(𝑂𝑂) ∙ 𝑂𝑂 + 𝐷𝐷2(𝑂𝑂) (33) 

where (Eq. 34): 

𝑘𝑘 = 1 − 1/Pr ≈ −0.4 (34) 

(with the number Pr = 0.71) (Eqs. 35-37): 

𝑂𝑂 = 0:𝑢𝑢 = 0, 𝜕𝜕(𝑂𝑂, 0) = 𝜕𝜕𝑤𝑤(𝑂𝑂),𝐷𝐷2(𝑂𝑂) = −
𝜇𝜇𝑤𝑤
Pr

𝜕𝜕𝑤𝑤 (35) 
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𝑂𝑂 = 𝛿𝛿:𝑢𝑢 = 𝑢𝑢𝑒𝑒 , 𝜕𝜕 = 𝜕𝜕𝑒𝑒 (36) 

𝐷𝐷1(𝑂𝑂) = −
𝜇𝜇𝑤𝑤
Pr

𝜕𝜕𝑒𝑒 − 𝜕𝜕𝑤𝑤
𝛿𝛿

−
𝜇𝜇𝑤𝑤 ∙ 0.4

2
𝑢𝑢𝑒𝑒2

𝛿𝛿
+

(𝜌𝜌𝑢𝑢)𝑐𝑐𝑝𝑝
𝛿𝛿

𝜕𝜕𝜕𝜕𝑒𝑒
𝜕𝜕𝑂𝑂

𝛿𝛿
2

+
(𝜌𝜌𝑣𝑣)𝑐𝑐𝑝𝑝
𝛿𝛿

� 𝜕𝜕𝑑𝑑𝑂𝑂
𝛿𝛿

0
 (37) 

Substituting 𝐷𝐷1(𝑂𝑂), 𝐷𝐷2(𝑂𝑂) in (33), we obtain (Eq. 38): 

−
𝜇𝜇𝑤𝑤
Pr

(𝜕𝜕 − 𝜕𝜕𝑤𝑤) +
𝜇𝜇𝑤𝑤
Pr

𝜕𝜕𝑒𝑒 − 𝜕𝜕𝑤𝑤
𝛿𝛿

𝑂𝑂 − 0.2𝜇𝜇𝑤𝑤 �
𝑢𝑢𝑒𝑒2

𝛿𝛿
𝑂𝑂 − 𝑢𝑢2�

= (𝜌𝜌𝑢𝑢)𝑐𝑐𝑝𝑝 �
1
𝛿𝛿
𝜕𝜕𝜕𝜕𝑒𝑒
𝜕𝜕𝑂𝑂

𝛿𝛿2

2
𝑂𝑂 −

𝜕𝜕𝜕𝜕
𝜕𝜕𝑂𝑂

𝑂𝑂2

2 �
+ (𝜌𝜌𝑣𝑣)𝑐𝑐𝑝𝑝 �

1
𝛿𝛿
� 𝜕𝜕𝑑𝑑𝑂𝑂
𝛿𝛿

0
− � 𝜕𝜕𝑑𝑑𝑂𝑂

𝑦𝑦

0
� 

(38) 

The terms on the right side of expression (38) are of the order of the square of the boundary 
layer thickness and, as a first approximation, they can be neglected, thus (Eq. 39): 

𝜕𝜕(𝑂𝑂,𝑂𝑂) = 𝜕𝜕𝑤𝑤(𝑂𝑂) +
𝜕𝜕𝑒𝑒(𝑂𝑂) − 𝜕𝜕𝑤𝑤(𝑂𝑂)

𝛿𝛿(𝑂𝑂)
y − 0.2 ∙ Pr �

𝑢𝑢𝑒𝑒2(𝑂𝑂)
𝛿𝛿(𝑂𝑂)

𝑂𝑂 − 𝑢𝑢2(𝑂𝑂,𝑂𝑂)� (39) 

We differentiate expression (39) with a variable 𝑂𝑂, substituting 𝑂𝑂 = 0 (Eq. 40): 

𝑞𝑞𝑤𝑤(𝑂𝑂) = 𝜆𝜆𝑤𝑤
𝜕𝜕𝑇𝑇
𝜕𝜕𝑂𝑂�𝑤𝑤

= 𝜆𝜆𝑤𝑤
𝑇𝑇𝑒𝑒(𝑂𝑂) − 𝑇𝑇𝑤𝑤(𝑂𝑂)

𝛿𝛿
− 0.2𝜇𝜇𝑤𝑤

𝑢𝑢𝑒𝑒2(𝑂𝑂)
𝛿𝛿

 (40) 

Because (Eq. 41): 

𝑢𝑢𝑒𝑒2(𝑂𝑂) =
2
𝜌𝜌𝑒𝑒

(𝑝𝑝0 − 𝑝𝑝𝑒𝑒(𝑂𝑂)) (41) 

then (Eq. 42): 

𝑞𝑞𝑤𝑤(𝑂𝑂) = −𝜆𝜆𝑤𝑤
𝜕𝜕𝑇𝑇
𝜕𝜕𝑂𝑂�𝑤𝑤

= 𝜆𝜆𝑤𝑤
𝑇𝑇𝑤𝑤(𝑂𝑂) − 𝑇𝑇𝑒𝑒(𝑂𝑂)

𝛿𝛿(𝑂𝑂)
+

0.4𝜇𝜇𝑤𝑤
𝑝𝑝𝑒𝑒(𝑂𝑂)𝛿𝛿(𝑂𝑂) (�𝑝𝑝0 − 𝑝𝑝𝑒𝑒(𝑂𝑂)�

= 𝑇𝑇𝑤𝑤(𝑂𝑂) �
𝜆𝜆𝑤𝑤
𝛿𝛿(𝑂𝑂)� + �

0.4𝜇𝜇𝑤𝑤
𝑝𝑝𝑒𝑒(𝑂𝑂)𝛿𝛿(𝑂𝑂) (�𝑝𝑝0 − 𝑝𝑝𝑒𝑒(𝑂𝑂)� −

𝜆𝜆𝑤𝑤𝑇𝑇𝑒𝑒(𝑂𝑂)
𝛿𝛿(𝑂𝑂)

� 
(42) 

To solve the conjugate problems, it is now necessary to substitute heat fluxes in the form 
(42) into the analytical solution of the anisotropic thermal conductivity problem, (Eqs. 11-18). 
The solution of the second initial boundary value problem of thermal conductivity in an 
anisotropic strip was first obtained by the authors using the Green's function method and is 
given in the monograph [15]. Therefore, it is given here without conclusion. With zero heat 
current at the inner border of the strip 𝑂𝑂𝑠𝑠 = 𝑙𝑙, (𝑞𝑞2 = 0), this solution has the form (Eq. 43): 

𝑇𝑇(𝑂𝑂,𝑂𝑂𝑠𝑠, 𝑡𝑡) =
1

2𝛾𝛾𝑙𝑙𝜆𝜆22√𝜋𝜋
� ��1 + 2� cos �𝑘𝑘𝜋𝜋

𝑙𝑙 − 𝑂𝑂𝑠𝑠
𝑙𝑙

�
∞

𝑘𝑘=1

exp �−
𝑘𝑘2𝜋𝜋2

𝛾𝛾𝑙𝑙2
(𝑡𝑡 − 𝜏𝜏)��

𝑡𝑡

0

× � �
𝑞𝑞𝑤𝑤(𝜉𝜉)

�𝛽𝛽(𝑡𝑡 − 𝜏𝜏)/𝛾𝛾
exp�−

(𝜉𝜉 + 𝛼𝛼𝑂𝑂𝑠𝑠 − 𝑂𝑂)2

4𝛽𝛽(𝑡𝑡 − 𝜏𝜏)/𝛾𝛾 ��
𝑙𝑙1

−𝑙𝑙1
� 𝑑𝑑𝜉𝜉𝑑𝑑𝜏𝜏 

(43) 

where 𝑞𝑞𝑤𝑤(𝑂𝑂) is the heat flux from the boundary layer, defined by formula (40), 𝑙𝑙1 is the 
distance along the 𝑂𝑂𝑂𝑂 axis from the critical point 𝑂𝑂 = 0, where 𝑞𝑞𝑤𝑤(𝑂𝑂) ≠ 0 but outside of it 
𝑞𝑞𝑤𝑤(𝑂𝑂) ≈ 0, (Eqs. 44-46): 
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𝛼𝛼 = 𝜆𝜆12/λ22 (44) 

𝛽𝛽 = (𝜆𝜆11𝜆𝜆22 − λ222 )/λ222 = 𝜆𝜆𝜉𝜉𝜆𝜆𝜂𝜂/λ222  (45) 

𝛾𝛾 = 𝑐𝑐𝑝𝑝/𝜆𝜆22 (46) 

The components of the thermal conductivity tensor of the anisotropic strip are determined 
by the relations (Eqs. 47-49) [15]: 

𝜆𝜆11 = 𝜆𝜆𝜉𝜉cos2φ + 𝜆𝜆𝜂𝜂sin2φ (47) 

𝜆𝜆22 = 𝜆𝜆𝜉𝜉sin2φ + 𝜆𝜆𝜂𝜂cos2φ (48) 

𝜆𝜆12 = 𝜆𝜆21 = �𝜆𝜆𝜉𝜉 − 𝜆𝜆𝜂𝜂�sinφcosφ (49) 

where 𝜆𝜆𝜉𝜉, 𝜆𝜆𝜂𝜂, are the main components of the thermal conductivity tensor, acting in the 
direction of the principal axes 𝑂𝑂𝜉𝜉 ∙ 𝑂𝑂𝜂𝜂 oriented by an angle φ relative to the 𝑂𝑂𝑂𝑂 axis (Fig. 1). 

It remains to substitute in (43) either the heat flux 𝑞𝑞𝑤𝑤(𝑂𝑂) from (42), then at 𝑂𝑂𝑠𝑠 = 0 on the 
left side of (43) (𝑇𝑇𝑤𝑤(𝑂𝑂, 0, 𝑡𝑡) = 𝑇𝑇𝑤𝑤(𝑂𝑂)) we obtain the inhomogeneous Fredholm integral 
equation of the second kind with respect to temperature 𝑇𝑇𝑤𝑤(𝑂𝑂) or the temperature 𝑇𝑇𝑤𝑤(𝑂𝑂) from 
expression (42) into the left side of function (43), we obtain the Fredholm equation of second 
kind relative to heat flux 𝑞𝑞𝑤𝑤(𝑂𝑂). 

Substituting (42) in (43) instead of 𝑞𝑞𝑤𝑤(𝜉𝜉), we get at 𝑂𝑂𝑠𝑠 = 0 (Eq. 50): 

𝑇𝑇(𝑂𝑂, 𝑡𝑡) =
1

2𝛾𝛾𝑙𝑙𝜆𝜆22√𝜋𝜋
� ��1 + 2�(−1)𝑘𝑘cos �𝑘𝑘𝜋𝜋

𝑙𝑙 − 𝑂𝑂𝑠𝑠
𝑂𝑂𝑠𝑠

�
∞

𝑘𝑘=1

exp�−
𝑘𝑘2𝜋𝜋2

𝛾𝛾𝑙𝑙2
(𝑡𝑡 − 𝜏𝜏)��

𝑡𝑡

0

× � ��𝑇𝑇𝑤𝑤(𝜉𝜉)
𝜆𝜆𝑤𝑤
𝛿𝛿(𝜉𝜉) +

0.4𝜇𝜇𝑤𝑤
𝑝𝑝𝑒𝑒(𝜉𝜉)𝛿𝛿(𝜉𝜉) (�𝑝𝑝0 − 𝑝𝑝𝑒𝑒(𝜉𝜉)� −

𝜆𝜆𝑤𝑤𝑇𝑇𝑒𝑒(𝜉𝜉)
𝛿𝛿(𝜉𝜉)

�
𝑙𝑙1

−𝑙𝑙1

×
exp �− (𝜉𝜉 + 𝛼𝛼𝑂𝑂𝑠𝑠 − 𝑂𝑂)2

4𝛽𝛽(𝑡𝑡 − 𝜏𝜏)/𝛾𝛾 �

�𝛽𝛽(𝑡𝑡 − 𝜏𝜏)/𝛾𝛾
��𝑑𝑑𝜉𝜉𝑑𝑑𝜏𝜏 

(50) 

is solved by the iterative method. This closed-form solution (one function) is a solution to the 
conjugate problem (Eqs. 1-18) of heat transfer between the temperature gasdynamic boundary 
layer and the anisotropic strip. Substituting the obtained distribution of temperatures 𝑇𝑇(𝑂𝑂, 𝑡𝑡) 
of the interface in (39), (42), we find the distribution of temperatures (enthalpies) in the 
boundary layer and heat fluxes 𝑞𝑞𝑤𝑤 to the wall. 

3. RESULTS AND DISCUSSIONS 
The solution obtained is applicable to the problem of flowing around a critical point of a cone 
(wedge) blunt in radius 𝜌𝜌0 = 0.05 𝑚𝑚 with a semivertex angle 𝜃𝜃0 = 10° behind the normal 
part of the shock wave, where the speed is subsonic (incompressible flow). Approach flow 
speed 𝑉𝑉𝑠𝑠 = 3000 𝑚𝑚/𝑐𝑐, (Mach number 𝑀𝑀 = 10), thermal and physical characteristics of the 
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approach flow, 𝜌𝜌𝑠𝑠, 𝑇𝑇𝑠𝑠, 𝑎𝑎𝐹𝐹, 𝑝𝑝𝑠𝑠, 𝜇𝜇𝑠𝑠, 𝜆𝜆𝑠𝑠 are determined from the International Standard 
Atmosphere for altitude 𝐻𝐻 = 12000 𝑚𝑚. 

The dynamic coefficient of viscosity and thermal conductivity of the gas were determined 
according to the Sutherland's formula (Eq. 51) [15]: 

𝜇𝜇𝑠𝑠
𝜇𝜇𝑛𝑛

=
𝜆𝜆𝑤𝑤
𝜆𝜆𝑛𝑛

= �
𝑇𝑇𝑤𝑤
𝑇𝑇𝑛𝑛
�
𝑇𝑇𝑛𝑛 + 110
𝑇𝑇𝑤𝑤 + 110

 (51) 

At the outer boundary layer edge, the gasdynamic characteristics 𝑇𝑇𝑒𝑒(𝑂𝑂), 𝜌𝜌𝑒𝑒(𝑂𝑂), 𝑢𝑢𝑒𝑒(𝑂𝑂) are 
calculated by the gas pressure 𝑝𝑝𝑒𝑒(𝑂𝑂), which is determined on the blunt conical bodies by the 
interpolation formula (Eqs. 52-53) [15]: 

𝑝𝑝𝑒𝑒(𝜃𝜃) = 𝑝𝑝0(1 − 1.17sin2𝜃𝜃 + 0.225sin6𝜃𝜃) ∙ |𝜃𝜃| ≤
𝜋𝜋
2
− 𝜃𝜃0 (52) 

𝑝𝑝𝑒𝑒(𝑂𝑂) = 𝑝𝑝0(𝐴𝐴 ln(𝑂𝑂 + 𝐵𝐵) + 𝐶𝐶), �
𝜋𝜋
2
− 𝜃𝜃0�𝜌𝜌0 < |𝑂𝑂| ≤ �

𝜋𝜋
2
− 𝜃𝜃0�𝜌𝜌0 + 𝐿𝐿 (53) 

where (Eq. 54): 

𝜃𝜃 = 𝑂𝑂/𝜌𝜌0 (54) 

𝐿𝐿 is the length of the wedge tail, 𝐴𝐴 = 0.028904, 𝐵𝐵 = −1.238331, 𝐶𝐶 = 0.017189 for the 
semivertex angle 𝜃𝜃0 = 10°. 

Using pressure according to formulas (52-53), temperature 𝑇𝑇𝑒𝑒(𝑂𝑂) and density 𝜌𝜌𝑒𝑒(𝑂𝑂) are 
determined from the relations (Eq. 55): 

𝑇𝑇𝑒𝑒(𝑂𝑂)
𝑇𝑇𝑜𝑜

=
𝑝𝑝𝑒𝑒(𝑂𝑂)

𝑘𝑘−1
𝑘𝑘

𝑝𝑝0
,
𝑝𝑝𝑒𝑒(𝑂𝑂)
𝑝𝑝0

= �
𝑝𝑝𝑒𝑒(𝑂𝑂)1/𝑘𝑘

𝑝𝑝0
� (55) 

and speed 𝑢𝑢𝑒𝑒(𝑂𝑂) is determined from the Bernoullis equation (Eqs. 56-58) [15]: 

𝑝𝑝𝑒𝑒𝑢𝑢𝑒𝑒
𝑑𝑑𝑢𝑢𝑒𝑒
𝑑𝑑𝑂𝑂

= −
𝑑𝑑𝑝𝑝𝑒𝑒
𝑑𝑑𝑂𝑂

 (56) 

|𝑂𝑂| ≤ �
𝜋𝜋
2
− 𝜃𝜃0�𝜌𝜌0 + 𝐿𝐿 (57) 

𝑢𝑢𝑒𝑒(𝑂𝑂)  = � 2𝑘𝑘
𝑘𝑘 − 1

𝑝𝑝0
1/𝑘𝑘

𝜌𝜌0
�𝑝𝑝0

𝑘𝑘−1
𝑘𝑘 − (𝑝𝑝𝑒𝑒(𝑂𝑂))

𝑘𝑘−1
𝑘𝑘 � (58) 

The thickness of the anisotropic strip 𝑙𝑙 = 0.005 𝑚𝑚 in the calculations was assumed to be 
metal (with high thermal conductivity) (Eqs. 59-60): 

𝑇𝑇𝑤𝑤(𝑂𝑂, 𝑡𝑡)
𝜆𝜆𝑤𝑤
𝛿𝛿(𝑂𝑂) +

0.4𝜇𝜇𝑤𝑤
𝜌𝜌𝑒𝑒(𝑂𝑂)𝛿𝛿(𝑂𝑂) �𝑝𝑝0 − 𝑝𝑝𝑒𝑒(𝑂𝑂)� −

𝜆𝜆𝑤𝑤𝑇𝑇𝑒𝑒(𝑂𝑂)
𝛿𝛿(𝑂𝑂)

= (𝑐𝑐𝜌𝜌𝑙𝑙)𝑠𝑠
𝜕𝜕𝑇𝑇𝑤𝑤(𝑂𝑂, 𝑡𝑡)

𝜕𝜕𝑡𝑡
 (59) 

𝑇𝑇𝑤𝑤(𝑂𝑂, 0) = 𝑇𝑇𝑤𝑤0 (60) 

where 𝑇𝑇𝑤𝑤0 = 300 𝐾𝐾, and the heat-sink capacity and density of the metal took the values: 𝑐𝑐𝑠𝑠 =
103𝑘𝑘𝑘𝑘 ∙ 𝐾𝐾, 𝜌𝜌𝑠𝑠 = 4000 𝑘𝑘𝑘𝑘/𝑚𝑚3. 

The solution to the initial problem (59) is the function (Eq. 61): 
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𝑇𝑇𝑤𝑤(𝑂𝑂, 𝑡𝑡) = �𝑇𝑇𝑤𝑤0 +
𝐵𝐵
𝐴𝐴
� exp �

𝐴𝐴𝑡𝑡
(𝑐𝑐𝜌𝜌𝑙𝑙)𝑠𝑠

� −
𝐵𝐵
𝐴𝐴

 (61) 

where (Eq. 62): 

𝐴𝐴 = −
𝜆𝜆𝑤𝑤
𝛿𝛿(𝑂𝑂)

,𝐵𝐵 =
0.4𝜇𝜇𝑤𝑤

𝜌𝜌𝑒𝑒(𝑂𝑂)𝛿𝛿(𝑂𝑂) �𝑝𝑝0 − 𝑝𝑝𝑒𝑒(𝑂𝑂)� +
𝜆𝜆𝑤𝑤𝑇𝑇𝑒𝑒(𝑂𝑂)
𝛿𝛿(𝑂𝑂)

 (62) 

Figure 2 shows the graphs of the heat flux distribution, and Fig. 3 presents distribution of 
temperatures of the metal strip along the axis at different points in time. Under conditions of 
a quasi-steady boundary layer, the strip heats up quite intensively in time. 

 
Fig. 2 - The distribution of the heat flux at the boundary of the metal strip at different points in time 

 
Fig. 3 - The temperature distribution at the boundary of the metal strip at various points in time 

4. CONCLUSIONS 
The problem of coupled heat transfer between a high-temperature gasdynamic boundary layer 
and an anisotropic strip with a thermal conductivity tensor in the general form is formulated. 
For an incompressible boundary layer near the critical point of a blunt wedge, an analytical 
solution is obtained to determine the components of the velocity, density, temperature vector, 
and heat fluxes to the anisotropic strip. An analytical solution to the problem is obtained for 
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an anisotropic strip with arbitrary heat fluxes at the boundaries. We obtained closed-form 
solution, in the form of the Fredholm integral equation of the second kind, to the entire 
complex problem of coupled heat transfer. 

Numerous results of computational experiments have been obtained. The numerical 
implementation confirmed the adequacy of mathematical modeling and the solution method, 
despite the simplifications made. 

In particular, when solving the conjugate problem, it was assumed that the boundary layer 
is quasi-steady (steady at each moment of time), and the thermal conductivity problem in the 
anisotropic strip is non-stationary. In addition, the flow is symmetrical, but the thermal 
conductivity in the strip is not. 

In this case, the gas is considered to be perfect, the equation of state of which satisfies the 
Mendeleev's-Clapeyron equation Cl, and the thicknesses of the dynamic and thermal boundary 
layers are taken equal (i.e., the Prandtl number is equal to 1), the viscosity and thermal 
conductivity of the gas were determined by the Sutherland’s formula. 
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